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A B S T R A C T

Node classification plays a critical role in numerous network applications, and has attracted increasing attention
in recent years. Existing state-of-the-art studies aim at maintaining common information between the topology
graph and the feature graph in an implicit way, i.e., adopting a common convolution with parameter sharing
strategy to preserve common information between the two graphs. Despite their effectiveness, these studies
are still far from satisfactory due to the complex correlation information between the two spaces. To address
this issue, we present a novel method named Consensus Neighbor Interaction-based Multi-channel Graph
Convolutional Networks (CNIM-GCN). CNIM-GCN preserves the common information between the feature
space and topology space in an explicit way by introducing a consensus graph for information propagation.
A multi-channel graph convolutional networks is developed for effectively fusing information from different
graphs. In addition, we further incorporate two types of consistency constraints, i.e., structural consistency
constraint and reconstruction consistency constraint, to maintain the consistency between different channels.
The former is leveraged to keep the consistency between different spaces at the structural relationship level,
while the latter is used to preserve a consistency between the final node representation and the original
node feature representation. We carry out extensive experiments on five real-world datasets, including ACM,
BlogCatalog, CiteSeer, Flickr and UAI2010. Experimental results show that our proposed approach CNIM-GCN
is superior to the state-of-the-art baselines.
1. Introduction

Node classification attempts to predict node labels by exploring
topological structure or node features, and plays an important role in
numerous network applications, such as social networks (Huang, Li, &
Hu, 2017; Meng, Liang, Bao, & Zhang, 2019; Shen, Dai, Chung, Lu,
& Choi, 2020; Yu, Wang, Liu, Böhm, & Shao, 2020), protein interac-
tion networks (Hamilton, Ying, & Leskovec, 2017b; Yue et al., 2020),
commerce networks (Hou et al., 2020; Liu, Fang, Liu and Hoi, 2021),
and citation networks (Kipf & Welling, 2017; Sen et al., 2008; Tang
et al., 2008; Wang, Wang, Guo, & Gong, 2021). Many approaches based
on graph convolutional networks (GCNs) (Hamilton, Ying, & Leskovec,
2017a; Hang, Neville, & Ribeiro, 2021; Kipf & Welling, 2017; Veličković
et al., 2018) have been developed for node classification, that learn
node embeddings by propagating node feature information along the
topological structure. The basic assumption of these methods is that
the topological structure and node features are complementary to each
other, which can be fused to achieve better performance for node
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classification. Kipf and Welling (2017) employ an efficient layer-wise
propagation strategy for neural network models and operate directly
on graphs. Hamilton et al. (2017a) learn to generate embeddings
through sampling and aggregate feature information from a node’s local
neighborhood by training a set of aggregator functions. Veličković et al.
(2018) propose a graph attention network on graph-structured data by
assigning different weights to different nodes within a neighborhood.
Despite these remarkable achievements, applying GCNs may not be
able to adaptively extract the most correlated information between
topological structure or node features. Some recent works (Klicpera,
Bojchevski, & Günnemann, 2019; Li, Han, & Wu, 2018) show that the
graph convolution of the GCN model would mix node features and
its nearby neighbors, which can be considered as a special form of
Laplacian smoothing.

Very recently, instead of propagating node feature information
along the topological structure, some research efforts (Jin et al., 2021;
vailable online 21 April 2023
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Wang et al., 2020) have been devoted to capture the underlying struc-
ture of nodes in the feature space. For example, SimP-GCN (Jin et al.,
2021) integrates the node features with the structure information of
the topology graph by constructing a feature graph and allowing nodes
to adaptively combine information from these two graphs. The main
limitation of SimP-GCN is that it simply integrates the feature graph
with the topology graph in an adaptive way and may be insufficient for
capturing the rich information embedded in both graphs. Different with
SimP-GCN, AM-GCN (Wang et al., 2020) aims to derive a feature graph
by constructing a 𝑘-nearest neighbor graph, and then propagate node
eatures over both the topology graph and the feature graph in order
o extract two corresponding embeddings in the two spaces. To capture
he common information between the feature space and the topology
pace, it develops a common convolution module with parameter shar-
ng to extract common embeddings shared by both topological structure
nd node features. Despite these significant achievements, AM-GCN
odels the complex correlation information between the two spaces in

n implicit way by simply using a common convolution module with
arameter sharing, which is distant from optimal.

In order to fully mine the rich information between topological
tructure and node features, we propose a novel method named Con-
ensus Neighbor Interaction-based Multi-channel Graph Convolutional
etworks (CNIM-GCN). More precisely, to address the limitation of AM-
CN, we propose to maintain the consensus information of the two
raphs by explicitly introducing a novel graph referred to as consensus
raph. The consensus graph can be considered as a bridge between
he topology graph and the feature graph and serves for effective
nformation propagation between them. Then a multi-channel graph
onvolutional networks is designed for effectively fusing information
rom different graphs. In order to propagate information learnt from
hree different channels (i.e, topology channel, feature channel and
onsensus channel), we leverage the consensus graph for updating
he node representation of the topology graph and the feature graph.
n addition, we further maintain the consistency of the three node
epresentations from different channels with a structural consistency
onstraint. The assumption behind this constraint is that if two nodes
re close to each other in the topology space (feature space), they
hould be close in the consensus space. Finally, a consistency be-
ween the final node representation and the original node feature
epresentation is also maintained by incorporating a reconstruction
onsistency constraint. We carry out extensive experiments on five real-
orld datasets, and the results demonstrate that our proposed approach
NIM-GCN surpasses all the state-of-the-art baselines in terms of both
etrics (i.e., Accuracy and F1-score). The main contributions of this
aper are summarized as follows:

• We preserve the common information between the feature space
and topology space in an explicit way by introducing a novel
consensus graph for information propagation.

• We propose a novel consensus neighbor interaction-based multi-
channel graph convolutional networks for node classification.

• We incorporate two types of consistency constraints, i.e., struc-
tural consistency constraint and reconstruction consistency con-
straint, to further maintain the consistency between different
channels.

• Through extensive experiments on five real-world datasets, we
show the effectiveness of the proposed approach CNIM-GCN over
state-of-the-art baselines.

. Related work

In the past few years, many graph convolutional network (GCN)
ased methods (Hamilton et al., 2017a; Kipf & Welling, 2017;
eličković et al., 2018) are proposed for the task of node classification,
here each node aggregates feature information over the topology
2

raph. For example, Kipf and Welling (2017) develop a layer-wise m
propagation strategy operated on graphs and propose a scalable semi-
supervised classification method for graph-structured data. Hamilton
et al. (2017a) propose a general framework GraphSAGE for inductive
node embedding. Instead of simple convolution operations, GraphSAGE
generates node embeddings via sampling and integrating features based
on node’s neighborhood information. Veličković et al. (2018) develop
an attention-based convolution to obtain a node representation by
attending to its neighbors on the topology graph.

Recent studies (Klicpera et al., 2019; Li et al., 2018) show that GCN-
based methods usually perform a special form of Laplacian smoothing,
which would mix node features and its nearby neighbors. To address
this issue, Li et al. (2018) propose a co-training approach and a self-
training approach to train GCN, where the former trains a GCN with
a random walk model and the latter exploits the feature extraction
capability. Abu-El-Haija et al. (2019) further present that GCN-based
methods cannot learn general neighborhood mixing functions, and
propose to capture neighborhood mixing relationships, e.g., averaging
and delta operators, by repeatedly mixing feature representations of
neighbors at different distances. Wang et al. (2020) propose to capture
the underlying structure of nodes in feature space, and propagate
information over both topology graph and feature graph. A common
convolution module with the parameter sharing strategy is utilized
to extract common embeddings shared by both topology structure
and node features. Jin et al. (2021) attempt to propose a feature
similarity preservation aggregation by integrating node features with
the topology structure information in an adaptive way. It also employs
self-supervised learning to model the complex feature similarity and
dissimilarity relations between nodes.

More recently, some works propose to address the issue of limited
structural information on tail nodes. Liu, Nguyen, and Fang (2021b)
propose a novel graph neural network Tail-GNN. They introduce a
transferable neighborhood translation to enhance representations of tail
nodes by transferring information from head nodes with rich structural
information to tail nodes. In addition, some research efforts (Zhang,
Du, Xie, & Wang, 2021) have also been devoted to the cross-network
scenarios, where a node classification model is learned by transferring
knowledge from the source network to the target network. Zhang et al.
(2021) propose an adversarial separation network (ASN), which is
designed for cross-network domain adaptation. ASN models domain-
private and domain-shared information in a separate way, where they
employ two domain-private encoders to extract the domain-specific fea-
tures in each network and employ a domain-invariant shared features
across networks.

3. Method

In this section, we describe our proposed model, named Consensus
Neighbor Interaction-based Multi-channel Graph Convolutional Net-
works (CNIM-GCN). The overall framework is shown in Fig. 1. The
main idea of CNIM-GCN is that it introduces a novel consensus graph
to maintain the information consistency between the topology space
and the feature space for information propagation among different
information spaces. In particular, we construct a consensus graph which
captures the consensus neighbor information between the topology
graph and the feature graph. Then a multi-channel graph convolutional
module is utilized on topology graph, feature graph and consensus
graph to propagate information. Considering that the node represen-
tations learned by the three graph convolutional modules contain dif-
ferent kinds of information, we allow node representations of different
graphs to exchange information at each layer of GCNs. After that, we
apply the attention mechanism to fuse the node representations 𝐙𝑡, 𝐙𝑐
nd 𝐙𝑓 to obtain the final node representations 𝐙. In addition, two
ypes of consistency constraints, i.e., structural consistency constraint
nd reconstruction consistency constraint, are incorporated to further

aintain the consistency between different channels.
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Fig. 1. The framework of CNIM-GCN model. CNIM-GCN consists of three graphs (i.e., topology graph, feature graph, and consensus graph), their corresponding graph convolutional
modules, two types of consistency constraints (i.e., structural consistency constraint and reconstruction consistency constraint), and an attention module.
3.1. Problem definition

Let 𝐺 = (𝐀,𝐗) denote a graph, where 𝐀 ∈ R𝑛×𝑛 is a symmetric
adjacency matrix with 𝑛 nodes, 𝐗 ∈ R𝑛×𝑑 is the node feature matrix,
and 𝑑 is the dimension of the node features. 𝐘 denotes the labels of
nodes. Each node 𝑣𝑖 in the graph has its feature vector 𝐱𝑖 ∈ R𝑑 which
is the 𝑖th row of 𝐗, and its corresponding label 𝐲𝑖 ∈ {0, 1}𝐶 , where 𝐶
represents the number of classes. Specifically, 𝐀𝑖𝑗 = 1 indicates that
there is an edge between node 𝑣𝑖 and 𝑣𝑗 , otherwise, 𝐀𝑖𝑗 = 0. For semi-
supervised classification, only the first 𝑚 nodes (0 < 𝑚 ≪ 𝑛) have labels
𝐘𝐿 and the labels 𝐘𝑈 of the remaining data are missing. The goal is
to learn a mapping function 𝑓 ∶ 𝐀,𝐗,𝐘𝐿 → 𝐘𝑈 to predict the missing
labels 𝐘𝑈 for the unlabeled nodes.

3.2. Graph construction

The model in this paper contains three types of graphs, i.e., topology
graph 𝐺𝑡, feature graph 𝐺𝑓 , and consensus graph 𝐺𝑐 . In the following,
we will provide details for the processes of constructing each graph.

Topology Graph. In this work, we directly leverage node topology
structure to construct the topology graph 𝐺𝑡 = (𝐀𝑡,𝐗), where 𝐀𝑡 = 𝐀 ∈
R𝑛×𝑛 is a symmetric adjacency matrix with 𝑛 nodes and 𝐗 ∈ R𝑛×𝑑 is the
node feature matrix, and 𝑑 is the dimension of the node features.

Feature Graph. Due to the inevitable existence of noise edges in the
original topology graph, applying conventional GCN on the topology
graph would involve noise information propagation and lead to learn
inferior node representation. A natural solution is to make full use
of the rich information within node features 𝐗 to participate in the
node representation learning process (Jin et al., 2021; Nie, Jiao, Wang,
Wang, & Tian, 2021; Nie et al., 2020). To this end, we construct a
feature graph 𝐺𝑓 = (𝐀𝑓 ,𝐗) based on the node feature matrix 𝐗, where
𝐀𝑓 ∈ R𝑛×𝑛 is the adjacency matrix of the 𝑘NN graph. To be specific, we
first utilize the distance metric function (e.g., Cosine Similarity, Heat
Kernel, Euclidean Distance) to calculate the similarity matrix 𝐒 ∈ R𝑛×𝑛
3

among 𝑛 nodes. Here we choose the Cosine Similarity to obtain 𝐒.
Specifically, denote 𝐱𝑖 and 𝐱𝑗 be the feature vectors of nodes 𝑣𝑖 and
𝑣𝑗 , we obtain:

𝐒𝑖𝑗 =
𝐱𝑖 ⋅ 𝐱𝑗

‖𝐱𝑖‖‖𝐱𝑗‖
. (1)

After obtaining the similarity matrix 𝐒, we choose to the top 𝑘 most
similar nodes for each node to set edges, and obtain the adjacency
matrix 𝐀𝑓 .

Consensus Graph. In order to effectively fuse the information of the
topology graph 𝐺𝑡 and the feature graph 𝐺𝑓 , we propose to introduce
a novel graph, named consensus graph, which is designed to maintain
the consensus information within both graphs. The consensus graph can
be considered as a bridge between the topology graph and the feature
graph and serves for effective information propagation between them.
For the consensus graph, it shares the same node set as the topology
graph and feature graph, and there is an edge between two nodes
in the consensus graph if the two nodes correlate to each other in
both topology graph and feature graph. It is worth noting that if we
define the correlation between two nodes as there is a direct connection
between them in both topology graph and feature graph, it would suffer
from the sparsity issue since two correlated nodes would not have a
direct connection between them in both topology graph and feature
graph. To alleviate this issue, we define the node correlation between
two nodes (𝑣𝑖, 𝑣𝑗 ) as follows:

Definition 1 (Node Correlation). If the neighbors 𝑖 of node 𝑣𝑖 in one
graph (e.g., topology graph) have an overlap with the neighbors 𝑗 of
node 𝑣𝑗 in the other graph (e.g., feature graph), then the strength of
the correlation between node 𝑣𝑖 and node 𝑣𝑗 is measured by the degree
of the overlap of 𝑖 and 𝑗 .

To measure the node correlation in the two different graphs, we
first normalize the adjacency matrix 𝐀 of the topology graph and the
𝑡
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adjacency matrix 𝐀𝑓 of the feature graph:

�̂�𝑡 = 𝐃−1
𝑡 (𝐀𝑡 + 𝐈), (2)

�̂�𝑓 = 𝐃−1
𝑓 (𝐀𝑓 + 𝐈), (3)

where 𝐈 is the identity matrix, 𝐃𝑡 and 𝐃𝑓 are the degree matrices of
(𝐀𝑡 + 𝐈) and (𝐀𝑓 + 𝐈), respectively. Then the adjacency matrix �̂�𝑐 of the
onsensus graph is obtained from �̂�𝑡 and �̂�𝑓 as follows:

̂
𝑐 = �̂�𝑡 ⋅ �̂�𝑇

𝑓 , (4)

nd therefore we obtain the consensus graph 𝐺𝑐 = (�̂�𝑐 ,𝐗).

.3. Multi-channel graph convolutional networks

With the three graphs, i.e., topology graph 𝐺𝑡, consensus graph 𝐺𝑐
nd feature graph 𝐺𝑓 , on hand, we then introduce a multi-channel
raph convolutional networks to effectively fuse information from dif-
erent graphs. In the multi-channel graph convolutional networks, we
irst set an adaptive self-loop for each node of the three graphs, and
hen learn node representations with GCN on all three graph in parallel
nd allow node within different graphs to exchange information at each
CN layer.
Adaptive Self-loops. In the original GCN, given a node 𝑣𝑖, a self-

oop is added to include its own features in the aggregation process.
ao and Ji (2019) believe that the features of nodes themselves may be
ore important in the prediction. If we want to retain more information

bout the original feature, we can add more self-loops to the node 𝑣𝑖.
he importance of node features varies for different nodes (Jin et al.,
021). Therefore, an adaptive self-loop is set for each node of the three
raphs:

̃ (𝑙)
∗ = �̂�∗ + 𝛾𝐃(𝑙)

∗ , (5)

here �̃�(𝑙)
∗ (∗∈ {𝑡, 𝑐, 𝑓}) is the adjacency matrix of the graph 𝐺∗ at

he 𝑙th layer, 𝛾 is a hyperparameter that controls the contribution of
he self-loop, and 𝐃(𝑙)

∗ = 𝑑𝑖𝑎𝑔(𝑘(𝑙)∗1, 𝑘
(𝑙)
∗2,… , 𝑘(𝑙)∗𝑛) is the corresponding

earnable diagonal matrix, where:
(𝑙)
∗𝑖 = 𝐳(𝑙−1)∗𝑖 𝐰(𝑙)

1 + 𝑏(𝑙)1 , (6)

here 𝐳(𝑙−1)∗𝑖 (∗∈ {𝑡, 𝑐, 𝑓}) is the hidden representation of the 𝑖th node
n the graph 𝐺∗ at the (𝑙 − 1)th layer, 𝐰(𝑙)

1 and 𝑏(𝑙)1 are the learnable
arameters at the 𝑙th layer.

After adding an adaptive self-loop for each node of the three graphs,
e apply GCN on these graphs in parallel and exchange information
mong them at each GCN layer. Specifically, at the 𝑙th GCN layer, we
irst update the node representation of each graph 𝐺∗ (∗∈ {𝑡, 𝑐, 𝑓}) as

follows:

𝐙(𝑙)
∗ = 𝑅𝑒𝐿𝑈 (�̃�(𝑙)

∗ �̃�(𝑙−1)
∗ 𝐖(𝑙)

∗ ), (7)

here �̃�(𝑙−1)
∗ is the node representation of the graph 𝐺∗ at the (𝑙 − 1)th

ayer, 𝐖(𝑙)
∗ is the weight matrix of the 𝑙th layer, 𝑅𝑒𝐿𝑈 is the activation

unction. Note that we set 𝐙(0)
𝑡 = 𝐙(0)

𝑐 = 𝐙(0)
𝑓 = 𝐗.

In order to propagate information learnt from three different chan-
els (i.e, topology channel, feature channel and consensus channel), we
everage the consensus graph as a bridge which serves for updating the
ode representation of topology graph and feature graph. After that,
e update the node representation of consensus graph based on the
pdated node representation of both topology graph and feature graph.
ormally, we update the node representation of each graph as follows:

̃ (𝑙)
𝑡 = (1 − 𝜀1)𝐙

(𝑙)
𝑡 + 𝜀1𝐙(𝑙)

𝑐 , (8)
̃ (𝑙)
𝑓 = (1 − 𝜀2)𝐙

(𝑙)
𝑓 + 𝜀2𝐙(𝑙)

𝑐 , (9)

̃ (𝑙)
𝑐 =

(�̃�(𝑙)
𝑡 + �̃�(𝑙)

𝑓 )

2
, (10)
4

here 𝜀1 (𝜀2) is a hyper-parameter used to balance the contribution
f information propagation from the topology graph (feature graph)
nd the consensus graph. At last, we consider the output of the last
ayer of GCN in each channel, i.e., 𝐙(𝑁)

𝑡 , 𝐙(𝑁)
𝑐 , 𝐙(𝑁)

𝑓 , as the final node
representations 𝐙𝑡, 𝐙𝑐 and 𝐙𝑓 , respectively.

3.4. Attention mechanism

After we have 𝐙𝑡, 𝐙𝑐 and 𝐙𝑓 , we fuse them with the attention mech-
anism. Specifically, for the node 𝑣𝑖, its embedding in 𝐙𝑡 is represented
y 𝐳𝑖𝑡 ∈ R1×ℎ. First, we get the attention value 𝑤𝑖

𝑡 of the node 𝑣𝑖 in 𝐙𝑡:

𝑤𝑖
𝑡 = 𝐯𝑇 ⋅ 𝑡𝑎𝑛ℎ(𝐖2 ⋅ 𝐳𝑖𝑡

𝑇 + 𝐛2), (11)

here 𝐯 ∈ R𝑚×1 is a shared attention vector, 𝐖2 ∈ R𝑚×ℎ is the weight
atrix, and 𝐛2 ∈ R𝑚×1 is a bias vector. Similarly, the attention values of
𝑖 in 𝐙𝑐 and 𝐙𝑓 are 𝑤𝑖

𝑐 and 𝑤𝑖
𝑓 , respectively. Then, the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function

s used to normalize the three attention values, and the final weight of
ode 𝑣𝑖 to 𝐙𝑡 is:

𝑖
𝑡 =

𝑒𝑥𝑝(𝑤𝑖
𝑡)

𝑒𝑥𝑝(𝑤𝑖
𝑡) + 𝑒𝑥𝑝(𝑤𝑖

𝑐 ) + 𝑒𝑥𝑝(𝑤𝑖
𝑓 )

. (12)

Similarly, we obtain the weights 𝛼𝑖𝑐 and 𝛼𝑖𝑓 . The final node embedding
for node 𝑣𝑖 is:

𝐳𝑖 = 𝛼𝑖𝑡𝐳
𝑖
𝑡 + 𝛼𝑖𝑐𝐳

𝑖
𝑐 + 𝛼𝑖𝑓 𝐳

𝑖
𝑓 . (13)

t last, the final embeddings of all 𝑛 nodes is 𝐙 = (𝐳1;⋯ ; 𝐳𝑛) ∈ R𝑛×ℎ.

.5. Loss function

After obtaining the final node embedding 𝐙, we feed it into a fully-
onnected layer and a softmax layer to produce the prediction of 𝑛

nodes �̂� = (𝐲1;⋯ ; 𝐲𝑛) ∈ R𝑛×𝐶 as follows:

𝐲𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐳𝑖 ⋅𝐖3 + 𝐛3), (14)

here 𝐖3 ∈ Rℎ×𝐶 and 𝐛3 ∈ R1×𝐶 are trainable weights and bias. Then
he cross entropy loss 𝑐𝑙𝑎𝑠𝑠 for node classification over all training
odes is calculated based on the predicted labels �̂� and the ground-
ruth label matrix 𝐘:

𝑐𝑙𝑎𝑠𝑠 = −
∑

𝑖∈𝐘𝐿

𝐶
∑

𝑐=1
𝐘𝑖𝑐 ln �̂�𝑖𝑐 , (15)

here 𝐘𝐿 is the labeled training set, 𝐶 is the number of classes, 𝐘𝑖𝑐 and
�̂�𝑖𝑐 denote the real and predicted probability of the 𝑖th node to the 𝑐th
class, respectively.

3.6. Structural consistency constraint

For the node representations 𝐙𝑡,𝐙𝑐 and 𝐙𝑓 outputted by three
different channels (i.e, topology channel, feature channel and consen-
sus channel), despite we leverage the consensus graph as a bridge
to propagate information in different channels, we further maintain
the consistency of the three node representations explicitly with a
structural consistency constraint. To the end, we normalize the node
representation using 𝐿2−normalization and obtain �̂�𝑡, �̂�𝑐 and �̂�𝑓 . As
the types of node representations are from different spaces, directly
maintaining a consistency constraint over them would lead to sub-
optimal performance. To deal with this issue, we propose to keep the
consistency between different spaces at the structural relationship level.
Specifically, we represent the structural relationships by leveraging
the similarity matrices 𝐒𝑡,𝐒𝑐 and 𝐒𝑓 of 𝑛 nodes, which are obtained
according to �̂�𝑡, �̂�𝑐 and �̂�𝑓 respectively:

𝐒∗ = 𝐙∗ ⋅ 𝐙∗
𝑇
. (16)

The assumption of this constraint is that if node 𝑣𝑖 and node 𝑣𝑗 are close

in the topology space (feature space), they should also be close in the
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Table 1
The statistics of the datasets.

Nodes Edges Classes Features Training Validation Test

ACM 3025 13 128 3 1870 60/120/180 500 1000
BlogCatalog 5196 171 743 6 8189 120/240/360 500 1000
CiteSeer 3327 4732 6 3703 120/240/360 500 1000
Flickr 7575 239 738 9 12 047 180/360/540 500 1000
UAI2010 3067 28 311 19 4973 380/760/1140 500 1000
consensus space. Formally, we define the structural consistency loss as
follows:

𝑠𝑡𝑟𝑢 =
(‖𝐒𝑡 − 𝐒𝑐‖22 + ‖𝐒𝑓 − 𝐒𝑐‖22)

2
. (17)

3.7. Reconstruction consistency constraint

The reconstruction consistency constraint is proposed to keep a
consistency between the final node representation 𝐙 and the original
node feature representation 𝐗. Similar to the structural consistency
constraint, we first map both final node representation 𝐙 and node
feature representation 𝐗 into their corresponding similarity matrices
𝐒𝑥 and 𝐒𝑧, which are defined as follows:

𝐒𝑥 = �̂� ⋅ �̂�𝑇 , (18)

𝐒𝑧 = �̂� ⋅ �̂�𝑇 , (19)

where �̂� and �̂� are the corresponding normalized node representation
of 𝐗 and 𝐙 with 𝐿2−normalization, respectively. Then the reconstruc-
tion consistency loss is defined as follows:

𝑟𝑒𝑐 = ‖𝐒𝑧 − 𝐒𝑥‖22. (20)

3.8. Learning objectives

Finally, we combine the cross entropy loss and the two consistency
losses to obtain the overall loss function:

 = 𝑐𝑙𝑎𝑠𝑠 + 𝜃1𝑠𝑡𝑟𝑢 + 𝜃2𝑟𝑒𝑐 , (21)

where 𝜃1 and 𝜃2 are hyper-parameters that control the contribution of
consistency constraints. Under the guidance of labeled data from the
training set, the model is trained through back propagation to learn
node representations for classification.

4. Experiments

In this section, we first give the experimental setup, then compare
the proposed approach CNIM-GCN with some state-of-the-art base-
line methods. After that, we conduct ablation study and analyze the
importance of different channels. We also visualize the learnt node rep-
resentations and analyze several important parameters of our proposed
model. At last, we investigate the convergence speed of the proposed
method.

4.1. Experimental setup

Datasets. Our proposed CNIM-GCN is evaluated on five real world
datasets which are summarized in Table 1.

• ACM (Wang et al., 2019): The nodes in this dataset are papers
published in some conferences, and there is an edge between
two nodes if they have the same author. The features are the
bag-of-words representations of paper keywords.

• BlogCatalog (Meng et al., 2019): This dataset is extracted from
the BlogCatalog website, which consists of social relationships of
bloggers. It contains 5196 user nodes, and 171743 edges repre-
senting user interactions. Each node’s attributes are constructed
by keywords generated by users as a short description of their
blogs. The node labels represent the topic categories in which
5

users register their blogs.
• CiteSeer (Kipf & Welling, 2017): CiteSeer is a network of cita-
tions where nodes are papers and edges are citation links. Node
attributes are constructed based on the bag-of-words representa-
tions of the papers, and all nodes are divided into six categories
(i.e., Agents, AI, DB, IR, ML, and HCI).

• Flickr (Meng et al., 2019): Flickr is a social network where users
can share images and videos. Nodes represent users and edges
represent their relationships. All the nodes are divided into 9
classes according to interest groups of users.

• UAI2010 (Wang, Liu, Jiao, Chen, & Jin, 2018): This dataset is
extracted from Wikipedia and includes 3067 nodes and 28311
edges. Nodes are documents and edges are links. Node attributes
are represented based on the bag-of-words representations of the
documents, and all nodes are divided into 19 distinct categories.

Baselines. We compare our proposed CNIM-GCN with eleven state-
of-the-art baseline methods:

• Deepwalk (Perozzi, Al-Rfou, & Skiena, 2014): Deepwalk is a
network embedding method, which utilizes structural regularities
within short random walks and learns local information from
truncated random walks to obtain network representations.

• LINE (Tang et al., 2015): LINE is a network embedding model
which can handle large-scale networks with millions of vertices
and billions of edges. It attempts to preserve both the first-
order and second-order proximities, and propose an effective and
efficient edge-sampling method for model inference.

• Chebyshev (Defferrard, Bresson, & Vandergheynst, 2016): It pro-
poses to build a spectral graph theoretical formulation of CNNs on
graphs on established tools in graph signal processing (GSP) (Shu-
man, Narang, Frossard, Ortega, & Vandergheynst, 2013). The
computational complexity of the proposed model is linear with
the dimensionality of the data.

• GCN (Kipf & Welling, 2017): This method introduces a simple
layer-wise propagation rule for neural network models based on
a first-order approximation of spectral convolutions on graphs.
Similar to Chebyshev (Defferrard et al., 2016), it scales linearly
in the number of graph nodes.

• 𝑘NN-GCN (Wang et al., 2020): 𝑘NN-GCN uses the sparse 𝑘-nearest
neighbor graph (i.e., feature graph) derived from the node fea-
tures instead of the traditional topology graph as the input graph
of GCN.

• GAT (Veličković et al., 2018): GAT aggregates information from
each node’s neighbors, and obtain its hidden representation with
a self-attention strategy. It assigns different weights to different
neighboring nodes in the process of graph convolution.

• DEMO-Net (Wu, He, & Xu, 2019): It is a generic degree-specific
graph neural network, which applies the same graph convolution
for nodes with the same degree value. A degree-specific multi-
task graph convolution function is proposed to learn the node
representation.

• MixHop (Abu-El-Haija et al., 2019): MixHop proposes to repeat-
edly mix neighbors’ feature representations at various distances in
order to capture neighborhood relationships. It introduces a graph
convolutional layer to learn neighborhood information without
additional memory or computational complexity.
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Table 2
Comparison results with baselines on all datasets in terms of Acc and F1 (%). ‘‘L/C’’ denotes the number of labeled nodes for training per class, and ‘‘OOM’’ denotes ‘‘out of
memory’’. The best results on each dataset are in bold, and the second-best ones are underlined.

Datasets Metrics L/C DeepWalk LINE Chebyshev GCN 𝑘NN-GCN GAT DEMO-Net MixHop Tail-GCN AM-GCN SimP-GCN CNIM-GCN

20 62.69 41.28 75.24 87.80 78.52 87.36 84.48 81.08 88.27 90.40 88.00 91.00
40 63.00 45.83 81.64 89.06 81.66 88.60 85.70 82.34 89.37 90.76 89.54 91.56Acc
60 67.03 50.41 85.43 90.54 82.00 90.40 86.55 83.09 91.00 91.42 90.88 92.20

20 62.11 40.12 74.86 87.82 78.14 87.44 84.16 81.40 88.23 90.43 87.99 90.93
40 61.88 45.79 81.26 89.00 81.53 88.55 84.83 81.13 89.27 90.66 89.51 91.56

ACM

F1
60 66.99 49.92 85.26 90.49 81.95 90.39 84.05 82.24 90.94 91.36 90.84 92.11

20 38.67 58.75 38.08 69.84 75.49 64.08 54.19 65.46 75.83 81.98 85.40 89.52
40 50.80 61.12 56.28 71.28 80.84 67.40 63.47 71.66 76.63 84.94 86.82 92.32Acc
60 55.02 64.53 70.06 72.66 82.46 69.95 76.81 77.44 78.43 87.30 90.44 92.74

20 34.96 57.75 33.39 68.73 72.53 63.38 52.79 64.89 75.00 81.36 84.83 89.21
40 48.61 60.72 53.86 70.71 80.16 66.39 63.09 70.84 75.93 84.32 86.24 92.12

BlogCatalog

F1
60 53.56 63.81 68.37 71.80 81.90 69.08 76.73 76.38 78.00 86.94 90.05 92.50

20 43.47 32.71 69.80 70.30 61.35 72.50 69.50 71.40 71.03 73.10 71.74 71.72
40 45.15 33.32 71.64 73.10 61.54 73.04 70.44 71.48 74.27 74.70 72.88 74.48Acc
60 48.86 35.39 73.26 74.48 62.38 74.76 71.86 72.16 74.93 75.56 72.96 75.50

20 38.09 31.75 65.92 67.50 58.86 68.14 67.84 66.96 66.80 68.42 68.57 67.26
40 43.18 32.42 68.31 69.70 59.33 69.58 66.97 67.40 69.32 69.81 69.03 69.45

CiteSeer

F1
60 48.01 34.37 70.31 71.24 60.07 71.60 68.22 69.31 70.79 70.92 70.01 70.41

20 24.33 33.25 23.26 41.42 69.28 38.52 34.89 39.56 OOM 75.26 77.80 81.98
40 28.79 37.67 35.10 45.48 75.08 38.44 46.57 55.19 OOM 80.06 82.88 84.78Acc
60 30.10 38.54 41.70 47.96 77.94 38.96 57.30 64.96 OOM 82.10 84.46 85.60

20 21.33 31.19 21.27 39.95 70.33 37.00 33.53 40.13 OOM 74.63 78.21 81.52
40 26.90 37.12 33.53 43.27 75.40 36.94 45.23 56.25 OOM 79.36 83.17 84.62

Flickr

F1
60 27.28 37.77 40.17 46.58 77.97 37.35 56.49 65.73 OOM 81.81 84.48 85.28

20 42.02 43.47 50.02 49.88 66.06 56.92 23.45 61.56 62.70 70.10 57.44 73.06
40 51.26 45.37 58.18 51.80 68.74 63.74 30.29 65.05 65.47 73.14 65.88 75.10Acc
60 54.37 51.05 59.82 54.40 71.64 68.44 34.11 67.66 67.43 74.40 70.04 77.60

20 32.93 37.01 33.65 32.86 52.43 39.61 16.82 49.19 48.60 55.61 46.13 60.80
40 46.01 39.62 38.80 33.80 54.45 45.08 26.36 53.86 50.15 64.88 54.99 65.68

UAI2010

F1
60 44.43 43.76 40.60 34.12 54.78 48.97 29.05 56.31 51.43 65.99 58.99 69.74
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• Tail-GCN (Liu, Nguyen, & Fang, 2021a): Tail-GCN is developed
for learning robust tail node embeddings. It introduces a novel
concept of transferable neighborhood translation to capture the
relational tie between a node and its neighboring nodes, and
bridges the gap between head and tail nodes.

• AM-GCN (Wang et al., 2020): AM-GCN aims to extract two spe-
cific embeddings in both feature space and topology space by
propagating node features over both feature graph and topology
graph. To maintain the common embedding shared by the two
spaces, it develops a common convolution module with parameter
sharing.

• SimP-GCN (Jin et al., 2021): SimP-GCN aims to preserve the
original node similarity. It proposes an adaptive strategy that
coherently integrates the graph structure and node features, and
explicitly encodes the pairwise feature relation to preserve feature
and structural similarity.

Parameter Settings. We choose three label rates (i.e., 20, 40, 60
abeled nodes per class) as the training set, and select 500 nodes and
000 nodes as the development set and test set respectively. Three
wo-layer networks with the same hidden layer dimension (𝑛ℎ𝑖𝑑1)
nd the same output dimension (𝑛ℎ𝑖𝑑2) are trained simultaneously,
here 𝑛ℎ𝑖𝑑1 ∈ {512, 768}, 𝑛ℎ𝑖𝑑2 ∈ {128, 256}. The dropout rate is

et to 0.5, and weight decay ∈ {5𝑒−5, 5𝑒−4, 5𝑒−3}. We utilize Adam as
he optimizer with a learning rate of 1𝑒−4 ∼ 1𝑒−3. For the 𝑘-nearest

neighbor graph (i.e., feature graph), we take 𝑘 ∈ {2,… , 20}. The
adaptive self-loop coefficient (i.e., 𝛾) and the information propagation
alance coefficients (i.e., 𝜀1 and 𝜀2) are searched in {0, 0.1, 0.2,… , 1}.
he consistency constraint coefficients (i.e., 𝜃1 and 𝜃2) are searched

n {0, 0.001, 0.01, 0.1, 1}. To evaluate the performance of the proposed
ethod, we employ Accuracy (Acc) and macro F1-score (F1) in this
ork.
6

.2. Node classification results

We compare the performance of our proposed CNIM-GCN with
leven baselines in Table 2. The results demonstrate that CNIM-GCN
as the state-of-the-art performance as compared to other competitive
aselines in terms of both metrics (i.e., Acc and F1), which ascertains
he superiority of our proposed method. The main observations are as
ollows:

• Compared with baselines which rely on either the topology graph
or the feature graph, the methods (i.e., AM-GCN, SimP-GCN
and CNIM-GCN) fusing both graphs achieve a superior perfor-
mance. Among them, our proposed method CNIM-GCN mostly
outperforms the two best performing baselines, i.e., AM-GCN and
SimP-GCN, by a large margin. This is mainly attributed to that
CNIM-GCN maintains the common information of the topology
graph and the feature graph by explicitly modeling the consensus
graph.

• We can also observe that with the increase of the number of
labeled nodes for training, the performance of CNIM-GCN raises
correspondingly and it is consistently superior to the two best
performing baselines AM-GCN and SimP-GCN on all datasets
except the dataset CiteSeer. For example, on the BlogCatalog
dataset, CNIM-GCN achieves F1 scores of 89.21%, 92.12%, 92.5%
with label rate 20, 40 and 60, respectively, which are 9.65%
(5.16%), 9.25% (6.82%) and 6.40% (2.72%) better than the
corresponding performance of AM-GCN (SimP-GCN). In addi-
tion, when less labeled nodes are available for training, the
performance improvement of CNIM-GCN over both AM-GCN and
SimP-GCN becomes larger. This reveals that our proposed method
can still effectively model the information of both topology space

and feature space when the task become more challenge.
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Fig. 2. The ablation study of CNIM-GCN on all datasets.
• The performance improvements of CNIM-GCN over both AM-GCN
and SimP-GCN on the three datasets, i.e., BlogCatalog, Flickr,
UAI2010, are considerably larger than that on the remaining
two datasets, i.e., ACM and CiteSeer. For example, the improve-
ments of F1 score of CNIM-GCN over AM-GCN and SimP-GCN on
BlogCatalog, Flickr, UAI2010 are 9.65% (5.16%), 9.23% (4.23%),
9.33% (31.80%) respectively when the label rate is 20. However,
the improvements of F1 score of CNIM-GCN over AM-GCN on
ACM and CiteSeer are relatively small, e.g., 0.55% (3.34%) and
−1.70% (−1.91%), when the label rate is 20. The main reason is
that the corresponding feature graphs of the BlogCatalog, Flickr,
UAI2010 are more informative than the corresponding topology
graph, e.g., the performance of the baseline 𝑘NN-GCN is better
than that of the baseline GCN. In contrast, on the datasets ACM
and CiteSeer, the feature graphs are less informative, which leads
to inferior performance improvement of our method.

4.3. Ablation study

In this section, we study the contributions of five main compo-
nents, including the information propagation, the adaptive self-loop,
the consistency constraint, the structural consistency constraint, and
the reconstruction consistency constraint to our proposed method.

• CNIM-GCN-IP: We remove the information propagation compo-
nent to investigate the influence of leveraging the consensus
graph, which is used as a bridge serving for updating the node
representation of topology graph and the feature graph.

• CNIM-GCN-SL: We discard the adaptive self-loop component in
order to study how important that the features of nodes them-
selves to the performance of the classification.

• CNIM-GCN-CC: We remove the consistency constraints, including
the structural consistency constraint as well as the reconstruction
consistency constraint.

• CNIM-GCN-SC: We remove the structural consistency constraint
which maintains the consistency of the node representations
𝐙𝑡,𝐙𝑐 and 𝐙𝑓 generated by the three different channels.

• CNIM-GCN-RC: We remove the reconstruction consistency con-
straint which is utilized to keep a consistency between the final
node representation 𝐙 and the original node feature representa-
tion 𝐗.

As shown in Fig. 2, we can observe that each component plays a critical
role in improving the performance of CNIM-GCN. On ACM dataset,
7

removing the information propagation component (i.e., CNIM-GCN-IP)
causes a significant drop of Acc scores, which are 1.29%, 2.53%, and
2.54% worse than that of CNIM-GCN with respect to the label rate 20,
40 and 60, respectively. Similar results are observed on other datasets.
This reveals the effectiveness of incorporating the consensus graph as
a bridge for exchanging information between the topology graph and
the feature graph.

Besides, removing the adaptive self-loop component (i.e., CNIM-
GCN-SL) will also lead to a decrease of the performance of CNIM-GCN.
Specifically, on the datasets with rich feature information (i.e., Blog-
Catalog, Flickr, and UAI2010), CNIM-GCN-SL will lead a considerable
performance decrease of CNIM-GCN. However, on the datasets where
the feature information is less informative (i.e., ACM and CiteSeer), the
performance of CNIM-GCN does not decrease significantly.

At last, the influence of removing the consistency constraints
(i.e., CNIM-GCN-CC) to CNIM-GCN varies according to the datasets. For
example, it results in a considerable decrease of the model performance
on the dataset ACM with all three label rates. While on the dataset
CiteSeer, the performance decrease is not significant. This may be
because the consistency of node representations from different channels
has already been well maintained by leveraging the consensus graph
as a bridge to propagate information in different channels. Moreover,
removing the structural consistency constraint (i.e., CNIM-GCN-SC)
affects more the performance of our proposed method CNIM-GCN and
mostly leads to a large performance drop as compared with removing
the reconstruction consistency constraint (i.e., CNIM-GCN-RC).

4.4. Importance analysis of different channels

In this section, we investigate the contribution of node representa-
tions learned from different channels, i.e., topology channel, consensus
channel, and feature channel, to the model performance. Fig. 3 shows
the attention weights assigned to different channels on all five datasets
with a label rate of 60.

As we can observe from Fig. 3, on the datasets ACM and CiteSeer,
the proposed model assigns the highest attention to the topology chan-
nel, which reveals the important role of the topology channel for node
classification on these datasets. In contrast, on the datasets BlogCatalog,
Flickr, and UAI2010, the feature channel obtains higher attention
weights as compared to the other two channels. This is because the
feature representation of three datasets (i.e., BlogCatalog, Flickr, and
UAI2010) are more informative as compared to the other two datasets
(i.e., ACM and CiteSeer), which is also consistent to the results reported
in Section 4.2.
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Fig. 3. Analysis of attention weights assigned to different channels on all datasets with a label rate of 60.
In addition, the attention weight of the consensus channel is smaller
than both topology graph and feature graph in all cases. This is at-
tributed to that the consensus information can be transmitted to topol-
ogy graph and feature graph via the information propagation compo-
nent in order to enhance their corresponding node representations. The
experimental results verify that our proposed approach can adaptively
assign reasonable attention weights to different channels according to
their capability.

4.5. Visualization

To show the effectiveness of our proposed method in a more ef-
fective way, we further conduct a visualization on the BlogCatalog
dataset with label rates of 20, 40, and 60, respectively. We use the
node representations of the last layer of CNIM-GCN (GCN, AM-GCN
and SimP-GCN) before the softmax and plot the representations using
t-SNE (Van der Maaten & Hinton, 2008). The results are shown in Fig. 4,
in which nodes are colored based on the ground-truth labels.

We can find from Fig. 4 that, compared with GCN, node embedding
learned by both AM-GCN and SimP-GCN can clearly distinguish dif-
ferent labels. However, the results of AM-GCN and SimP-GCN are not
satisfactory as many nodes with different labels are mixed together. The
learned node representations of CNIM-GCN is superior to other methods
because they are more compact and have better intra-class tightness as
well as clear boundary of each class.

In addition, we can observe a better performance of CNIM-GCN with
the increase of the label rate. For example, the model performance of
CNIM-GCN with a label rate of 60 is considerably better than that of its
counterparts with a label rate of 20 and 40. This indicates that CNIM-
GCN can learn more compact node embedding with high intra-class
similarity and clear inter-class boundaries when more labeled nodes are
available, which also corresponds to the results of node classification
in Section 4.2.

4.6. Parameter study

In this section, we will analyze the impact of hyperparameters of
our CNIM-GCN, i.e., 𝑘, 𝛾, 𝜀1, 𝜀2, 𝜃1 and 𝜃2. We only report results in
terms of accuracy as similar findings are observed in terms of F1 score.
8

Analysis of Parameter 𝑘. The parameter 𝑘 indicates the number of
neighbors employed for building the 𝑘NN graph (i.e., feature graph).
We vary 𝑘 from 2 to 20, and the performance of CNIM-GCN is shown
in Fig. 5. On the ACM dataset when the label rate is 60, we can see
that the accuracy keeps to raise and reaches the peak when 𝑘 = 9. If
we continue to increase 𝑘, the accuracy will decrease gradually. Similar
results can be observed for other two label rates. The reason is that
when we increase the number of neighbors for constructing the feature
graph, more useful semantic structure information can be explored
via the feature channel. However, if 𝑘 becomes too large, more noise
neighboring nodes would be introduced, and lead to a degradation of
classification performance. On the Flickr dataset, it shows a similar
trend as on the ACM dataset except that the best performance is reached
at a larger 𝑘, e.g., 𝑘 = 14 when the label rate is 60.

Analysis of Parameter 𝛾. The parameter 𝛾 reflects the impact of
introducing the adaptive self-loops which encourages the model to
retain more information about nodes’ original features. As shown in
Fig. 6, with the increase value of 𝛾, the accuracy on the ACM dataset
with the label rate of 60 first increases and obtains the best performance
when 𝛾 is around 0.4, which follows by a performance degradation
when we keep increasing 𝛾. When the label rate is small, the model
performance will reach a peak with a lower 𝛾 value, e.g., the best 𝛾
for label rate of 40 is 0.1. Besides, the model performance also drops
faster with a small label rate. Similar performance changing trends are
observed on the Flickr dataset.

Analysis of Parameter 𝜀1 and 𝜀2. The parameter 𝜀1 (𝜀2) are in-
troduced to balance the contribution of information propagation from
the topology (feature) channel and the consensus graph. A higher
𝜀1 (𝜀2) indicates the consensus graph serves a more important role
for updating the node representation of the topology (feature) graph.
We vary both 𝜀1 and 𝜀2 from 0 to 1 with a step size of 0.1, and
the results are demonstrated in Fig. 7. On the ACM dataset, we can
observe that a relative larger 𝜀1 and 𝜀2 result in better performance.
The best performance will be reached when 𝜀1 = 0.9 and 𝜀2 = 0.8,
which demonstrates the effect of incorporating the consensus graph as
a bridge channel for updating both the topology and feature channel.
While on the Flickr dataset, the model performance is less sensitive to
𝜀1, and mainly affected by 𝜀2. The performance keeps to increase when
we increase 𝜀2 and reaches the peak when 𝜀2 = 0.6. If we continue
raise 𝜀 , the performance will drop quickly. The main reason is that the
2
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Fig. 4. Visualization of the learned node embeddings on BlogCatalog dataset.
Fig. 5. Analysis of parameter 𝑘.

Fig. 6. Analysis of parameter 𝛾.

feature channel on the Flickr dataset is more informative as compared
to the topology channel (see Section 4.4).
9

Fig. 7. Analysis of parameter 𝜀1 and 𝜀2.

Fig. 8. Analysis of consistency coefficient 𝜃1 and 𝜃2.

Analysis of Parameter 𝜃1 and 𝜃2. The parameters 𝜃1 and 𝜃2 reflect
the effects of the structural consistency constraint and the reconstruc-
tion consistency constraint to our proposed model, respectively. We
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Fig. 9. Learning curves of the proposed model CNIM-GCN.
vary both 𝜃1 and 𝜃2 as {0, 0.001, 0.01, 0.1, 1}. The results on ACM are
shown in Fig. 8(a), and we observe an increase of model performance
when paying more attention to the structural consistency (i.e., a larger
value of 𝜃1). The performance also increases when we raise the value of
𝜃2, and drops considerably when 𝜃2 becomes too large. The best model
performance is obtained when 𝜃1 = 0.01 and 𝜃2 = 0.1. In Fig. 8(b), we
can see similar trends of model performance on the Flickr dataset.

4.7. Learning curve

To analyze the converging speed of our proposed model, we further
run the model on all datasets with three different label rates (i.e., 20,
40 and 60) and report the accuracy and F1 score for each epoch.
The results are shown in Fig. 9, and we can see that our proposed
model converges fast, especially on the datasets ACM and CiteSeer,
where CNIM-GCN achieves the best performance with less than 10
epochs. While on the other three datasets (i.e., BlogCatalog, Flickr,
and UAI2010), CNIM-GCN requires relatively more epochs to obtain
the best performance, e.g., on the UAI2010 dataset, it needs around 50
to 90 epochs with respect to the label rate 20, 40, 60, respectively to
achieve the best performance. This indicates that our proposed model
may converge faster on datasets with less informative node features.
10
5. Conclusion

In this paper, we propose a new approach named Consensus Neigh-
bor Interaction-based Multi-channel Graph Convolution Networks
(CNIM-GCN) for node classification. Specifically, we introduce a con-
sensus graph to preserve the common information between the topol-
ogy graph and the feature graph in an explicit way, and develop
a multi-channel graph convolutional networks for effectively fusing
information from different graphs. Moreover, two types of consistency
constraints, i.e., structural consistency constraint and reconstruction
consistency constraint, are incorporated to maintain the consistency
between different channels. Extensive experiments on five real-world
datasets show that our proposed method obtains substantially better
performance than state-of-the-art baselines. In addition, the model
analysis suggests that each introduced component is helpful in learning
better node representations.
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