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ABSTRACT
Neural ranking models (NRMs) and dense retrieval (DR) models
have given rise to substantial improvements in overall retrieval
performance. In addition to their effectiveness, and motivated by
the proven lack of robustness of deep learning-based approaches
in other areas, there is growing interest in the robustness of deep
learning-based approaches to the core retrieval problem. Adversar-
ial attack methods that have so far been developed mainly focus
on attacking NRMs, with very little attention being paid to the
robustness of DR models.

In this paper, we introduce the adversarial retrieval attack (AREA)
task. The AREA task is meant to trick DR models into retrieving
a target document that is outside the initial set of candidate docu-
ments retrieved by theDRmodel in response to a query.We consider
the decision-based black-box adversarial setting, which is realistic
in real-world search engines. To address the AREA task, we first
employ existing adversarial attack methods designed for NRMs. We
find that the promising results that have previously been reported
on attacking NRMs, do not generalize to DR models: these methods
underperform a simple term spamming method. We attribute the
observed lack of generalizability to the interaction-focused architec-
ture of NRMs, which emphasizes fine-grained relevance matching.
DR models follow a different representation-focused architecture
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that prioritizes coarse-grained representations. We propose to for-
malize attacks on DR models as a contrastive learning problem in
a multi-view representation space. The core idea is to encourage
the consistency between each view representation of the target
document and its corresponding viewer via view-wise supervision
signals. Experimental results demonstrate that the proposedmethod
can significantly outperform existing attack strategies in misleading
the DR model with small indiscernible text perturbations.
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1 INTRODUCTION
Information retrieval (IR) systems typically employ a multi-stage
search pipeline, including the first-stage retrieval and the re-ranking
stage [13]. The first-stage retrieval returns an initial set of candidate
documents from a large repository, and the re-ranking stage re-
ranks those candidates. Dense retrieval (DR) models [13, 55] and
neural ranking models (NRMs) [7, 49] offer substantial performance
improvements in the retrieval and re-ranking stage, respectively.

By modifying normal examples with malicious human-impercep-
tible perturbations, deep learning-based models can be deceived
into providing attacker-desired inaccurate predictions [43]. DR
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Figure 1: The adversarial retrieval attack (AREA) task.
models and NRMs are prone to inherit the adversarial vulnerabil-
ity of general neural networks, emphasizing the need for reliable
and robust neural IR systems. Exploring potential adversarial at-
tacks against neural models in IR is an important step towards
this goal: Such explorations help identify vulnerabilities, serve as
a surrogate to evaluate robustness before real-world deployment,
and, consequently, aid in devising appropriate countermeasures.

To date, much attention has been devoted to the design of ad-
versarial attacks against NRMs [25, 27, 47]. Given a neural ranking
model, the attack aims to promote a low-ranked target document
to higher positions via human-imperceptible perturbations. In con-
trast, little effort has been devoted to investigating how adversarial
attacks affect DR models. We believe it is important to address
this knowledge gap. Firstly, like NRMs, DR models are increasingly
vital in practical IR systems. Adversarial attacks can expose their
weaknesses and provide insights for developing more robust search
engines. Secondly, within a multi-stage search pipeline, if black-hat
search engine optimization practitioners [15] cannot ensure a target
document successfully passes the first-stage retrieval, they will not
have the chance to promote it in rankings in the final ranked list.
Adversarial attacks against DR models. We are the first to
develop adversarial attacks against DR models. The first research
question is: What is the goal of attacking DR models? Based on
the adversarial attacks against NRMs and inspired by properties
of the first-stage retrieval, we propose to define an attack task, the
adversarial retrieval attack (AREA) against DR models. As shown
in Figure 1, given a DR model, the AREA task is to retrieve a target
document outside the initial set of 𝐾 candidate documents for a
given query, by perturbing the document content in a semantic-
preserving way. We focus on a practical and challenging decision-
based black-box setting, akin to the adversarial attacks against
NRMs [25, 27, 47], where the adversary can only query the target
DR model without direct model information access. For consistency
with the multi-stage search pipeline in practical IR systems, we
simulate a black-box “retrieval and re-ranking” pipeline, wherein
the target DR model initially narrows down the candidate set to
𝐾 documents, followed by an NRM determining the final top-𝐾
documents ordering. In this way, we query the pipeline and assess
the final decision to perform attacks in a black-box manner.
Using NRM attack methods against DR models. To address
the AREA task, the second research question arises: Do existing
attack methods against NRMs perform as well against DR models
as against NRMs? Our results show that these methods lag behind
a simple term spamming attack typically involving query keyword
stuffing [15]. Deep neural networks with interaction-focused archi-
tectures are usually employed for NRMs, while less complicated

models with representation-focused architectures are adopted in DR
models [9, 14, 51]. Specifically, when attacking NRMs, the perturba-
tion update relies on modeling fine-grained interactions between
attacked documents and queries. In contrast, DR models depend
on coarse-grained text representations for effective search in the
representation space. This distinction renders the existing attacks
against NRMs unsuitable for deceiving DR models.
Attack models tailored for DR models. The analysis we have
just summarized leads to our third research question: Can we design
an effective adversarial attack method tailored for DR models? As
DR conducts retrieval purely in the representation space [13, 55],
we introduce a multi-view contrastive learning-based adversarial
retrieval attack (MCARA) to generate adversarial examples. Our
key idea is to enhance the consistency of semantic representations
between the target document and the 𝐾 retrieved documents in
the initial set using view-wise supervision. Specifically, after train-
ing a surrogate model to demystify the target DR model, we first
obtain different viewers to represent documents in the initial set
via a clustering technique. We produce multi-view representations
for the target document through viewers. Then, a view-wise con-
trastive loss is applied to draw each view representation of the
target document closer to its corresponding viewer in the semantic
space while distancing it from nearest-neighbor documents outside
the initial set. In this way, the attacker captures informative and
discriminative semantic signals via view-level contrastive supervi-
sion. Finally, following [47], we use prior-guided gradients of the
view-wise contrastive loss to identify the important words in a
document, and adopt projected gradient descent [32] to generate
gradient-based adversarial perturbations.

Experiment on two web search benchmark datasets show that
MCARA effectively promotes the target document into the candi-
date set with high attack success and low time cost. According to
both automatic and human evaluations, MCARA retains target doc-
uments semantics and fluency. Moreover, the adversarial examples
produced by MCARA can deceive the NRM to some extent.

2 RELATEDWORK
Dense retrieval. Dense retrieval [55] conducts first-stage retrieval
[13] in the embedding space and has demonstrated several advan-
tages over sparse retrieval [24]. It typically employs a dual-encoder
architecture to embed queries and documents into low-dimension
embeddings [45]using these similarities as estimated relevance
scores [13]. By fine-tuning BERT with in-batch negatives [19], DR
models have been shown to outperform BM25 [39]. Subsequently,
research has explored various pre-training [10, 31], and fine-tuning
techniques [21, 37, 53] to enhance DR models, achieving state-of-
the-art performance on IR tasks. Besides high effectiveness, the
robustness of DR models, such as out-of-distribution [26, 44, 52]
and query variations [4, 36], has been focused. Unlike the work
listed above, we focus on the adversarial robustness of DR models.
Adversarial attacks in IR. In IR, black-hat search engine opti-
mization (SEO) has been a threat to search systems since the dawn
of the world wide web [15]. Black-hat SEO usually aims to increase
the exposure of a document owner’s pages by maliciously manip-
ulating documents, resulting in a decline in the quality of search
results and inundation of irrelevant pages [1]. Research has shown
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that neural ranking models (NRMs) inherit the adversarial vulnera-
bilities of deep neural networks, making them susceptible to small
perturbations added to documents [48]. Research into adversarial
attacks against NRMs has been growing, with the goal of promoting
a target document in the rankings w.r.t. a query via imperceptible
perturbations. Prior work investigates the vulnerability of NRMs in
white-box [42, 46] or black-box [27, 47] scenarios, using word sub-
stitution [47] or trigger injection [25] as document perturbations.
Similar to NRMs, DR models are also likely to inherit adversarial
vulnerabilities of deep neural networks. The adversarial vulnerabil-
ity of DR models remains under-explored.
Multi-view document representations. A single representation
vector may not be able to properly model the fine-grained seman-
tics of a document [55]. To tackle this issue, previous work has
proposed approaches to explore multiple representations for en-
hancing the semantic interaction in DR. Poly-Encoder [18] learns
multi-representations for modeling the semantics of a text accord-
ing to multi-views. Zhang et al. [54] introduce multiple viewers to
produce multi-view representations to represent documents and en-
force them to align with different queries. In this work, we generate
multi-view representations of a target document through viewers.
Contrastive learning. Contrastive learning [22] is a branch of
self-supervised representation learning, which has been widely
applied in computer vision [16, 17] and natural language process-
ing [11, 41]. The key idea is to contrast pairs of semantically similar
and dissimilar pairs of data, encouraging the representations of
similar pairs to be close and those of dissimilar pairs to be further
apart. In the context of dense retrieval, some work has adopted con-
trastive learning in guiding models to learn more distinguishable
representations of documents [29, 50]. Unlike existing work, we
aim to obtain an effective attack signal by pulling each view repre-
sentation of the target document towards its corresponding viewer,
while pushing it away from representations of counter-viewers.

3 PROBLEM STATEMENT
Given a query𝑞, the aim of first-stage retrieval is to recall a subset of
potentially relevant documents from a large corpus C = {𝑑1, 𝑑2, . . . ,
𝑑𝑁 } with a total of 𝑁 documents. In general, a first-stage retrieval
model produces a relevance score 𝑠 (𝑞, 𝑑) of the query 𝑞 for each
document 𝑑 in C, and then recalls a set of candidates 𝑅 by selecting
the top-𝐾 documents with the highest predicted scores. Here,𝐾 rep-
resents the number of candidates in 𝑅, which is usually significantly
smaller than the corpus size 𝑁 . For example, the retrieval model
outputs the initial set 𝑅 = {𝑑1, 𝑑2, . . . , 𝑑𝐾 } with𝐾 candidates if it de-
termines that 𝑠 (𝑞, 𝑑1) > 𝑠 (𝑞, 𝑑2) > · · · > 𝑠 (𝑞, 𝑑𝐾 ) > · · · > 𝑠 (𝑞, 𝑑𝑁 ).
In this case, 𝑑𝐾 possesses the lowest relevance score within 𝑅.
Objective of the adversary.The adversarial retrieval attack (AREA)
task is to fool the DR models into retrieving a target document out-
side the initial set of 𝐾 candidates in response to a query appearing
in the 𝐾 initial candidates, by finding an optimized and impercepti-
ble perturbation 𝑝 . Formally, given a query 𝑞 and a target document
𝑑 out of the initial set, the goal is to construct a valid adversarial
example 𝑑𝑎𝑑𝑣 = 𝑑 ⊕ 𝑝 , that can be ranked above the 𝐾-th position.
Specifically, 𝑝 is crafted to conform to the following requirements,

Recall(𝑞, 𝑑 ⊕ 𝑝) ≤ 𝐾 such that 𝑝 ≤ 𝜖, (1)

where Recall(𝑞, 𝑑 ⊕ 𝑝) denotes the ranking position of the adversar-
ial example recalled by 𝑞. A smaller value of Recall denotes a higher
ranking. In this case, the rank position of the original 𝑑 is larger
than 𝐾 . 𝜖 is the maximum perturbation upper bound of 𝑝 . Ideally,
the perturbation 𝑝 should preserve the semantics of document 𝑑
and be imperceptible to human judges yet misleading to DR models.
In this work, we use the number of word substitutions and the
similarity of the substituted words as restrictions.
Decision-based black-box attacks. Since most real-world search
engines are black boxes, here, we focus on the decision-based black-
box attack setting for the AREA task, where the model parameters
are inaccessible to the adversary. To align with practical IR systems’
multi-stage pipelines, we simulate a retrieval-ranking pipeline by
incorporating a representative NRM following the target DR model,
refer to as black-box. We train a surrogate model [35] to imitate
the target DR model, by querying the pipeline for the final ranking.

4 OUR METHOD
We first analyze the difference between attacking NRMs and DR
models, and then introduce our attack method for AREA task.

4.1 Representation and interaction behavior
To address the AREA task, it is natural to consider existing attack
methods designed for NRMs. However, as our experimental results
of Section 6.1 show, unlike the success in NRMs, these methods
designed for NRMs do not achieve promising performance. Below,
we investigate the potential reasons from several perspectives.
Different model architectures in DR models and NRMs. Dur-
ing first-stage retrieval the aim is to discriminate a small set of candi-
date documents from (potentially) millions of documents in a coarse-
grained way [13]. To this end, DR models with their representation-
focused architectures (i.e., dual-encoder) are extensively adopted to
evaluate relevance based on high-level representations of each input
text and to ensure efficiency [55]. In contrast, the re-ranking stage
conducts fine-grained relevance matching between a query and a
small set of candidate documents [14]. To this end, NRMs with their
interaction-focused architectures (i.e., cross-encoder) are widely
used to directly learn from interactions rather than from individual
representations and to maintain good system performance [51].
Different guidelines when attacking DR models and NRMs.
To promote a target document in rankings, attacks on NRMs lever-
age the interaction signals with attention across the query and
the target document tokens. The adversary captures the signal of
inner-document representativeness [30, 37], which guides the com-
putation of the update direction for adversarial perturbation. In
contrast, when attacking DR models, it is important to consider
inter-document representativeness [28, 29], since the dual-encoder
architecture enables the encoding of queries and documents inde-
pendently. To include the target document in the initial candidate
set, the adversary aims to find a minimal perturbation that maxi-
mizes the probability of the DR model in distinguishing the target
document from millions of documents in the embedding space.
In summary, the variation in model architectures and attack su-
pervision signals pose considerable challenges when attempting to
deceive DR models using attacks intended for NRMs. Consequently,
it is important to develop attack techniques tailored for DR models.
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4.2 Overview of MCARA
High-quality text representation is the foundation of DR [29]. We
propose to formalize the AREA task as a contrastive learning prob-
lem [22] in the representation space: (i) Push target document 𝑑
away from other documents outside the initial set; and (ii) Pull 𝑑
closer to the candidates inside the initial set. However, contrasting
all documents inside and outside the initial set incurs computational
overhead and lacks directional control. In this paper, we introduce
representative viewers for the 𝐾 candidates in the initial set and
use the nearest neighbors of the target document in the semantic
space as counter-viewers to serve as counterexamples.

Considering the viewers, a simple method to conduct contrastive
learning is to directly encourage the representation of the target
document and that of each viewer in the semantic space to be closer
while keeping counter-viewers away. Nevertheless, such simulta-
neous attraction in multiple directions towards a single document
representation could potentially lead to information loss. Here, we
introduce a novel multi-view contrastive adversarial retrieval at-
tack (MCARA). The key idea is to disentangle the target document
embedding into multi-view representations through viewers, and
then enhance the consistency between each view representation
and the representation of its corresponding viewer. MCARA can
be decomposed into three dependent components: (i) A surrogate
model imitation trains a surrogate retrieval model to prepare for
a gradient attack; (ii) Multi-view representation learning finds
the viewers and counter-viewers, and generates multi-view repre-
sentations for the target document; and (iii) Attack via view-wise
contrastive loss generates the embedding space perturbations by
calculating the gradients of the surrogate model via contrast. The
overall architecture of MCARA is shown in Figure 2.

4.3 Surrogate model imitation
To simulate a realistic scenario, we regard the “retrieval and re-
ranking” pipeline as a unified black-box model, where the retrieval
model serves as the target DR model for our attack. For each dataset
used in this study, we first train the target DR model and then train
the NRM based on the retrieved candidates given by the DR model.
We use state-of-the-art models [10, 30] as the backbone of the DR
model and the NRM in the pipeline, respectively. By sending queries
to the black-box pipeline and obtaining the ranked list (given by

the NRM), following [3, 47], we leverage the relative relevance
information among the ranked list [8] to construct a synthetic
dataset, for training a surrogate retrieval model.

Given a query 𝑞𝑐 from a pre-collected query collection Q that
accesses the black-box pipeline, we get the ranking result 𝑅𝑎 of 𝐾
documents returned by the pipeline. We generate pseudo-labels as
the ground-truth by treating the first ℓ ranked documents 𝑅𝑎 [: ℓ]
as relevant documents 𝑅+𝑎 . Generally, training a well-performed
DR model needs to combine random negative sampling and hard
negative sampling [50]. Therefore, we treat the other documents
𝑅𝑎 [ℓ + 1 : 𝐾] as hard negative examples 𝑅−𝑎 , and the ranked docu-
ments of other queries except for 𝑞𝑐 in 𝑄 are regarded as random
negative examples. We initialize the surrogate retrieval model 𝑓
using the vanilla BERT. The relevance score calculated by the surro-
gate retrieval model is 𝑓 (·, ·). We train 𝑓 by optimizing a pairwise
loss function as the negative log-likelihood of relevant documents:

L=− 1
|Q|

∑︁
𝑞𝑐 ∈Q

log
𝑓 (𝑞𝑐 , 𝑅+𝑎 )

𝑓 (𝑞𝑐 , 𝑅+𝑎 )+𝑓 (𝑞𝑐 , 𝑅−𝑎 )+
∑
𝑅′
𝑐 ∈R/{𝑅𝑎 } 𝑓 (𝑞𝑐 , 𝑅

′
𝑐 )
, (2)

where R denotes the set of query collection’s ranking results, and
𝑅′𝑐 is the ranking result of other queries.

4.4 Multi-view representation learning
Based on the surrogate model 𝑓 , we first learn multiple viewers
from representations of 𝐾 documents within the initial set returned
to a query 𝑞, and then generate multi-view representations to repre-
sent the target document 𝑑 through the learned viewers. In addition
to the viewers, we employ a set of counter-viewers from represen-
tations of documents outside the initial set to prepare for attacks.
Derivingmultiple viewers from the initial set of𝐾 candidates.
The key idea is to find several indicative viewers to represent the
documents within the initial set and provide guidance for the at-
tack process. Here, the viewer is defined as a cluster of documents
sharing the same topic. We will try other ways of finding viewers
in the future. Given a query 𝑞, we first obtain the initial set 𝑅 of 𝐾
candidates from the simulated pipeline. Then, we use the document
embedding generated by 𝑓 as the representation of each document
in 𝑅. We apply clustering to the representations of 𝐾 candidates to
obtain 𝑛 clusters where 𝑛 ≪ 𝐾 , and leverage the representation of
each centroid as a topical viewer.
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Specifically, given the 𝐾 documents in the initial set 𝑅, we use
the K-Means clustering algorithm [40] to find a set 𝑉 of 𝑛 viewers,

𝑉 = Kmeans
(
𝑛, 𝜑

(
𝑓 , 𝑅

))
. (3)

Here, 𝜑 (𝑓 , 𝑅) are the embeddings of all 𝐾 documents in 𝑅, with
respect to the surrogate model 𝑓 . In this way, we can obtain the
representations of 𝑛 viewers, denoted as 𝑉 = {𝒗1, 𝒗2, . . . , 𝒗𝒏}.
Generating multi-view representations of the target docu-
ment through viewers. The key idea is to disentangle the view
information of the target document aligning to the given viewers,
enabling us to effectively extract the specific relevance signal within
the candidate set. We use a fully-connected layer with activation
function ReLU as a multi-view representations generator. We feed
the target document embedding 𝒘𝒅 obtained by 𝑓 and the repre-
sentations of viewers 𝑉 into the generator. To obtain 𝑛 multi-view
representations𝑊 = {𝒘1,𝒘2, . . . ,𝒘𝒏} aligned to viewers, follow-
ing [5, 6], we encourage the𝒘𝒊 and its corresponding viewer 𝒗𝒊 to
be similar while retaining the original information by minimizing
the square loss, i.e.,

L𝑠𝑞𝑢 =

𝑛∑︁
𝑖=1

(
∥𝒘𝒊 − 𝒗𝒊 ∥22 + ∥𝒘𝒊 −𝒘𝒅 ∥22

)
, (4)

where 𝒗𝒊 refers to the 𝑖-st viewer representation and 𝒘𝒊 denotes
𝑖-st the disentangled view representation of target document.

We maintain the distinction between multi-view representations
by maximizing the cosine similarity between them:

L𝑐𝑜𝑠 = −
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

1[𝑖≠𝑗 ]
𝒘𝒊 ·𝒘𝒋

∥𝒘𝒊 ∥2∥𝒘𝒋 ∥2
. (5)

Combining the two optimization objectives, the multi-view repre-
sentations𝑊 = {𝒘1,𝒘2, . . . ,𝒘𝒏} of 𝑑 are calculated by,

𝑊 = argmin
(
L𝑠𝑞𝑢 + _L𝑐𝑜𝑠

)
, (6)

where _ is a trade-off parameter.
Obtainingmultiple counter-viewers from dynamic surround-
ing documents. To enable a contrastive learning based attack, we
also propose to find the counter-viewers from documents outside
the initial set 𝑅, pushing the target document away from its origi-
nal position in the representation space. To achieve this goal, we
use the dynamic surrounding documents of the target document
as counter-viewers for contrast. During the attack process, a dy-
namic surrounding document 𝑑𝑠 is the document among the top-𝑛
nearest-neighbor to the current perturbed document in the seman-
tic space of the surrogate model 𝑓 . We collect the embedding of
each dynamic surrounding document:

𝑈 =

{
𝑓 (𝑑𝑠 )

���𝑑𝑠 ∈ {^ (C, 𝑑, 𝑛)} \ 𝑅
}
, (7)

where ^ (·) is a function returning top-𝑛 documents closest to the
target document 𝑑 in corpus C under the semantic space of 𝑓 , and
𝑓 (𝑑𝑠 ) is the embedding of 𝑑𝑠 . Finally, we get the representations of
𝑛 counter-viewers, denoted as𝑈 = {𝒖1, 𝒖2, . . . , 𝒖𝒏}.

4.5 Attack via view-wise contrastive loss
Based on the multi-view representations of the target document,
viewer representations and counter-viewer representations, we
describe how to achieve the attack using a view-wise contrast loss.
View-wise contrastive loss. The view-wise contrastive loss aims
to pull each view representation of the target document close to its

corresponding viewer, and push it away from the representations
from all counter-viewers. Given a query, we aim to find the optimal
attack direction for the target document under the semantic space
of the surrogate model 𝑓 with a contrastive loss L𝐶𝐿 :

L𝐶𝐿 =−
𝑛∑︁
𝑖=1

log
exp(sim(𝒘𝒊, 𝒗𝒊)/𝜏)

exp(sim(𝒘𝒊, 𝒗𝒊)/𝜏) +
∑

𝒖𝒋 ∈𝑈
exp(sim(𝒘𝒊, 𝒖𝒋)/𝜏)

, (8)

where 𝒗𝒊 is a viewer representation in 𝑉 from Eq. (6),𝒘𝒊 is a view
representation in𝑊 from Eq. (3), 𝒖𝒋 is a counter-viewer represen-
tation in 𝑈 from Eq. (7), 𝑛 is the number of viewers, sim(·) is the
dot-product function, and 𝜏 is the temperature hyperparameter.
Perturbation word selection. As demonstrated in [23, 47], only
some important words in the target document act as influential
signals for the final attack performance. Therefore, for each token
ℎ𝑧 in the target document, we calculate the gradient magnitude 𝒈ℎ𝑧
to the embedding vector of each token in 𝑓 using L𝐶𝐿 ,

𝒈ℎ𝑧 =
𝜕L𝐶𝐿
𝜕𝒆
𝑓

ℎ𝑧

, (9)

where the L𝐶𝐿 is the view-wise contrastive loss from Eq. (8), and

𝒆
𝑓

ℎ𝑧
is the embedding vector of ℎ𝑧 obtained by 𝑓 .
Then, the word importance 𝐼ℎ𝑧 of each token ℎ𝑧 is calculated

by 𝐼ℎ𝑧 = ∥𝒈ℎ𝑧𝑡 ∥22. We only attack the top-𝑚 words with the highest
importance for each target document 𝑑 , i.e., 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑚}.
Embedding perturbation and synonym substitution.We adopt
the projected gradient descent [32] to generate gradient-based ad-
versarial perturbations to the embedding space. Specifically, for
each step 𝑡 in total iterations [, we calculate the gradient 𝒈𝑑𝑡 of L𝐶𝐿
with respect to target document 𝑑 on embedding space. After [ iter-
ations, we obtain the perturbed embeddings 𝒆𝒑 of all the important
words 𝑂 in 𝑑 : 𝒆𝒑 =

{
𝑒
𝑝

1 , 𝑒
𝑝

2 , . . . , 𝑒
𝑝
𝑚

}
from gradient accumulation.

Then, we substitute the important words with synonyms 𝑆 . Fol-
lowing [47], we utilize the embedding similarity of counter-fitted
word embeddings [33] to determine synonyms and employ the
same greedy word replacement strategy computed by perturbed
important word embeddings 𝒆𝒑 and synonym embeddings. Unlike
existing work [27, 47], we select words from the documents in the
initial candidate set as the pool of potential synonym set 𝑆 . To
further consider semantic and fluency constraints of the perturbed
sentence, we use the language model perplexity [38] threshold
𝜌 of the sentence containing the replacement word to refine the
selection of the synonym set.

5 EXPERIMENTAL SETTINGS
In this section, we introduce our experimental settings. The datasets
and code are available at https://github.com/ict-bigdatalab/AREA.

5.1 Datasets
Benchmark datasets. We conduct experiments on two standard
dense retrieval benchmark datasets: theMS MARCO Document
Ranking dataset [34] (MS-MARCO Document) which is a large-
scale benchmark dataset for web document retrieval, with about
3.21 million documents, and theMS MARCO Passage Ranking
dataset [34] (MS-MARCO Passage) which is another large-scale

https://github.com/ict-bigdatalab/AREA
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benchmark dataset for web passage retrieval, with about 8.84 mil-
lion passages. The relevant documents to user queries are obtained
using Bing, thereby simulating real-world web search scenarios.
Target queries and documents. Following [3, 47], for each dataset,
we randomly sample 500 Dev queries as target queries for evalua-
tion. We adopt three types of target documents outside the initial
candidate set, which exhibit different levels of attack difficulty, i.e.,
Easy,Middle, Hard. These documents are sampled from the retrieval
results of the target DR model. For each target query, we select a
total of 30 target documents. Beyond the above three separate sets
of target documents, for each query, we also incorporate a random
sampling of 10 documents from the original pool of 30 target docu-
ments. These documents are selected to showcase a diverse range
of attack difficulties, forming a Mixture level.

5.2 Models
Baselines. We compare our method with several representative
attack methods: (i) Term spamming (TS) [15] randomly selects
a starting position in the target document and replaces the subse-
quent words with terms randomly sampled from the target query.
(ii) TF-IDF simply replaces the important words in the target doc-
ument, which have the highest TF-IDF scores based on the target
query, with their synonyms. (iii) PRADA [47] is a decision-based
black-box ranking attack method against NRMs via word substitu-
tion. We use the pairwise hinge loss between the target document
and the documents from the initial candidate set of DR models to
guide the attack. (iv) PAT [25] is an anchor-based ranking attack
method against NRMs via trigger generation. We use the pairwise
loss between the target document and the anchor (top-1 document)
of DR models to guide the attack.
Model variants.We implement two variants of MCAR, denoted as
(i) MCARA𝑠𝑖𝑛𝑔𝑙𝑒 removes the multi-view representation learn-
ing and directly leverages the single document embedding ob-
tained by the surrogate model to contrast with different viewers.
(ii) MCARA𝑖𝑛𝑑 contrasts each viewer representation of the target
document with its corresponding viewer independently and then
calculates the gradient to find important words accordingly. In this
way, we can obtain the intersection of important words found by
independent gradient perturbation.

5.3 Implementation details
For MS-MARCO Document and MS-MARCO Passage, the size 𝐾
of the initial candidate set is 100 and 1000 [28, 29, 31], respectively.
To obtain the target documents, for each sampled query in the
MS-MARCO Document, the Easy level comprises 10 documents
ranked between [101, 200], with documents evenly sampled from
the range. The Middle level includes 10 documents ranked between
[201, 1000], again with documents evenly sampled from the range.
The Hard level consists of 10 documents ranked outside the top
1000, with each document randomly selected from those outside top
1000. For MS-MARCO Passage, the Easy, Middle, and Hard docu-
ments are similarly sampled from the ranking range of [1000, 2000],
[2000, 10000] and outside of the top 10000, respectively.

For the black-box "retrieval and re-ranking" pipeline, we choose
a representative DR model called coCondenser [10] as the retriever
and also as our target DR model. Following Zhan et al. [53], we

fine-tune the pre-trained coCondenser using two-stage hard nega-
tives sampling strategy on the corresponding dataset. We choose a
representative NRM called PROP [30] as the re-ranker and fine-tune
the pre-trained PROP using the relevance labels and the retrieval
results given by coCondenser. Finally, we use the fine-tuned PROP
to re-rank the initial candidate set retrieved by the fine-tuned co-
Condenser and get the final ranked list for guiding the learning
of the surrogate model. For surrogate model imitation, we choose
vanilla BERT𝑏𝑎𝑠𝑒 [20] as the backbone of the surrogate DR model
with a dual-encoder architecture. For each dataset, we utilize the
Eval queries as the pre-collected query collection Q. We set ℓ to 1
due to the average number of relevant documents per query.

For multi-view representation learning, the number of viewers
and counter-viewers 𝑛 is set to 5 for MS-MARCO Document and
10 for MS-MARCO Passage, respectively. The trade-off parameter
_ is 10. We train the multi-view representations generator using
our target query-document pairs for 1 epoch with a learning rate
of 1e-6. For attack via view-wise contrastive loss, we set the tem-
perature hyperparameter 𝜏 as 0.1. The total iterations of attack [
are 3. The perplexity threshold 𝜌 is set to 50 for filtering synonyms
that do not fluent in the original text. Following [47], the number
of substitution words𝑚 in MCARA is set to 50 and 20 for the MS-
MARCO Document and MS-MARCO Passage, respectively. For a
fair comparison, we maintain the same number of substitutions in
all baselines. And the trigger length of PAT is set to 10 and 5 for
the MS-MARCO Document and MS-MARCO Passage, respectively.

5.4 Evaluation metrics
Attack performance. We consider two automatic metrics: (i) Suc-
cess recall rate (SRR)@𝑘 (%) evaluates the percentage of after-attack
documents 𝑑𝑎𝑑𝑣 retrieved into the candidate set 𝑅 with 𝑘 ≤ 𝐾 doc-
uments. Note that the evaluation with 𝑘 < 𝐾 is more strict than
that with 𝑘 = 𝐾 . (ii) Normalized Ranking Shifts Rate (NRS)@𝐾
(%) evaluates the relative ranking improvement of after-attacked
documents which are successfully recalled into the initial set with
𝐾 candidates, i.e., NRS@𝐾 = (Π𝑑 − Π𝑑𝑎𝑑𝑣 )/Π𝑑 × 100%, where Π𝑑
and Π𝑑𝑎𝑑𝑣 are the rankings of 𝑑 and 𝑑𝑎𝑑𝑣 respectively, produced by
the target DR model. Note that if 𝑑𝑎𝑑𝑣 is not successfully recalled
into the initial set of 𝐾 candidates, its NRS is set to 0.
Naturalness performance. We consider three automatic metrics:
(i) Automatic spamicity detection, which identifies whether target
pages are spam. Following [25], we adopt the utility-based term
spamicity method [56] to detect the adversarial examples. (ii) Au-
tomatic grammar checkers, which compute the average number
of errors in the attack documents. Specifically, we use two online
grammar checkers, i.e., Grammarly [12] and Chegg Writing [2],
following the settings in [25, 27]. (iii) Language model perplexity
(PPL), which measures the fluency using the average perplexity
calculated using a pre-trained GPT-2 model [38]. Furthermore, we
leverage the human evaluation, which measures the quality of the
attacked documents following the criteria in [47].

6 EXPERIMENTAL RESULTS
In this section, we discuss experimental results, findings and the
attack effect between the first-stage retrieval and re-ranking stage
discussed in earlier sections of the paper.
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Table 1: Attack performance of MCARA and the baselines; ∗ indicates significant improvements over the best baseline (𝑝 ≤ 0.05).

Dataset Method
Easy Middle Hard Mixture

SRR NRS SRR NRS SRR NRS SRR NRS
@10 @100 @100 @10 @100 @100 @10 @100 @100 @10 @100 @100

MS-MARCO
Document

TF-IDF 16.0 40.9 32.1 11.1 28.0 23.6 4.2 14.4 13.6 10.3 28.6 23.2
TS 37.8 88.1 67.5 27.2 58.0 60.3 15.1 35.8 33.5 27.1 61.1 54.6
PAT 26.5 70.2 52.2 13.7 36.0 32.0 7.9 27.1 26.4 16.0 43.1 36.6
PRADA 28.4 74.7 56.2 18.5 43.1 37.9 11.2 33.0 33.3 10.5 50.9 42.7
MCARA𝑠𝑖𝑛𝑔𝑙𝑒 36.8 85.1 64.8 25.6 58.6 57.9 18.3∗ 44.1∗ 41.5∗ 26.9 62.9 54.7
MCARA𝑖𝑛𝑑 37.1 86.2 66.1 26.3 60.2 58.4 19.6∗ 45.7∗ 43.9∗ 27.4 63.9 56.1
MCARA 43.5∗ 92.3∗ 73.1∗ 28.1∗ 66.5∗ 61.4∗ 24.4∗ 50.2∗ 51.3∗ 31.2∗ 69.9∗ 61.5∗

@100 @1000 @1000 @100 @1000 @1000 @100 @1000 @1000 @100 @1000 @1000

MS-MARCO
Passage

TF-IDF 10.2 35.2 25.1 6.4 19.8 18.3 2.1 10.5 10.3 6.1 21.6 17.8
TS 28.6 79.0 59.1 17.2 50.8 48.7 8.4 27.6 26.9 17.8 52.0 44.4
PAT 16.4 62.3 46.7 9.4 30.0 28.6 5.3 23.4 21.5 10.4 38.6 32.3
PRADA 20.1 68.2 51.0 13.8 39.9 39.6 10.6 31.5 30.1 14.7 46.4 40.2
MCARA𝑠𝑖𝑛𝑔𝑙𝑒 24.8 74.2 56.0 16.3 48.3 46.2 9.7 31.2 29.6 16.8 51.0 43.8
MCARA𝑖𝑛𝑑 26.5 76.3 59.4 18.8∗ 51.9 49.9 11.1∗ 35.5∗ 34.9∗ 18.8∗ 54.6∗ 48.0∗
MCARA 32.9∗ 83.1∗ 65.9∗ 22.7∗ 57.3∗ 53.7∗ 15.3∗ 41.1∗ 40.2∗ 23.7∗ 60.5∗ 53.3∗

6.1 Are attack methods against NRMs effective
against DR models?

As shown in Table 1, (i) TF-IDF performs poorly, especially on Hard
target documents, indicating that the heuristic method is not able
to effectively find the most-vulnerable words that help the target
model make judgments. (ii) TS performs moderately well, showing
that directly adding spamming with query terms helps improve the
relevance between the target document and the query. However,
spamicity can easily be detected by anti-spamming detection [25,
27]. We will discuss this further in Section 6.3. (iii) When we look at
the attack methods tailored for NRMs (PRADA and PAT), PRADA
performs better than PAT. The reasonmay be that PRADA considers
more documents for the pairwise loss calculation, thus obtaining
more comprehensive information about the candidate set.

However, both PRADA and PAT perform worse than the simple
Term Spamming method on DR models. The reason may be that
NRMs and DR models have different model architectures and be-
haviors and thus require different supervision signals to guide the
attack process. In general, the adversarial attack against DR models
is a non-trivial problem for existing attack methods.

6.2 How does MCARA perform on DR models?
Overall performance. The performance of MCARA and its vari-
ants in the DR attack scenario can be found in Table 1: (i) Our
MCARA outperforms all the baseline methods significantly, illus-
trating that it is necessary to attack DR models by capturing the
inter-document representativeness in the semantic space. Gener-
ally, as the difficulty of an attack increases, the performance tends
to decrease. We will explore more advanced objectives tailored for
challenging documents in the future. (ii) In general, attacks on MS–
MARCO Document tend to have a higher success rate compared
to MS-MARCO Passage. The reason may be that the number of
documents addressing the relevant topic is generally smaller than
the number of passages extracted from those documents, offering
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Figure 3: The impact of the number of viewers (a) and the per-
plexity threshold (b) on the attack performance of MCARA.
a more focused and concise set of information. (iii) The improve-
ment of MCARA over MCARA𝑠𝑖𝑛𝑔𝑙𝑒 suggests that incorporating
multi-view document representations is more beneficial in finding
fine-grained semantic information than a single document repre-
sentation, and thus facilitates better contrasting between the target
document and each viewer. (iv) The improvement of MCARA over
MCARA𝑖𝑛𝑑 indicates that optimizing from only one view in the
semantic space at a time may lead to disorder in the optimization
direction of attacking the target document.
Impact of the number of viewers. We examine the impact of
the important hyperparameter 𝑛 of MCARA, i.e., the number of
viewers, on the attack performance. The results on the Mixture
target documents in MS-MARCO Document are shown in Figure 3
(a), with similar findings on the other target documents. We observe
that the performance gets boosted when more representative view-
ers are incorporated into contrastive learning. The reason may be
that more viewers can help extract sufficient representative signals
for the attack. However, the performance gradually decreases when
the number of viewers exceeds some threshold. Too many viewers
increase the risk of making the clusters less representative, even
introducing noise which is not good for contrast. In the future,
we will explore other viewer extraction techniques, such as token
embeddings and document-query alignment.
The impact of the perplexity threshold. We examine the im-
pact of the fluency constrains hyperparameter 𝜌 , i.e., the perplexity
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threshold, on MCARA’s performance. Lower 𝜌 implies tighter sub-
stitution fluency constraints in the original sentences. The results
on the Mixture target documents in MS-MARCO Document are
shown in Figure 3 (b), with similar findings on other target docu-
ments. Reducing the fluency constraint leads to an improvement in
the attack performance, since more disruptive synonyms could be
selected. However, such a way may lead to the attack easily being
detected, as discussed in Section 6.3. In the future, it is necessary to
investigate more flexible ways to strike a balance between attack
performance and the imperceptibility of adversarial perturbations.

6.3 Naturalness of adversarial examples
We discuss the naturalness of generated adversarial examples with
respect to the Mixture-level target documents in MS-MARCO Doc-
ument, with similar findings on MS-MARCO Passage. Here, we
remove the fluency constraints of MCARA in the synonym substi-
tution process, denoted as MCARA−𝐹𝐶 , for comparison.

Table 2: The detection rate (%) via a representative anti-
spamming method on the MS-MARCO Document.

Threshold 0.08 0.06 0.04 0.02
TS 31.4 42.2 70.3 90.1
TF-IDF 18.3 31.1 53.6 78.2
PAT 8.2 13.2 24.3 46.0
PRADA 10.1 16.1 29.5 53.1
MCARA−𝐹𝐶 11.2 17.5 31.6 55.0
MCARA 6.9 11.6 23.3 44.1

Automatic spamicity detection. Table 2 lists the automatic spam-
icity detection results. If the spamicity score of an example is higher
than a detection threshold, it is detected as suspected spam content.
We observe that: (i) As the threshold decreases, the detector inten-
sifies in stringency, leading to an augmented detection rate across
all methods. (ii) TS can easily be detected as it integrates numerous
repeated query terms into documents. (iii) PAT and PRADA are
relatively more undetectable than TS and TF-IDF since they both
introduce naturalness constraints. (iv) MCARA outperforms the
baselines significantly (p-value < 0.05), demonstrating the effective-
ness of the synonym set derived from the words within candidate
documents and the fluency constraints.

Table 3: Online grammar checkers, perplexity, and human
evaluation results on the MS-MARCO Document.
Method Cheg. Gram. PPL Impercept. kappa Fluency Kendall

Original 41 63 43.1 0.85 0.56 4.32 0.61

TS 78 120 110.6 0.06 0.42 2.12 0.79
TF-IDF 76 111 111.5 0.07 0.68 2.01 0.90
PAT 56 91 62.2 0.76 0.40 3.62 0.73
PRADA 67 102 86.3 0.62 0.51 3.10 0.85
MCARA−𝐹𝐶 72 108 88.2 0.60 0.47 3.01 0.72
MCARA 51 87 58.1 0.82 0.46 3.81 0.81

Automatic grammar checker, PPL, and human evaluation.
Table 3 lists the results of the automatic grammar checker, PPL, and
human evaluation, including the annotation consistency test results
(the Kappa value and Kendall’s Tau coefficient) following [3, 25].
For human evaluation, we recruit five annotators to annotate 32
randomly sampled Mixture level adversarial examples from each

attack method [3]. Following [47], annotators score the Fluency
of the mixed examples from 1 to 5; higher scores indicate more
fluent examples. In terms of Imperceptibility, annotators determine
whether an example is attacked (labeled as 0) or not (labeled as 1).
We observe that: (i) TS performs poorly under all the naturalness
evaluations, due to the spamming terms being inserted abruptly in
various positions of the document, without considering semantics.
(ii) Attack methods with naturalness constraint (i.e., PAT, PRADA)
fall short when compared to the original samples, suggesting that
making attack examples imperceptible is challenging. PRADA un-
derperforms PAT, and a possible reason is that PRADA does not
consider the fluency of the sentence with the word replacement.
(iii) While removing the fluency constraint can enhance the attack
performance, adversarial examples generated by MCARA𝐹𝐶 raise
suspicion. (iv) Despite the remaining gap to natural documents,
the MCARA with fluency constraint achieves the best naturalness
performance among all attack methods.

6.4 Can adversarial examples against DR
models be promoted in the re-ranking stage?

Here, we explore the ability of the proposed MCARA to fool NRMs.
For each dataset, we first obtain the candidate set for each query
given by the target DR model, including the successful adversarial
examples generated by MCARA. The size of the candidate set is
100 and 1000 for MS-MARCO Document and MS-MARCO Passage,
respectively. Then, we directly feed these candidate sets to the NRM
in the black-box pipeline. Avg.rank measures the average ranking
of adversarial examples in the final ranked list and T50% and T10%
measure the percentage of adversarial examples entering the top-
50% and top-10% of the final ranking list. As shown in Table 4, some
adversarial examples, as determined by the NRM, are positioned
among the high-ranked entries in the final list. This suggests that
the proposed MCARA method also poses a threat to NRMs.

Table 4: The performance of adversarial examples generated
by MCARA on attacking against NRMs.

Tar. Docs MS-MARCO Document MS-MARCO Passage
Avg.rank T50% T10% Avg.rank T50% T10%

Easy 68.2 34.2 5.4 736.6 28.3 3.4
Middle 82.3 15.8 2.6 874.7 11.6 1.2
Hard 91.6 3.6 0.0 958.1 2.7 0.0
Mixture 78.6 16.7 2.1 862.1 15.0 1.7

6.5 Can adversarial examples against NRMs
pass the first-stage retrieval?

Here, we analyze whether adversarial examples tailored against the
NRMs in the re-ranking stage can successfully pass through the first-
stage retrieval. Following the attack setting in [47], we evenly select
nine documents of varying rankings from each ranked list of 200
queries as the target documents for the attack. The size of the ranked
list is 100 for MS-MARCO Document and 1000 for MS-MARCO
Passage, respectively. We employ PRADA and PAT to attack NRMs
and directly feed the adversarial examples into the target DR model.
Here, Drop (%) measures the percentage of adversarial examples,
whose rankings are decreased in the first-stage retrieval compared
to the original rankings given by the target DR model. NRS (%)
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measures the relative ranking changes of adversarial examples in
the first-stage retrieval. Here we remove the constraint on the 𝐾
candidates. Less than zero indicates an overall decrease in ranking,
and greater than zero indicates an overall increase in ranking. Lost
(%) counts the percentage of adversarial examples against NRMs
that cannot be recalled in the first-stage retrieval.
Table 5: The performance of adversarial examples against
NRMs on attacking against DR models.

Method MS-MARCO Document MS-MARCO Passage

Drop NRS Lost Drop NRS Lost

PAT 30.2 7.7 22.1 28.1 10.3 6.3
PRADA 55.7 -28.4 38.6 49.6 -20.9 10.6

When applying PRADA for MS-MARCO Document, the rank-
ings of 96.7% target documents are improved, with an average boost
of 40.1% over the original ranking. When these adversarial exam-
ples are applied to the target DR model in first-stage retrieval, as
shown in Table 5, 38.6% of them are not recalled. Similar results are
observed in MS-MARCO Passage. In the “retrieval and re-ranking”
pipeline, only considering the attacks against NRMs could risk tar-
get documents failing to be recalled. This underlines the importance
of devising adversarial documents for first-stage retrieval.

6.6 Black-box vs. white-box attack
In addition to the black-box attack setting, exploring the white-
box setting is valuable for gaining a deeper understanding of our
method. We evaluate the retrieval performance of the surrogate
model and the target DR model in the black-box pipeline over
all the queries in the Dev sets of the MS-MARCO Document and
MS-MARCO Passage, respectively. The MRR@100 of the target
DR model and surrogate model on the MS-MARCO Document are
41.71 and 38.60, respectively. The MRR@100 of the whole black-
box pipeline is 42.68. The MRR@10 of the target DR model and
surrogate model on the MS-MARCO Passage are 39.82 and 36.94,
respectively. The MRR@10 of the whole black-box pipeline is 41.46.
To simulate a white-box scenario, we designate the target DR model
as the surrogate model while keeping other components unchanged
in MCARA, denoted as MCARA𝑤ℎ𝑖𝑡𝑒 . The result of the Mixture
target documents is shown in Table 6. The performance of MCARA
under the black-box scenario is similar to that under the white-box
scenario. This suggests that our surrogate model training method
for the black-box pipeline can effectively mimic the behavior of the
target DR model to execute threatening attacks on it.
Table 6: Attack performance comparisons of MCARA be-
tween the black-box and the white-box attack setting.

Method
MS-MARCO Document MS-MARCO Passage

SRR NRS SRR NRS
@10 @100 @100 @100 @1000 @1000

MCARA 31.2 69.9 61.5 23.7 60.5 53.3
MCARA𝑤ℎ𝑖𝑡𝑒 33.3 71.1 63.6 24.8 61.6 54.6

6.7 Time costs of attack methods
Considering practical application scenarios, an effective attack
method should also be efficient, meaning it should find the op-
timal perturbation with minimal time cost. Hence, we measure
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Figure 4: The average time cost of generating an adversarial
document and attack performance of different methods.
the average time taken by different attack methods to generate an
adversarial document using one Tesla V100 GPU. The results on
the Mixture target documents in MS-MARCO Document are shown
in Figure 4, with similar findings on the other target documents.
PAT, relying solely on Anchor document information to optimize
perturbations, has lower time costs but poorer attack performance
due to insufficient information. In contrast, PRADA takes longer
due to comparisons with more documents, while MCARA reduces
the time overhead while achieving excellent attack results through
efficient view-wise supervision.

7 CONCLUSION
In this paper, we proposed the AREA task against DR models,
demonstrating that by adding small indiscernible perturbations,
the adversarial examples can fool the DR models and pass them
into the initial retrieval results. We developed a novel attack method
MCARA, which utilizes view-wise supervision to capture the inner-
document representativeness information in DR models for an ef-
fective attack. The proposed methodology and experimental results
reveal the potential risk and vulnerabilities of DR models.

In future work, it is important to focus on the practical usage of
adversarial attacks, specifically for sophisticated real-world search
engines that operate with pipelined and ensemble approaches and
dynamic corpora. A promising direction would involve designing
a general unified attack method that can cater to different DR
models and NRMs across multiple corpora and modalities. Besides,
developing effective detection and defense mechanisms against
such attacks is crucial for ensuring robustness in IR systems.
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