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ABSTRACT
Neural ranking models (NRMs) have attracted considerable atten-
tion in information retrieval. Unfortunately, NRMs may inherit the
adversarial vulnerabilities of general neural networks, which might
be leveraged by black-hat search engine optimization practitioners.
Recently, adversarial attacks against NRMs have been explored in
the paired attack setting, generating an adversarial perturbation to
a target document for a specific query. In this paper, we focus on a
more general type of perturbation and introduce the topic-oriented
adversarial ranking attack task against NRMs, which aims to find an
imperceptible perturbation that can promote a target document in
ranking for a group of queries with the same topic. We define both
static and dynamic settings for the task and focus on decision-based
black-box attacks. We propose a novel framework to improve topic-
oriented attack performance based on a surrogate ranking model.
The attack problem is formalized as a Markov decision process
(MDP) and addressed using reinforcement learning. Specifically, a
topic-oriented reward function guides the policy to find a successful
adversarial example that can be promoted in rankings to as many
queries as possible in a group. Experimental results demonstrate
that the proposed framework can significantly outperform existing
attack strategies, and we conclude by re-iterating that there exist
potential risks for applying NRMs in the real world.
∗Research conducted when the author was at the University of Amsterdam.
†Jiafeng Guo is the corresponding author.
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1 INTRODUCTION
Ranking models are the main components of information retrieval
(IR) systems. Building on advances in deep neural networks [25],
neural rankingmodels (NRMs) [12, 18, 34, 39] have achieved promis-
ing ranking effectiveness.
Vulnerability ofNRMs.Besides effectiveness, recently, robustness
of NRMs has received increasing attention from the research com-
munity [56]. In many natural language processing (NLP) [13, 48]
and computer vision (CV) [15, 27] tasks, deep learning-based mod-
els have been found vulnerable to adversarial examples that can
trigger the misbehavior with human-imperceptible perturbations.
In the field of IR, NRMs are also likely to inherit adversarial vulner-
abilities of general neural networks [51], which raises legitimate
concerns about the robustness and trustworthiness of neural IR
systems. Therefore, there have been initial studies [28, 54, 55] on
adversarial attacks against NRMs. We believe it is important to
study potential adversarial attacks against NRMs in IR as they can
identify the vulnerability of NRMs before deploying them in real-
world applications and support the development of appropriate
countermeasures.
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Figure 1: The topic-oriented adversarial ranking attack
(TARA) task.

Paired attack. Early studies on adversarial attacks against NRMs
mainly concern adversarial perturbations over a specific pair of
query and document. That is, such perturbations are capable of
fooling NRMs into promoting a target document in the ranking
with respect to a specific query. For example, by injecting trigger
tokens into a document [28] or replacing important words in a
document with synonyms [55], a target document can be promoted
significantly in rankings. These prior publications have shown that
NRMs are vulnerable to imperceptible adversarial perturbations.
Topic-oriented group attack. In this paper, we introduce a more
general attack task, namely the topic-oriented adversarial ranking
attack (TARA) task against NRMs. Given a neural ranking model
and a group of queries with the same topic, TARA aims to promote
a target document in the rankings with respect to each query in the
group, by perturbing the document’s text in a semantic-preserving
way. See Figure 1 for a visualization. This attack scenario is more
practical than the existing paired attack scenario, since it is more
economic for black-hat search engine optimization (SEO) [19] to
exploit document perturbations in terms of query topics rather than
in terms of individual queries, to improve campaign performance
[24]. E.g., in paid search advertising, when advertisers create an
advertisement, they select a set of keywords for a group of target
queries with the same topic [19], e.g., a shoe seller wants clicks
from users who intend to buy shoes with different queries with
the topic of “shoe”, like “shoes for running” and “hiking shoe”.
Compared with paired attacks, the topic-oriented group attack is
significantly more challenging as it must consider relationships
between a document and an entire group of queries, instead of a
single query, so as to find the generic vulnerability of NRMs.

We focus on a practical and challenging decision-based black-
box setting, where no model information is exposed except that the
attackers can query the target NRM and obtain hard-label predic-
tions [28, 55]. Unlike existing ranking attacks that are only designed
for static scenarios, we define both static and dynamic settings for
the TARA task, where the target NRM remains unchanged (the
static setting) or is kept up-to-date in the presence of potentially
highly dynamic corpora (the dynamic setting). The dynamic setting
is inspired by the use of practical IR systems, as the majority of
websites encapsulating online information are dynamic [24]. To
facilitate our study and evaluation of the TARA task, we build two
benchmark datasets based on several public IR collections, i.e., MS
MARCO, ORCAS, ClueWeb09-B, and Web Track in TREC 2012.
An RL-based ranking attack method. Typically, an attack pro-
cess in TARA can be regarded as a series of interactions between the
attacker and the target NRM. During these interactions, the target
NRM may be dynamically updated due to changing corpora and
the attacker is expected to generate document perturbations that

can fool the current NRM for a group of queries with high proba-
bility. Therefore, we introduce a novel reinforcement learning-based
adversarial ranking attack framework (RELEVANT), to generate
adversarial examples, which uses a Markov decision process [50] to
track interactions between the attacker and the target NRM. First,
we train a surrogate ranking model that can mimic the ranked list of
the black-box target NRM. We set the surrogate model as a virtual
environment and design several types of environmental dynamics
for updating the corpus. Then, we explore two attack strategies as
the agent to generate document perturbations, which interact with
the environment to get information about how good the ranking
promotions are. To guide the agent to generate a general pertur-
bation for a group of queries, we design a topic-oriented reward
by contrasting the relevance between each query and the attacked
document at the current state with that at the previous state. During
the RL process, the attack strategy is updated continuously based
on the current NRM’s real-time feedback.
Experimental findings. Experimental results under both static
and dynamic scenarios demonstrate the vulnerability of existing
NRMs and the effectiveness of our adversarial attack method. We
also provide detailed analyses and conduct case studies to gain a
better understanding of the learned document perturbations.

2 RELATEDWORK
Text ranking models. Ranking models have always been at the
heart of IR. Over the past decades, ranking models have experienced
rapid algorithmic shifts, from early heuristic models [46], proba-
bilistic models [41, 44] to modern learning to rank models [26, 29].
With the development of deep learning, researchers have adopted
NRMs [12, 18, 34, 39], which have been proved to be effective in cap-
turing latent semantics and ranking features. Recently, researchers
have also investigated applying popular pre-trained language mod-
els for text ranking [1, 38], which achieves new state-of-the-art
performance [14]. Besides direct applications, prior work demon-
strates that crafting pre-training objectives tailed for IR [30, 31] can
further enhance the performance on downstream ranking tasks.
However, these text ranking models also inherit the adversarial
vulnerabilities of neural networks, which remain under-explored.
Adversarial attacks. Deep neural networks are notorious for their
vulnerability to adversarial examples, which are crafted with imper-
ceptible perturbations to the original input [51]. This has motivated
research into adversarial attacks [15, 32] to find a minimal pertur-
bation that maximize the model’s risk of making wrong predictions.
Adversarial attacks can be grouped in white-box [13] and black-
box attacks [40]. Adversarial attacks have been explored in natural
language processing (NLP) and computer vision (CV) tasks, e.g.,
text classification [13, 53], image classification [15, 32], and image
retrieval [7, 27]. In IR, search engine optimization (SEO) has been
around since the dawn of the web; white-hat [16] and black-hat [4]
SEO are distinguished based on whether the intention to modify
the document is malicious. We focus on adversarial attacks against
NRMs, which can be regarded as a new type of black-hat SEO.

There has been limited research regarding this direction. E.g.,
some work [42, 48] explore token perturbations’ impact on docu-
ment ranking and Wang et al. [54] investigate BERT-based ranking
model attacks. However, such work addresses the white-box attack
scenario and ignores the practical conditions of invisibility of the
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target model. Wu et al. [55] and Liu et al. [28] propose black-box at-
tacks using word substitution and trigger generation. Unlike these
paired attack methods, we propose to promote a target document
in rankings with respect to a group of queries with the same topic.

As a special attack in NLP and CV, universal adversarial per-
turbations [35, 53] have been proposed, where the same attack
perturbation can be applied to any input to the target model. Our
attack can be seen as a typical case of universal attacks in IR, i.e., a
single document perturbation for a group of queries.
Reinforcement learning. Reinforcement learning (RL) [50] is a
widely used machine learning approach involving exploration and
exploitation. It has been successfully applied in various applications
[2], e.g., games [47], CV [3], NLP [59], and IR [20]. Recently, some
work has applied RL methods to generate adversarial examples in
NLP tasks [52, 57, 62]. Maimon and Rokach [33] learn a single search
policy over a predefined set of semantics for text classifiers. Un-
like this work, we aim to generate fluent and semantic-preserving
adversarial examples against NRMs by optimizing the evaluation
metrics of the TARA task through a deep RL approach. To simu-
late corpus dynamics, we leverage a surrogate ranking model as a
virtual environment with several dynamic settings.

3 PROBLEM STATEMENT
We introduce the TARA task and describe the benchmark datasets.

3.1 Task description
In ad-hoc retrieval, given a query 𝑞 and a set of 𝑁 document can-
didates D = {𝑑1, 𝑑2, . . . , 𝑑𝑁 } from a corpus C, a ranking model
𝑓 aims to associate a relevance score 𝑓 (𝑞, 𝑑𝑛) with each pair of
𝑞 and 𝑑𝑛 ∈ D to rank the whole candidate set. For example, the
ranking model outputs the ranked list 𝐿 = [𝑑𝑁 , 𝑑𝑁−1, . . . , 𝑑1] if it
determines 𝑓 (𝑞, 𝑑𝑁 ) > 𝑓 (𝑞, 𝑑𝑁−1) > · · · > 𝑓 (𝑞, 𝑑1).
Objective of the adversary. The TARA task is to find an optimized
topic-oriented and very small perturbation, which fools the NRMs
into promoting the target document in rankings with respect to a
group of queries with the same topic. Formally, given a target docu-
ment𝑑 and a group of queries with the same topic𝑄 = {𝑞1, . . . , 𝑞𝑀 },
the goal is to construct a valid adversarial example 𝑑𝑎𝑑𝑣 that can
be ranked higher to each query 𝑞𝑚 ∈ 𝑄 by NRMs while resembling
𝑑 . We use a soft objective to measure the success of the TARA task.

Specifically, we say 𝑑𝑎𝑑𝑣 succeeds to attack the group of queries
𝑄 with level 𝛼 ∈ [0, 1], if there exists 𝑄𝛼 with |𝑄𝛼 |/|𝑄 | ≥ 𝛼 , such
that for all 𝑞𝑚 in 𝑄𝛼 :

Rank(𝑞𝑚, 𝑑𝑎𝑑𝑣) < Rank(𝑞𝑚, 𝑑) such that Sim(𝑑, 𝑑𝑎𝑑𝑣) ≥ 𝜖, (1)

where Rank(𝑞𝑚, 𝑑) and Rank(𝑞𝑚, 𝑑𝑎𝑑𝑣) denote the position of 𝑑
and 𝑑𝑎𝑑𝑣 in the ranked list with respect to each query 𝑞𝑖 , respec-
tively. A smaller value of rank position denotes a higher ranking.
Sim : D × D → (0, 1) refers to a similarity function and 𝜖 is the
minimum similarity between 𝑑 and 𝑑𝑎𝑑𝑣 . The adversarial example
𝑑𝑎𝑑𝑣 can be regarded as 𝑑 + 𝑝 , where 𝑝 denotes the perturbation
to 𝑑 . Ideally, 𝑑𝑎𝑑𝑣 should be semantically consistent with 𝑑 and
imperceptible to human judges yet misleading to NRMs.
Decision-based black-box attacks.We focus on decision-based
black-box attacks against NRMs for TARA task, because most real-
world search engines are black boxes and only provide hard-label

Table 1: Data statistics: #q denotes the number of queries, #d
denotes the number of target documents, and #w denotes the
number of words.

Q-MS MARCO Q-ClueWeb09
Group of queries 200 50
Group: avg #q 20 5.84
Group: avg #d 10 10
Query: avg #w 4.72 7.93
Document: avg #w 408.19 795.56

outputs. The adversary can only query the target NRM to obtain
corresponding rank positions of the partially retrieved list [55].
Static and dynamic settings. An essential characteristic of search
engines operating over the web, is its inherently dynamic nature,
with the corpus change. Though some studies [28, 55] have viewed
the ranking attack as being interactive, they simply consider the
target NRM to be static and learn fixed attack strategies.

In this work, we define two settings of the target NRM according
to its update frequency: (i) Static: The target NRM is fixed during
the attack without continuous update; and (ii) Dynamic: The target
NRM is updated in real-time along with the dynamic of the corpora.
The attacker should maintain the attack performance even if the
search environment is dynamically updated. Although the dynamic
setting for the TARA task is significantly more challenging than the
static setting, it is more practical and enables broader applicability
of the attack methods to a real-world search engine.

3.2 Benchmark construction
To evaluate the TARA task, we build benchmark datasets based
on two public collections: (i) ClueWeb09-B [8] with 150 queries
from TREC Web Tracks 2009-2011 and 50M documents; and (ii) MS
MARCO Document Ranking (MS MARCO) [37] with about 0.37
million training queries and 3.2 million documents. We build groups
of queries with the same topic as follows.
ClueWeb09-B. We leverage the TREC 2012 Web Track [9] to con-
struct groups of queries. Specifically, the TREC 2012 Web Track
selects 50 queries from ClueWeb09-B and every query is structured
as a representative group of subtopics, each related to a different
user need. The selection of subtopics attempts to reflect a mix of
genuine user search intent. Therefore, we directly use these 50
groups of queries of related topics as the query set to perform
attacks. We leave the remaining 100 queries in the ClueWeb09-B
without subtopics to train the target ranking model.
MSMARCO.We leverage the training data to train the targetmodel
and leverage the development set with 5,193 queries to construct
groups of queries for attacks. The number of queries in the develop-
ment set is insufficient to support the collection of a large number of
queries with the same topics. The Open Resource for Click Analysis
in Search (ORCAS) dataset [10] is a large-scale dataset of click logs
related to documents in MS MARCO, with over 10 million distinct
queries. ORCAS is a supplement to theMSMARCO training set, and
the queries in it are distributed across common and rare terms [10].
We use ORCAS to help aggregate queries in the MSMARCO dataset.
We randomly select 200 queries from the MS MARCO development
set and use Sentence-BERT [43] to obtain representations of each
query in ORCAS and the selected queries in MS MARCO. For each
selected query in MS MARCO, we use cosine similarity to calculate
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Figure 2: RL-based attack framework (RELEVANT).

the top 100 similar queries from ORCAS. We then randomly select
19 queries from the top 100 results for diversity, and 20 similar
queries with the same topic are grouped.

For each group of queries, we construct target documents for
attacks. Following [54, 55], we attack 10 documents ranked in the
top 100 documents. Since a document has different rankings for
each query in a group of queries, we use the average ranking under
all queries in a group to measure the overall document relevance.
Specifically, we randomly choose 10 marginal documents from
each group of queries with an average ranking of 95-100 following
[28]. We refer to the benchmark datasets constructed based on MS
MARCO and ClueWeb09-B as Q-MS MARCO and Q-ClueWeb09,
respectively. Table 1 shows the overall statistics.

4 METHOD
We introduce RELEVANT, our RL-based attack framework for the
TARA task.

4.1 Motivation
The attack process in TARA can be regarded as a series of inter-
actions between the attacker and the target NRM: the attackers
modify the target document, and the NRM ranks the attacked doc-
ument. Then, the attacker observes the rank change to a desired
group of queries and further optimizes its attack strategy. During a
sequence of interactions, the target NRM may dynamically change,
and the attack strategies are expected to change accordingly.

We introduce an RL-based framework RELEVANT to learn an
optimal ranking attack strategy that fits the dynamically chang-
ing NRM. We take the document owner as the agent, their topic-
oriented attack perturbations as the action, and treat the target
NRM as the environment. As shown in Figure 2, the RELEVANT
framework consists of two major components: (i) A surrogate rank-
ing model, which imitates the behavior of the target NRM and
serves as the virtual environment. (ii) An RL Attacker, which re-
ceives topic-oriented rewards from the environment and generates
general document perturbations under the group of queries.

4.2 Environment: Surrogate ranking model
Under the decision-based black-box setting, we train a surrogate
ranking model to imitate and achieve comparable performance to
the target NRM as the virtual environment for the RL Attacker. We
design various corpus dynamics to simulate the ever-changing web.

4.2.1 Black-box ranking model imitation. Following [28, 55],
we leverage the relative relevance information among the ranked
result list returned by the target model to construct a synthetic

dataset, for training a surrogate model. Formally, given a query 𝑞
from a query collection Q from the downstream search tasks, we
get the rank list 𝐿 of 𝑁 documents returned by the target NRM. We
generate pseudo-labels as the ground-truth by treating the top-𝑘
ranked documents 𝐿[: 𝑘] as relevant documents while treating the
other documents 𝐿[𝑘 +1 : 𝑁 ] as irrelevant documents. We initialize
the surrogate ranking model 𝑓 using the original BERT and the
objective function to train 𝑓 is defined as:

L =
1
|Q|

∑︁
𝑞∈Q

max(0, [ − 𝑓 (𝑞, 𝐿[: 𝑘]) + 𝑓 (𝑞, 𝐿[𝑘 + 1 : 𝑁 ])), (2)

where [ is the margin for the hinge loss function.

4.2.2 Dynamics of environment. Besides the static setting, where
the target ranking model is fixed, we also envisage three dynamic
cases of the environment given the dynamic nature of the web.
Document incremental. In the real world, new documents usually
arrive sequentially instead of simultaneously. Here, we add new
documents in each update round for training the target model in
response to incremental information.
Document removal. A document may also be removed from the
corpus. Here, we randomly delete some documents from the corpus
and re-train the target model.
Ranking-incentivized document. The search system may de-
tect that a document is promoted significantly in the short term,
and then design corresponding countermeasures to force it to be
outside the top-ranked list. Here, we simply regard the attacked
documents as abnormal and mix them into negative examples for
further training the target model.

In order to ensure the evolution of attacks, the surrogate model
needs to be updated along with the target model. Instead of retrain-
ing, we continue to train the surrogate model with another epoch
using the sampled data from the target model.

4.3 Agent: RL attacker
We explore two attack strategies based on word-level and sentence-
level textual attacks [60]. For word-level attacks, we use word sub-
stitution [21], the core idea of which is to select the important
words in the document for synonym substitution. For sentence-
level attacks, we use the trigger generation [53], which generates a
generic sentence to be injected at the beginning of the document.

In general, the attack process under the above environment
can be regarded as a sequential decision process during which
the RL attacker decides the perturbations to the target document.
Therefore, we mathematically formalize the search process as an
MDP, which is described by a tuple ⟨S,A,T , 𝑅,𝛾⟩ including the
state, action, transition, reward, and discount factor. Specifically,
S denotes the state space, and A denotes the action space. T :
S ×A → S is the transition function that generates the next state
𝑠𝑡+1 from the current state 𝑠𝑡 and action 𝑎𝑡 . 𝑅 : S × A → R is the
reward function, while the reward at the 𝑡-th step is 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡 ).
𝛾 ∈ [0, 1] is the discount factor for future rewards. Formally, the
MDP components are specified with the following definition:
• State 𝑠 is the document, with an initial state 𝑠0 is a target docu-
ment and a terminal state is a successful adversarial example.
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• Action 𝑎 is a perturbation the RL Attacker selects to inject into
the document. We aim for these actions, i.e., word substitution
and trigger generation, to preserve the document’s semantic.

• Transition T changes the state of the document 𝑑 , adding one
perturbation at each time step.

• Reward R is the reward function given by the simulated ranking
model to provide supervision signals for the model training.

We solve the MDP problem with the policy gradient algorithm
REINFORCE [50]. At each time step 𝑡 , the policy 𝜋 (𝑎𝑡 | 𝑠𝑡 ) defines
the probability of sampling action 𝑎𝑡 ∈ A in state 𝑠𝑡 ∈ S. The aim
of RL is to learn an optimal policy 𝜋∗ by maximizing the expected
cumulative reward 𝑅𝑡 = E[

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 ].
4.3.1 Topic-oriented reward design. A good reward function
should gradually guide the agent toward the final topic-oriented
goal. We define multiple subgoals between the original document
and a successful adversarial example to provide positive feedback
when each subgoal is achieved. We define the anchor document,
i.e., the document in the returned list whose ranking position is
higher than the perturbed document at the last state to each query
in a group, as the subgoal. The anchor is dynamically changed as
the ranking of the after-attacked document may be updated. The
reward function should be related to the document’s ranking to
each query in a group, i.e., a perturbed document should receive
more rewards if it is ranked higher than the anchor document.
However, directly using ranking as a reward is sparse.

We shape the reward using the surrogate model’s relevance
scores as a potential function. Considering the global effect of the
attack: (i) If the target document is not ranked higher than its anchor
document for all queries 𝑞 ∈ 𝑄 , the attack fails. In this case, we use
a fixed penalty factor b as the reward. (ii) Conversely, if the attack
succeeds, we use the maximum improvement in relevance scores
between the current perturbed document and the anchor document
to motivate the agent to learn an effective attack strategy.

These assumptions lead us to define the topic-oriented reward
function for a group of queries as follows:

𝑅(𝑠𝑡 , 𝑎𝑡 ) =
{

−b, if min({𝑓 (𝑞, 𝑑𝑡 ) − 𝑓 (𝑞, 𝑑𝐴𝑡 )}𝑞∈𝑄 ) < 0

max({𝑓 (𝑞, 𝑑𝑡 ) − 𝑓 (𝑞, 𝑑𝐴𝑡 )}𝑞∈𝑄 ) +𝐶𝑜𝑛𝑠., else,
(3)

where 𝐶𝑜𝑛𝑠. is a naturalness constraints, for trigger generation
𝐶𝑜𝑛𝑠. = 𝛽1𝑆𝐿𝑀 + 𝛽2𝑆𝑁𝑆𝑃 , 𝑆𝐿𝑀 is a language model score [49], and
𝑆𝑁𝑆𝑃 is a next sentence prediction score [28]. For word substitu-
tion, 𝐶𝑜𝑛𝑠. = 𝛽3𝑆𝑆𝑆 , the 𝑆𝑆𝑆 is the semantic similarity between
the original document and the adversarial example measured by
the universal sentence encoder (USE) [5]. 𝛽1, 𝛽2, and 𝛽3 are the
hyperparameters that control the semantic consistency, fluency,
and semantic similarity, respectively. The surrogate ranking model
𝑓 predicts the relevance score between the query-document pair.
𝑑𝐴𝑡 represents the anchor documents at time step 𝑡 .

4.3.2 Policy network. Exploring different document perturba-
tion methods (actions) requires different learning objectives; thus,
we have customized the policy network for each action.
Trigger generation.We train a policy network that determines
the next generated word based on the existing generated sequence
to insert at the beginning of the document in turn. The generation
starts from the first word of trigger. Specifically, every action 𝑎𝑡 cor-
responds to the 𝑡-th trigger word at the time step 𝑡 to choose, and is

initialized with a [𝑀𝐴𝑆𝐾] token. In total, there are 𝑇 words gener-
ated as the entire trigger. The trigger word space is the vocabulary
of the surrogate ranking model.

The process proceeds as follows. (i) We use the surrogate model
𝑓 to calculate the pairwise lossL𝑅 (𝑞𝑖 , 𝑎𝑡 ⊕𝑠𝑡−1;𝑑𝐴𝑡 ), where 𝑞𝑖 is the
𝑖-th query in𝑄 ,𝑑𝐴𝑡 is the anchor document at 𝑡 , 𝑠𝑡−1 is the perturbed
document at 𝑡 − 1 and 𝑎𝑡 ⊕ 𝑠𝑡−1 denotes injecting a new trigger
word in the position 𝑡 . (ii) We obtain the average gradient 𝒈𝑠𝑡−1,𝑖 of
L𝑅 (·) with respect to 𝑠𝑡−1. (iii) We calculate dot products between
the embedding matrix 𝑬 𝑓 in 𝑓 and 𝒈𝑠𝑡−1,𝑖 as the state feature of 𝑠𝑡 .
(iv) We input the state feature to the multi-layer perception (MLP)
[45], and calculate the probability of any action as

𝜋 (𝑠𝑡 ) = softmax ©«MLP ©«
|𝑄 |∑︁
𝑖

( [𝑬 𝑓 ]𝑇 · 𝒈𝑠𝑡−1,𝑖 )
ª®¬ª®¬ . (4)

The action is sampled using max sampling [50] to sample the word
with highest probability from the trigger word space, as the next
trigger word to be added to the trigger, i.e., 𝑎𝑡 = max sample(𝜋 (𝑠𝑡 )).
Word substitution. Here, we aim to substitute important words
in the target document 𝑑 with synonyms. The action 𝑎𝑡 is to select
the 𝑡-th important word in the document to be substituted, at the
time step 𝑡 . In total,𝑇 words in the target document are substituted.
Following [55], we find the importance words in the document that
have a strong influence on the rankings.

The process proceeds as follows. (i) For each word ℎ𝑘 in 𝑑 , we
compute its importance score by calculating the gradient 𝒈ℎ𝑘

𝑠𝑡−1,𝑖
of

the pairwise lossL𝑅 (𝑞𝑖 , 𝑠𝑡−1;𝑑𝐴𝑡 ) of 𝑓 with respect to its embedding

vector 𝒆 𝑓
ℎ𝑘

in 𝑓 , where 𝑠𝑡−1 is the perturbed document at 𝑡 − 1 .
(ii) Then the importance score 𝐼ℎ𝑘 ,𝑖 of each word ℎ𝑘 is calculated

by 𝐼ℎ𝑘 ,𝑖 =

𝒈ℎ𝑘𝑠𝑡−1,𝑖22 . (iii) Finally, we concatenate the word-level
importance score of every word in the target document as the state
feature of 𝑠𝑡 , and calculate the probability of any action as

𝜋 (𝑠𝑡 )=softmax ©«MLP ©«
|𝑄 |∑︁
𝑖

( [𝐼ℎ𝑘 ,𝑖 ])
ª®¬ª®¬ , 𝑘 = 1, 2, . . . . (5)

The output of MLP is the probability of each word in the document
to be replaced next. We use max sampling to sample the important
word with highest probability in the document and then substitute
it with a synonym. For synonym replacement, we use the counter-
fitted word embedding space [36] to obtain synonyms.

4.4 Training with policy gradient
In each episode, a trajectory 𝜏 = 𝑠1, 𝑎1, . . . , 𝑠𝑇 , 𝑎𝑇 is sampled using
policy 𝜋 . The episode terminates when the step 𝑡 reaches the pre-set
limit 𝑇 . The training objective is to maximize 𝐽 (\ ) via:

∇\ 𝐽 (\ ) = E𝜋\ [∇\ log𝜋\𝑅(𝜏)] .
The solution can be approximated by a Monte Carlo estimator
[23], i.e., ∇\ 𝐽 (\ ) ∝

∑𝑈
𝑢=1

∑𝑇
𝑡=1 ∇\ log𝜋\ (𝑎𝑢,𝑡 | 𝑠𝑢,𝑡 )𝑅𝑢,𝑡 , where \

denotes the policy network parameters,𝑈 is the number of samples,
𝑇 is the number of steps.

5 EXPERIMENTAL SETUP
In this section, we introduce our experimental settings. The datasets
and code are available at https://github.com/ict-bigdatalab/TARA.
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5.1 Models
Baselines.We consider two types of adversarial attack baselines:
trigger-based methods and word substitution methods. We take
several representative triggers for comparison (with their proposed
policies of trigger generation): (i) Trigger-based term spamming
(TS𝑇𝑟𝑖 ) [19] concatenates randomly sampled terms in the group
of queries as a trigger and injects it at the beginning of document.
(ii) HotFlip [13] is a universal text attack method for NLP to find
the optimal trigger via model gradient. We compute the gradient
of the surrogate model through pairwise loss. (iii) PAT [28] is a
gradient-based ranking attack method empowered by the pairwise
objective, to generate triggers for NRMs. For HotFlip and PAT, we
sum up the pairwise loss of the target document to each query in a
group of queries to guide trigger generation.

As word substitutionmethods we consider: (i) Substitution-based
term spamming (TS𝑆𝑢𝑏 ) [19] randomly chooses a starting position
in the document and replaces successive words with randomly sam-
pled terms in a group of queries. (ii) PRADA [55] is a decision-based
ranking attack method for NRMs, which finds important words in
the target document for replacement. We average the importance
weights of each word in the document to each query in a group,
as the final weight. (iii) Tf-idf simply replaces the top words in the
document with the highest tf-idf scores based on the queries in a
group with synonyms.
Model variants. We implement several variants of RELEVANT
(RELE. for short), denoted as (i) RELE.𝑇𝐺 uses the trigger generation
strategy as the policy network. (ii) RELE.𝑊𝑆 uses the word substitu-
tion strategy as the policy network. (iii) RELE.𝑇𝐺−𝑁𝐶 removes the
naturalness constraints in the reward of trigger generation strat-
egy. (iv) RELE.𝑊𝑆−𝑁𝐶 removes the naturalness constraints in the
reward of word substitution strategy.

5.2 Implementation details
For MS MARCO and ClueWeb09-B, initial retrieval is performed
using the Anserini toolkit [58] with the BM25 model to obtain the
top 100 ranked documents following [55]. For the environment,
following [28, 55], we choose the BERT [22] model, which takes the
concatenated query and document as input and is fine-tuned with
the relevance labels in MS MARCO training set for Q-MS MARCO
and ClueWeb09-B training set for Q-ClueWeb09, as the target NRM,
respectively. We use BERT𝑏𝑎𝑠𝑒 as the surrogate model with the
length 𝑁 of the returned list as 100 [55]. We set 𝑘 = 1 for MS
MARCO and 𝑘 = 20 for ClueWeb09, due to the different numbers
of relevant documents per query. The margin [ for the hinge loss
is set to 1. The settings of the dynamic environments are: (i) For
document incremental, we first use 60% of the corpus as the initial
training data, and 10% of the corpus documents are continually
added to the corpus at each stage. (ii) For document removal, we
randomly remove 10% of documents from the whole corpus. (iii) For
ranking-incentivized documents, the documents that are promoted
more than 20 rankings at each stage are considered abnormal. In
this way, there are 4 update stages for each dynamic setting.

For the agent, the discounting factor 𝛾 is set to 0.9, and the hyper-
parameters of naturalness constraints (𝛽1, 𝛽2, and 𝛽3) are set to 0.8,
0.1, and 0.1, respectively. The total time steps 𝑇 for trigger gener-
ation and word substitution policy to 5 and 50, respectively. The

policy network’s hidden state dimension for both trigger genera-
tion and word substitution is 200. For fair comparison, we maintain
the same trigger length and substitution number in all baselines, at
5 and 50, respectively. In the reward, given the minimum ranking
improvement of the target document to all queries in a group, if it is
less than or equal to 0, higher than 1, or higher than 5, the document
whose ranking position is 1, 5 or 10 places higher than the perturbed
document is selected as the anchor document, respectively.

Since the environment is explicit under our task setting, the train-
ing and testing of our method are performed both on the full dataset,
which is a reasonable experimental setup [11]. Specifically, when
the training process of RL ends, the policy network stops updating
while running another epoch on the full dataset as a testing phase
to evaluate the performance. In future work, we aim to explore the
addition of new query groups and new target documents.

5.3 Evaluation metrics
Attack performance.We use three automatic metrics: (i) Q-suc-
cess rate (QSR) @𝛼 (%), which evaluates the percentage of after-at-
tack documents 𝑑𝑎𝑑𝑣 ranked higher than the original documents 𝑑
for at least 𝛼 (%) queries in𝑄 . (ii) Average boosted ranks (avg.Boost),
which evaluates the average improved rankings for each target doc-
ument to each query in a group. (iii) Boosted top-𝐾 rate (T𝐾R) (%),
which evaluates the percentage of after-attack documents that are
promoted into top-𝐾 to each query in a group. The effectiveness of
an adversary is better with a higher value for all these metrics.
Naturalness performance. Here we use the following: (i) Auto-
matic Spamicity detection, which can detect whether target pages
are spam or not. Following [28, 55], we adopt the utility-based term
spamicity method [61] to detect the adversarial examples. (ii) Au-
tomatic grammar checkers, which calculates the average number
of errors in the attack sequences. Specifically, we use two online
grammar checkers, i.e., Grammarly [17] and Chegg Writing [6],
following [28]. (iii) Human evaluation, which measures the quality
of the attacked documents following the criteria in [55].

6 EXPERIMENTAL RESULTS
We first compare the attack performance of RELEVANT and base-
lines in both static and dynamic environments. Then, in the static
environment, we evaluate the naturalness of adversarial examples,
analyze the ranking model imitation performance, and examine the
impact of important hyper-parameters in RELEVANT.

6.1 Attack evaluation: Static environment
Table 2 compares the attack performance in a static environment
of RELEVANT with trigger generation and word substitution base-
lines. We have the following overall observations: (i) NRMs do
inherit adversarial vulnerabilities of deep neural networks and can
easily be fooled by the attackers. We should, therefore, pay more
attention to the potential risks of existing NRMs before deploying
them in the real world. (ii) Trigger generation methods generally
perform better than word substitution methods. The reason may
be that trigger generation from the whole vocabulary allows more
flexible manipulation than synonym replacement from the docu-
ment itself. Besides, directly adding the trigger may contribute to
capturing fine-grained interaction signals between query and docu-
ment. (iii) The performance of most methods in terms of avg.Boost
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Table 2: Attack performance under static environment; ∗ indicates significant improvements over the best baseline (𝑝 ≤ 0.05).

Method Q-MS MARCO Q-ClueWeb09
QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R

TS𝑇𝑟𝑖 94.9 87.9 33.9 32.6 4.3 1.8 93.6 78.0 50.8 23.6 2.3 1.1
HotFlip 50.3 39.2 9.6 8.5 0.0 0.0 48.7 36.9 8.2 6.0 0.0 0.0
PAT 90.7 81.1 27.5 21.6 1.3 0.5 89.2 76.3 40.1 18.5 0.0 0.0
RELE.𝑇𝐺 100.0∗ 93.4∗ 48.6∗ 36.7∗ 6.5∗ 3.3∗ 100.0∗ 100.0∗ 70.0∗ 32.1∗ 4.7∗ 2.6∗

TS𝑆𝑢𝑏 88.6 74.7 18.6 18.6 0.8 0.3 89.8 75.2 46.1 16.8 0.8 0.5
Tf-idf 41.6 32.5 5.8 6.9 0.2 0.0 49.0 36.1 6.2 4.3 0.0 0.0
PRADA 86.0 72.4 15.3 16.9 0.4 0.3 88.8 75.3 46.0 15.6 0.3 0.1
RELE.𝑊𝑆 93.6∗ 89.2∗ 40.1∗ 27.8∗ 1.5∗ 0.6∗ 95.1∗ 82.6∗ 56.4∗ 26.5∗ 1.4∗ 0.4∗

Table 3: Attack performance in a dynamic environment; ∗ indicates significant improvements over the best baseline (𝑝 ≤ 0.05).
Method Q-MS MARCO Q-ClueWeb09
DI QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R
TS𝑇𝑟𝑖 92.3 85.3 31.0 30.1 3.9 1.5 91.6 76.3 48.6 21.2 1.9 0.8
HotFlip 32.4 23.3 4.9 4.0 0.0 0.0 30.2 21.0 4.4 3.2 0.0 0.0
PAT 81.2 72.3 21.5 18.3 0.9 0.3 79.3 69.2 32.1 12.3 0.0 0.0
RELE.𝑇𝐺 97.7∗ 92.8∗ 37.7∗ 34.2∗ 3.2∗ 2.0∗ 96.4∗ 86.4∗ 66.6∗ 29.6∗ 2.5∗ 1.2∗

TS𝑆𝑢𝑏 86.2 72.5 16.1 16.2 0.6 0.2 88.4 73.1 45.0 15.6 0.6 0.4
Tf-idf 39.5 30.1 5.2 6.1 0.1 0.0 47.8 35.0 5.9 4.0 0.0 0.0
PRADA 79.8 62.5 14.2 14.0 0.3 0.0 81.2 66.2 40.4 13.7 0.1 0.0
RELE.𝑊𝑆 91.7∗ 85.3∗ 40.9∗ 24.3∗ 0.9∗ 0.3∗ 93.0∗ 78.2 51.0∗ 22.9∗ 0.9∗ 0.2∗

DR QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R
TS𝑇𝑟𝑖 100.0 96.9 53.5 46.2 10.1 5.8 100.0 98.1 69.9 39.5 9.2 3.2
HotFlip 62.1 51.6 20.5 18.0 0.8 0.3 60.2 49.8 18.9 17.2 0.2 0.0
PAT 100.0 92.3 39.6 32.8 4.5 1.9 98.6 88.3 52.5 23.6 2.5 1.2
RELE.𝑇𝐺 100.0 100.0 66.2∗ 55.3∗ 15.8∗ 8.3∗ 100.0 100.0 81.4∗ 49.6∗ 14.2∗ 4.7∗

TS𝑆𝑢𝑏 100.0 89.6 30.6 31.9 3.2 1.6 100.0 90.6 60.3 28.5 2.6 1.5
Tf-idf 56.4 43.6 10.2 8.6 0.4 0.0 48.9 39.0 9.6 6.2 0.1 0.0
PRADA 98.8 83.6 27.3 26.9 1.6 0.7 98.3 82.3 54.0 25.1 1.4 0.6
RELE.𝑊𝑆 100.0 100.0∗ 57.3∗ 40.2∗ 8.9∗ 4.0∗ 100.0 93.4 66.2∗ 36.0∗ 8.0∗ 3.1∗

RiD QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R
TS𝑇𝑟𝑖 50.1 38.6 9.3 7.2 0.0 0.0 46.8 38.2 8.0 5.9 0.0 0.0
HotFlip 32.7 22.1 2.5 3.1 0.0 0.0 31.5 20.9 5.2 1.3 0.0 0.0
PAT 71.6 61.6 9.8 8.6 0.0 0.0 73.5 62.4 36.2 11.2 0.0 0.0
RELE.𝑇𝐺 80.5∗ 71.2∗ 19.8∗ 17.4∗ 0.8∗ 0.3∗ 81.2∗ 68.3∗ 30.8∗ 10.8∗ 0.4∗ 0.2∗

TS𝑆𝑢𝑏 41.5 35.1 6.8 5.9 0.0 0.0 42.7 22.1 6.0 5.1 0.0 0.0
Tf-idf 29.8 16.7 0.8 0.6 0.0 0.0 27.5 12.1 1.0 0.3 0.0 0.0
PRADA 66.2 49.1 6.2 5.8 0.0 0.0 68.3 55.3 21.5 10.1 0.0 0.0
RELE.𝑊𝑆 76.4∗ 59.2∗ 12.8∗ 11.0∗ 0.3∗ 0.0 82.0∗ 65.4∗ 35.8∗ 14.0∗ 0.6∗ 0.0

on Q-ClueWeb09 is lower than that on Q-MS MARCO. The reason
may be that ClueWeb09’s documents come from unprocessed web
pages, and the inherent amount of noise could cause the model to
be insensitive to the small amount of perturbations added. The QSR
performance on Q-ClueWeb09 is higher than on Q-MS MARCO.
There are fewer queries in each group in Q-ClueWeb09, making it
easier to take into account the entire group of queries.

Whenwe look at the baselines, we find that: (i) Tf-idf and HotFlip
perform poorly, indicating that boosting the document’s ranks
under a group of queries is non-trivial, which cannot be solved
by traditional NLP attack methods or heuristics. The customized
attack methods for NRMs, i.e., PRADA and PAT, perform better,
showing the effectiveness of considering the characteristics of IR.
(ii) TS𝑇𝑟𝑖 and TS𝑆𝑢𝑏 perform best among the baselines, showing

that it is easy to fool the NRMs by directly using some query terms
as a perturbation to the document. However, it can be detected by
anti-spamming solutions (also observed by [28, 55]).

Finally, RELEVANT significantly outperforms all baselines in
terms of attack performance. The RL-based framework is helpful
by modeling the whole interaction process between the attacker
and the target NRM and training with more samples (annotated
with rewards). By leveraging the information of the entire group
of queries, RELEVANT outperforms paired attack methods which
customize perturbations for a specific query-document pair.

6.2 Attack evaluation: Dynamic environment
The attack performance under dynamic environments is shown in
Table 3. The attack baselines are designed for static environments,
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Table 4: Attack performance comparisons between the full
version of RELEVANT and RELEVANT without naturalness
constraints; † indicates significant improvements over the
full version method (𝑝 ≤ 0.05)

Method Q-MS MARCO Q-ClueWeb09
QSR@100% avg.Boost QSR@100% avg.Boost

RELE.𝑇𝐺 48.6 36.7 70.0 32.1
RELE.𝑇𝐺−𝑁𝐶 55.8† 39.2† 75.3† 36.2†
RELE.𝑊𝑆 40.1 27.8 56.4 26.5
RELE.𝑊𝑆−𝑁𝐶 45.1† 33.7† 62.9† 30.3†

and we continue updating their attack strategies along with the
dynamics of environments. Term Spamming and Tf-idf are one-
time methods, and the adversarial examples do not change with the
environment. In three dynamic settings, the model performance
after each update stage has a consistent change trend. Due to space
limitations, we only show the performance after the last (4-th) stage.

As we can see: (i) For document incremental (DI), the attack
success rate of each method is reduced, indicating that the ad-
dition of new documents makes the ranking competition more
intense. (ii) For document removal (DR), as the number of relevant
documents may decrease, the ranking of adversarial documents
generated by most attack methods can be improved accordingly.
(iii) For ranking-incentivized document (RiD), the performance
of all attack methods decreases as the target model’s ability to
identify anomalous documents increases. For the one-time attack
methods (TS𝑇𝑟𝑖 , TS𝑆𝑢𝑏 and Tf-idf) it is challenging to achieve high
rankings compared with static environments, indicating that the
spamming-based attack method easily looses its effectiveness once
it is struck. (iv) The dynamic environment affects the attack per-
formance to varying degrees. RELEVANT still performs best; it
adapts to changes while maintaining the effectiveness of the attack
as it can keep trying out new judgments about vulnerabilities of
NRMs through the interaction, which brings better generalizability.
Re-training the attack method from scratch every time the corpus
is updated, could incur prohibitively high computational costs. The
proposed RL-based framework avoids these costs.

6.3 Naturalness evaluation
Attack performance without naturalness constraints. Table 4
demonstrates the attack performance of the full version RELEVANT
and RELEVANT without naturalness constraints. Although only
QSR@100% and avg.Boost are displayed, the trend is consistent
across all evaluation metrics. Removing the naturalness constraints
of RELEVANT enhances attack effectiveness but may increase de-
tection risk. Imperceptibility of perturbations on Q-MS MARCO is
discussed below, with similar findings on Q-ClueWeb09.
Automatic spamicity detection. Table 5 lists the automatic spam-
icity detection results of RELEVANT and baselines. If an example’s
spamicity score is higher than a detection threshold, it is detected
as suspected spam content. We observe that: (i) As the threshold
decreases, the detector becomes stricter and the detection rate in-
creases for all methods. (ii) Term spamming can be very easily
detected since it incorporates many query terms into documents.
(iii) The trigger generationmethods have a lower upper bound of de-
tection rate, due to the use of fewer words for perturbations. (iv) The
full version of RELEVANT outperforms the baselines significantly

Table 5: The detection rate (%) via a representative anti-
spamming method on the Q-MS MARCO.

Threshold 0.08 0.06 0.04 0.02
TS𝑇𝑟𝑖 24.7 35.9 56.3 80.2
PAT 8.0 14.5 25.3 46.2
RELE.𝑇𝐺−𝑁𝐶 9.7 16.9 30.2 54.5
RELE.𝑇𝐺 6.4 12.2 20.8 38.3

TS𝑆𝑢𝑏 67.6 78.3 88.9 97.1
PRADA 11.2 18.4 30.5 50.5
RELE.𝑊𝑆−𝑁𝐶 9.0 14.6 24.6 46.0
RELE.𝑊𝑆 4.5 8.0 14.6 25.6

Table 6: Online grammar checkers and human evaluation
results on the Q-MS MARCO.
Method Chegg. Grammar. Impercept. kappa Fluency Kendall
Original 30 56 0.89 0.53 4.68 0.63
TS𝑇𝑟𝑖 42 85 0.05 0.68 2.35 0.82
PAT 33 65 0.73 0.46 3.85 0.91
RELE.𝑇𝐺 32 63 0.82 0.50 4.21 0.71
RELE.𝑇𝐺−𝑁𝐶 37 76 0.14 0.59 2.89 0.85
TS𝑆𝑢𝑏 62 111 0.04 0.65 1.86 0.79
PRADA 53 97 0.62 0.42 3.56 0.92
RELE.𝑊𝑆 39 73 0.75 0.48 4.13 0.73
RELE.𝑊𝑆−𝑁𝐶 59 107 0.34 0.53 3.16 0.95

(p-value < 0.05), indicating that RELEVANT with naturalness con-
straints helps adversarial documents to avoid suspicion.
Automatic grammar checker and human evaluation. Table
6 lists the results of the automatic grammar checker and human
evaluation, including the annotation consistency test results (the
Kappa value and Kendall’s Tau coefficient). For human evaluation,
we recruit three annotators to annotate 50 randomly sampled ad-
versarial examples and the corresponding documents of each attack
method [28]. Following [55], annotators score the Fluency of the
mixed examples from 1 to 5; higher scores indicate a more fluent
examples. For Imperceptibility, annotators judge whether an exam-
ple is attacked (labeled as 0) or not (labeled as 1). We observe that:
(i) Trigger generation methods generally achieve better fluency
and are not easily detected by annotators than word substitution
methods. (ii) The Term Spamming method performs poorly under
the naturalness metrics, due to the semantic irrelevance between
the query terms and the document. (iii) Attack methods with natu-
ralness constraint (i.e., PAT, PRADA, RELEVANT) lag behind the
original samples, which indicates that it is not easy to make the
attack examples invisible. Although there is still a gap between the
original document and its adversarial example, RELEVANT achieves
the best naturalness performance, indicating that the naturalness
constraints help generate a natural-looking trigger or synonym.
Example triggers.We randomly sample a group of queries from
Q-MS MARCO, in which the query (ID=419333) from MS MARCO
is “is nizuc resort all inclusive”, and the keywords for its group is
“all inclusive resorts”. The target document (ID=D366143) is a resort
hotel page, whose average rank to all the queries in the group is
98.5. The document begins with: “about the Pearl South Padre "Skip
to main content Account Sign in to see exclusive Member Discount
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Table 7: Attack performance comparisons of RELEVANT between the black-box and the white-box attack setting.

Method Q-MS MARCO Q-ClueWeb09
QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R QSR@50% QSR@75% QSR@100% avg.Boost T10R T5R

RELE.𝑇𝐺 100.0 93.4 48.6 36.7 6.5 3.3 100.0 100.0 70.0 32.1 4.7 2.6
White-RELE.𝑇𝐺 100.0 94.1 49.8 37.2 6.9 3.5 100.0 100.0 69.5 32.2 4.5 2.5
RELE.𝑊𝑆 93.6 89.2 40.1 27.8 1.5 0.6 95.1 82.6 56.4 26.5 2.4 1.4
White-RELE.𝑊𝑆 94.9 90.6 40.8 28.4 1.8 1.0 95.6 83.0 56.2 26.5 2.6 1.6

Table 8: Attack performance of different hyper-parameter settings on the Q-MS MARCO. The QSR denotes QSR@100%.

Method
Position of trigger injection

Method
Number of substituted words

Beginning Middle End 50 30 10
QSR avg.Boost QSR avg.Boost QSR avg.Boost QSR avg.Boost QSR avg.Boost QSR avg.Boost

PAT 27.5 21.6 18.9 14.2 16.5 13.2 PRADA 15.3 16.9 10.5 8.2 4.6 4.1
RELE.𝑇𝐺 48.6 36.7 27.5 25.3 25.2 23.3 RELE.𝑊𝑆 40.1 27.8 31.3 21.4 12.5 11.1

...” The trigger generated by our RELEVANT𝑇𝐺 and PAT is “all inclu-
sive resort was” and “inclusiveb resortrao taxi all”, respectively. By
adding the trigger generated by our RELEVANT𝑇𝐺 at the beginning
of the document, the average rank of the adversarial document is
higher than that generated by PAT, i.e., 18.3 vs. 31.6. Besides, the
trigger generated by RELEVANT𝑇𝐺 is more natural-looking and
consistent with the document than that generated by PAT.

6.4 Black-box vs. White-box attack
In this work, we focus on the decision-based black-box attack set-
ting because it is close to the real-world search scenario. It is also
meaningful to explore the white-box setting to further understand
the ranking model’s robustness against the TARA. First, we evalu-
ate the ranking performance of the surrogate model and the target
model over all the queries on the dev sets of the MS MARCO and
ClueWeb09-B, respectively. The MRR@10 of the target and surro-
gate model on the MS MARCO is 38.61 and 35.40, respectively. The
nDCG@20 of the target and surrogate model on the ClueWeb09-B
is 27.53 and 24.95, respectively.

Then, to conduct white-box TARA, we directly set the surrogate
model as the target NRM and keep other components the same in
our RELEVANT𝑇𝐺 and RELEVANT𝑊𝑆 , for which we write White-
RELE.𝑇𝐺 and White-RELE.𝑊𝑆 , respectively. The results are shown
in Table 7. Even though the white-box setting has full access to
the target ranking model, the black-box attack achieves similar
performance. This result shows that the surrogate model is suffi-
cient to mimic the behavior of the target model, which provides
the conditions for the transformation of the attack effect of the
adversarial examples to the target model.

6.5 Hyper-parameter sensitivity
We evaluate RELEVANT with different hyper-parameter settings
to investigate how they affect the attack performance on the Q-MS
MARCO dataset. The results are shown in Table 8.

We first consider the position of trigger injection. For RELEV-
ANT𝑇𝐺 , we to insert triggers at different positions, i.e., the docu-
ments’ Beginning, Middle, and End. We observe that inserting the
trigger at the document’s beginning achieves the best performance,
indicating that the information contained at the beginning of the
document matters for interacting with the query. Next, we consider
the number of substituted words. For RELEVANT𝑊𝑆 , we substitute
different numbers of words (i.e., 10, 30, and 50) in the document. We

observe that the attack performance of PRADA and RELEVANT𝑊𝑆

gradually increase with the increase of the number of substituted
words, respectively. However, adding the triggers at the beginning
of the target document or substituting more words may lead to the
attack easily being detected. In future work, we will explore more
flexible ways to achieve the balance between attack performance
and the imperceptibility of adversarial perturbations.

7 CONCLUSION AND FUTUREWORK
In this work, we proposed a challenging TARA task against black-
boxNRMs under both static and dynamic environments, and showed
the existence of small general perturbations that can promote the
target document in rankings with respect to a group of queries with
the same topic. We developed an RL-based framework RELEVANT
to track the attacker’s interactive attack process and continuously
update the attack strategies based on the topic-oriented rewards.
The proposed method along with extensive experiment results re-
veal the vulnerability and risk of black-box text ranking systems.

In future work, we would like to explore to adaptively determine
the level (character, word, and sentence) of adversarial perturba-
tions for various scenarios and target documents in RELEVANT.
Beyond the TARA task, the universal adversarial ranking attacks
to discover input-agnostic perturbations against NRMs appears to
be a promising future direction.
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