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A B S T R A C T

Sentiment classification aims to predict the sentiment label for a given text. Recently, several research efforts
have been devoted to incorporate matching clues between text words and class labels into the learning process
of text representation. However, these methods heavily rely on the availability of label content. Moreover, they
simply capture the label-specific signals to measure each word’s contribution by either implicitly employing
a learnable label representation or explicitly leveraging the interaction between text words and labels via
the interaction mechanism. To deal with these issues, in this paper, we propose a novel framework called
Label-Guided Dual-view Sentiment Classifier (LGDSC). We first introduce a new strategy for generating an
effective label description and then design a novel Dual-Channel Label-guided Attention Network (DLAN)
to learn a text representation via two different channels. DLAN will be further leveraged to learn label-
guided text representations from two different views. Extensive experimental results on four real-world datasets
demonstrate that LGDSC consistently outperforms the state-of-the-art baseline methods.
1. Introduction

Sentiment classification (also known as opinion mining) (Cambria,
2016; Cambria, Li, Xing, Poria, & Kwok, 2020; Lin, Fu, Li, Cai, &
Zhou, 2021; Zhu, Zhu, Guo, & Dietze, 2022; Zhu, Zhu, Guo, Liang, &
Dietze, 2021) has emerged as a powerful strategy for understanding
consumer opinion towards a product, which is of significant impor-
tance for organizations during their decision making process. In this
context, sentiment classification aims to predict the sentiment label
for a given review written by consumers. Conventional approaches
typically learn text representation based on the input review text, and
after that a fully-connected (FC) layer at the topmost of the network
is used to make the final prediction. Tang, Qin, and Liu (2015) learn
text representations with a hierarchical neural network. It first pro-
duces sentence representations with convolutional neural network or
long short-term memory, then leverages the obtained sentence vectors
to learn review-level representation. Ma, Sun, Lin, and Ren (2018)
propose a hierarchical end-to-end model for joint learning of text
summarization and sentiment classification in order to improve each
other. Chan, Chen, and King (2020) predict the sentiment label from
the review text representation as well as the summary representation
with a consistent constraint between them. Ye, Dai, Dong, and Wang
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(2021) fuse the information contained in different features by propos-
ing a novel multi-view ensemble learning method. Fei, Ren, Wu, Li,
and Ji (2021) capture the latent target-opinion distribution behind the
documents and incorporate the prior knowledge into the classification
process.

One key limitation of the above-mentioned approaches is that they
ignore the fine-grained classification signals (i.e., matching clues be-
tween text words and class description). More precisely, they merely
treat the categories as indexes in the label vocabulary while lack of
modeling category description to explicitly mention what to classify.
Several recent efforts (Du et al., 2019; Huang, Chen, Xiao, & Jing,
2019; Xiao, Huang, Chen, & Jing, 2019) have attempted to leverage
the fine-grained classification signals into the learning process of text
representation. By explicitly modeling the fine-grained classification
signals (i.e., the category description), they can force the model to
attend to the most salient texts with respect to the label (Chai, Wu,
Han, Wu, & Li, 2020). A motivating example is shown in Fig. 1. For
example, Du et al. (2019) introduce the interaction mechanism to
calculate the matching scores between text words and class labels. Since
the class labels are not explicitly given and are modeled in an implicit
manner, it would result in an inferior performance. To address this
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Fig. 1. A motivating example of leveraging label description for sentiment classification. We propose a novel strategy for generating label description by introducing a well-designed
measurement, i.e., Inverse Label Entropy (ILE), for estimating the word importance score. The label description will serve as fine-grained classification signals for matching text
words and class labels.
issue, there are several works attempting to incorporate label content in
an explicit manner. Xiao et al. (2019) exploit the text content and label
content to learn text representations. Specifically, they embed each
label and explicitly capture the semantic relations between text words
and labels. This work only focuses on learning the interaction between
words and labels while ignoring the correlation among labels. Huang
et al. (2019) establish an explicit label-aware representation for each
text with a hybrid attention deep neural network. Different from Xiao
et al. (2019), they further propose to model a label co-occurrence
graph to learn a better label embedding which can maintain the label
structure. This approach works well when there is a large-scale label
set for exploiting the label structure. In the presence of a small number
of class labels, which is typical for sentiment classification, the learned
embeddings may not benefit from modeling the label structure.

Although the incorporation of the label description has been proven
beneficial in many NLP tasks, a deficiency is that they heavily rely
on the availability of label content and become inapplicable when
there is no label content available. Very recently, some effort attempts
to generate label description automatically, e.g., Chai et al. (2020)
propose to generate a summary through a reinforcement learning mod-
ule (Kumar, Ramakrishnan, & Li, 2019; Yuan et al., 2017) and then use
the summary as label description to guide the model to attend to the
most salient words. As the generated label description varies from text
to text, this approach is still far from generating a satisfied description
for each distinct sentiment label. Therefore, how to generate effective
label description for text classification remains a challenging research
question.

In this work, we propose a novel label-guided dual-view sentiment
classifier (LGDSC) based on an automatic strategy for generating effec-
tive label description. In particular, we generate label description by
introducing a novel discrimination capabilities-based word importance
measurement, i.e., the inverse label entropy based word importance
score. The label-guided dual-view sentiment classifier mainly consists
of four components, i.e., a text encoder to learn a contextual represen-
tation, a summary decoder to generate a summary which will serve
for the summary-view representation learning, a dual-channel label-
guided attention network which is designed to learn a label-guided
text representation from two different channels, as well as a dual-view
sentiment classifier which aims to learn a text representation from
both the source view and the summary view. After that, we leverage a
two-layer feed-forward neural network to predict the sentiment label
based on each learned representation. Fig. 2 illustrates the overall
architecture of LGDSC.

We carry out extensive experiments on four widely used public
review datasets, including the domains Sports, Toys, Home and Movies.
The results show that our proposed approach LGDSC outperforms
state-of-the-art sentiment classification baselines on all four datasets in
terms of both macro F1 score and the balanced accuracy. We conduct
further experiments to explore how label-guided attention influences
the performance of sentiment classification. The main contributions of
this work are summarized as follows:
2

• We propose a novel strategy for generating effective label de-
scriptions by introducing a well-designed measurement into the
estimation process of the word importance score.

• We design a novel Dual-Channel Label-guided Attention Network
to learn text representation via two different channels.

• Extensive experiments are conducted on four widely used datasets
(i.e., Sports, Toys, Home, and Movies), and experimental re-
sults demonstrate that our proposed approach shows superior
performance compared with state-of-the-art baseline methods.

The rest of the paper is organized as follows. In Section 2, we give a
brief review of the related work. Section 3 describes the generation of
label descriptions. We introduce our proposed label-guided dual-view
sentiment classifier in Section 4 and discuss the experimental results of
our empirical studies in Section 5. In Section 6, we conclude the paper.

2. Related work

In this section, we briefly review related works including sentiment
classification and label-indicative document classification.

Sentiment Classification. Sentiment classification is an important
task for understanding customer needs and has been widely studied
in recent years. Existing approaches usually fall into two categories:
single classification models and joint classification and summarization
models. Single classification models are usually regarded as a text
classification task (Pang & Lee, 2005). Early research works focus
on extracting effective features and then apply supervised machine
learning methods (Pang & Lee, 2005; Pang, Lee, & Vaithyanathan,
2002) to conduct sentiment classification. Pang et al. (2002) employ
machine learning methods (i.e., SVM, Maximum Entropy, and Naive
Bayes) to perform sentiment classification based on textual features
extracted by standard natural language processing techniques. Since the
textual features would be not reliable enough to estimate the sentiment
polarity, Gao, Yoshinaga, Kaji, and Kitsuregawa (2013) further exploit
user leniency and product popularity to improve sentiment classifica-
tion. Along with the success of deep learning in many applications,
deep learning has also been explored for sentiment classification re-
cently (Zhang, Wang, & Liu, 2018). Tang et al. (2014) incorporate
the supervision from sentiment polarity of text to learn sentiment-
specific word embedding for sentiment classification. Tang et al. (2015)
propose a hierarchical framework for document-level sentiment clas-
sification. Specifically, they first learn sentence representation with
convolutional neural network or long short-term memory. Then, they
adaptively encode the semantics of sentences and their relations with
the gated recurrent neural network.

Joint classification and summarization models are proposed to im-
prove the capability of sentiment classification in recent works. It
explores to incorporate a review summarization component to jointly
improve the performance of review summarization and sentiment clas-
sification. Ma et al. (2018) propose an end-to-end framework to im-
prove both text summarization and sentiment classification. They first
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Fig. 2. The overall architecture of the proposed model LGDSC. It mainly consists of four components: (1) text encoder, which converts the input text into a memory bank; (2)
summary decoder, which generates the summary based on the memory bank output by the text encoder; (3) dual-channel label-guided attention network (DLAN), which learns
label-guided text representations via two different channels; (4) dual-view sentiment classifier, which learns a dual-view representation by applying the DLAN module on both
source-view (input review text) and summary-view (generated summary by the summary decoder).
leverage a summarization layer to compress the input text into short
sentences and then employ a sentiment classification layer to further
‘‘summarize’’ the text into a sentiment class. To effectively utilize the
shared sentiment information in both sentiment classification task and
review summarization task, Chan et al. (2020) further propose a dual-
view approach which jointly improves the performance of these two
tasks. Our work falls into the second category where we employ a joint
framework for sentiment classification. Different from existing state-of-
the-art works, we introduce label content information into the learning
process of text representation in order to obtain a label-indicative text
presentation. In addition, we design a novel dual-channel label-guided
attention network to learn a text representation via two different
channels.

Label-Indicative Text Classification. Conventional deep learning
based text classification approaches usually follow a encoding-based
framework, and the probability of a text belonging to a class is mainly
determined by their overall matching score regardless of word-level
matching signals (Du et al., 2019). Recently, some research works have
attempted to incorporate the label content into the learning process of
text representation to force the model attend to the most salient texts
with respect to the class label. Du et al. (2019) employ the interaction
mechanism (Wang & Jiang, 2016) to incorporate word-level matching
clues into the process of text classification. The main limitation of
their work is that they ignore the class context and model the class
in an implicit manner, i.e., they project classes into real-valued latent
representations. Xiao et al. (2019) propose to learn text representation
3

by explicitly exploiting the text content and label content. More pre-
cisely, they incorporate the label description to embed each label into
a vector like embedding, and explicitly calculate the semantic relations
between the input text and the labels. They further design an adaptive
fusion strategy to extract a proper semantic information to construct
label-specific document representation. Huang et al. (2019) attempt
to address the extreme multi-label text classification task by modeling
the label structure among extreme labels. The label embedding is then
determined by exploring a label co-exist graph. The main limitation
of previous research efforts is that they heavily rely on the availabil-
ity of label content and become inapplicable when there is no label
content available. Our work can generate effective label description by
introducing a novel discrimination capabilities-based word importance
measurements, i.e., Inverse Label Entropy (ILE) based word importance
score.

3. Label description generation

In this section, we explore how to generate an effective description
for each sentiment label in order to learn a label-indicative text rep-
resentation. Specifically, we first calculate the relevance of each word
with respect to a sentiment label 𝑐 ∈ {𝑐1, 𝑐2,… , 𝑐𝐶} where 𝐶 denotes the
number of distinct sentiment labels, and then select the most effective
words as the description of 𝑐. Intuitively, an effective label description
should satisfy two requirements:
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Requirement 1 (Relevance). All selected words in the description of a label
should be semantically relevant to the label, i.e., each word should have a
strong relevance score to the label.

Requirement 2 (Discrimination). Each selected word should have a high
discriminative capability among different labels, i.e., the words in the de-
scription of a label should be strongly correlated to that label and less
correlated to other labels.

To address the first requirement Relevance, we measure the rele-
vance score of a word for a given label. Formally, given the text corpus
𝐷, a sentiment label 𝑐, a word 𝑤, and a review text 𝑑 ∈ 𝐷, we measure
the word relevance score of 𝑤 with respect to 𝑐 as follows:

𝑟′𝑤,𝑐 =
∑

𝑑∈𝐷𝑐
𝑠𝑤,𝑑 (1)

where 𝐷𝑐 denotes all texts in 𝐷 with the sentiment label 𝑐, 𝑠𝑤,𝑑 is the
importance score of word 𝑤 in 𝑑.

It is worth noting that there are several ways to calculate the word
importance score 𝑠𝑤,𝑑 , and in this work we leverage TFIDF (Ramos
et al., 2003) to compute 𝑠𝑤,𝑑 since it has achieved promising perfor-
mance in many applications (Chen, 2017; Qin, Xu, & Guo, 2016). The
TFIDF value of a word 𝑤 in a review text 𝑑 is defined as follows:
𝑠𝑤,𝑑 = 𝑇𝐹𝐼𝐷𝐹 (𝑤, 𝑑)

= 𝑓𝑤,𝑑 × 𝑙𝑜𝑔(|𝐷|∕𝑓𝑤,𝐷)
(2)

where 𝑓𝑤,𝑑 denotes the number of times 𝑤 appears in 𝑑, |𝐷| is the size
of the corpus 𝐷, and 𝑓𝑤,𝐷 is the number of review texts in which 𝑤
appears in the corpus 𝐷.

To deal with the second requirement Discrimination, we need to
evaluate the discrimination of a word with respect to all sentiment
labels. It is worth noting that we can design a measurement, i.e., Inverse
Label Frequency (ILF), which measures the discrimination capability
of a word 𝑤 based on a similar strategy of the Inverse Document
Frequency (IDF). For example, we have:

𝐿𝐹 (𝑤) = | ∪𝑑∈𝐷 {𝑙𝑑 |𝑤 ∈ 𝑑}| (3)

where 𝑙𝑑 is the corresponding sentiment label of 𝑑. After that, we have
the 𝐼𝐿𝐹 -based importance score of a word 𝑤 with respect a sentiment
label 𝑐 as follows:

𝑟𝐼𝐿𝐹𝑤,𝑐 =
𝑟′𝑤,𝑐

𝐿𝐹 (𝑤)

=
∑

𝑑∈𝐷𝑐 𝑓𝑤,𝑑 × 𝑙𝑜𝑔(|𝐷|∕𝑓𝑤,𝐷)
|

|

∪𝑑∈𝐷{𝑙𝑑 |𝑤 ∈ 𝑑}|
|

(4)

However, one major limitation of the above ILF model is that it
oes not take into account the skewness of sentiment label frequency
istribution of a word. For example, in Fig. 3, there are two words
nd both of them appear in all sentiment labels (e.g., 5 labels in this
ase). According to the definition of the inverse label frequency, they
ill have the same ILF score. However, a word with high skewness of
4

entiment label frequency distribution usually demonstrates a stronger
iscriminative capability as compared to a word with high balance
f sentiment label frequency distribution. Based on this observation,
e propose to introduce the information entropy (Núñez, Cincotta, &
achlin, 1996) to measure the skewness of sentiment label frequency

f a word, and define the label entropy as follows:

𝐸(𝑤) = −
𝐶
∑

𝑐=1
𝑝𝑐 (𝑤) log(𝑝𝑐 (𝑤)), (5)

where 𝐶 is the number of classes and 𝑝𝑐 (𝑤) is the probability that 𝑤
appears in a text with label 𝑐 which is defined as:

𝑝𝑐 (𝑤) =
|

|

∪𝑑∈𝐷𝑐 {𝑑|𝑤 ∈ 𝑑}|
|

|𝐷𝑐
|

(6)

It should be noted that a higher value of 𝐿𝐸(𝑤) indicates that the word
𝑤 has smaller discriminative power among different labels. As each
word in the sentiment label description should have a high discrimina-
tion power, we need to penalize words which have small discriminative
capacity. To the end, we introduce the inverse label entropy into the
process of estimating the importance score of each word where

𝐼𝐿𝐸(𝑤) = 1
𝐿𝐸(𝑤)

(7)

Therefore, we have the inverse label entropy based importance score
of a word 𝑤 with respect a label 𝑐 as follows:

𝑟𝐼𝐿𝐸𝑤,𝑐 = 𝑟′𝑤,𝑐 ⋅ 𝐼𝐿𝐸(𝑤)

=
∑

𝑑∈𝐷𝑐 𝑓𝑤,𝑑 ⋅ 𝑙𝑜𝑔(|𝐷|∕𝑓𝑤,𝐷)

−
∑𝐶

𝑐=1 𝑝𝑐 (𝑤) ⋅ log(𝑝𝑐 (𝑤))

, (8)

where 𝑓𝑤,𝑑 is the number of times 𝑤 appears in 𝑑, 𝑓𝑤,𝐷 is the number of
review texts in which 𝑤 appears in the corpus 𝐷, and |𝐷| is the number
f review texts in the corpus 𝐷.

For a sentiment label 𝑐, we measure the relevance score 𝑟𝐼𝐿𝐸𝑤,𝑐 for
ach distinct word 𝑤 which appears in a text with label 𝑐, and then
elect the top-𝐾 words (𝑤𝑐

1, 𝑤
𝑐
2,… , 𝑤𝑐

𝐾 ) with the highest scores as the
escription of the sentiment label 𝑐.

Finally, we obtain the representation of a sentiment label 𝑐 as
ollows:

𝑐 =
1
𝐾

𝐾
∑

𝑖=1
𝑒𝑚𝑑

(

𝑤𝑐
𝑖
)

, (9)

where 𝑒𝑚𝑑(𝑤𝑐
𝑖 ) is an operation that maps word 𝑤𝑐

𝑖 to a low-dimensional
embedding via a lookup table. Similarly, we can get representations of
all sentiment labels: 𝐐 = (𝐪1,𝐪2,
⋯ ,𝐪𝐶 ) ∈ R𝐶×𝑑𝑒 where 𝑑𝑒 is the dimension of the label embedding.

4. Label-guided dual-view sentiment classifier

In this section, we introduce our proposed model Label-guided
Dual-view Sentiment Classifier (LGDSC), which mainly consists of four
components, including a text encoder, a summary decoder, a dual-
channel label-guided attention network, and a dual-view sentiment
classifier.



Expert Systems With Applications 213 (2023) 119194X. Zhu et al.

b
o

̃

̃

a

𝐡

w
o

4

o
d
a
G

p
s
𝐡

𝑝

𝑃

w
a

l
i



w
𝑦

4

s
S
p
c
i
w
u
t
t
i
(
b
v

4

t
c
t
w

𝐀

𝐐

w
R
a

t

𝐌

I

4.1. Text encoder

The text encoder aims to encode the input text sequence 𝑑 =
(𝑤1,… , 𝑤𝐿𝑥

) with 𝐿𝑥 words into a contextual representation 𝐇 =
(𝐡1,… ,𝐡𝐿𝑥

), which forms the memory bank for other components.
Specifically, for the input text sequence 𝑑, we first use a lookup table
𝐄 ∈ R||×𝑑𝑒 to convert each word 𝑤𝑖 to a word embedding vector
𝐱𝑖 ∈ R𝑑𝑒 , where || is the size of the vocabulary and 𝑑𝑒 denotes the
embedding size. Then we employ two consecutive Bi-directional Gated-
Recurrent Unit (BiGRU) with a residual connection. Formally, a BiGRU
is used to convert 𝐱𝑖 to a representation 𝐮𝑖 ∈ R𝑑𝑢 as follows:

⃖⃗𝐮𝑖 = 𝐺𝑅𝑈 (1)(𝐱𝑖, ⃖⃗𝐮𝑖−1) (10)

⃖⃖𝐮𝑖 = 𝐺𝑅𝑈 (1)(𝐱𝑖, ⃖⃖𝐮𝑖+1), (11)

where 𝐮𝑖 = [ ⃖⃗𝐮𝑖; ⃖⃖𝐮𝑖]. ⃖⃗𝐮𝑖 ∈ R𝑑𝑢∕2 and ⃖⃖𝐮𝑖 ∈ R𝑑𝑢∕2 are the forward and
ackward representations, respectively. [; ] denotes the concatenation
peration. After that, another BiGRU is leveraged to convert 𝐮𝑖 to �̃�𝑖 ∈

R𝑑𝑢 :
⃖⃗𝐡𝑖 = 𝐺𝑅𝑈 (2)(𝐮𝑖, ⃖̃⃗𝐡𝑖−1) (12)
⃖⃖𝐡𝑖 = 𝐺𝑅𝑈 (2)(𝐮𝑖, ⃖̃⃖𝐡𝑖+1), (13)

where �̃�𝑖 = [ ⃖̃⃗𝐡𝑖; ⃖̃⃖𝐡𝑖]. In order to alleviate the gradient vanishing is-
sue (He, Zhang, Ren, & Sun, 2016), a residual connection is also
incorporated to fuse the outputs of the two consecutive BiGRUs, i.e., 𝐮𝑖
nd �̃�𝑖, as follows:

𝑖 = 𝛿�̃�𝑖 + (1 − 𝛿)𝐮𝑖, (14)

here 𝛿 ∈ [0, 1] is a hyperparameter. 𝐇 = (𝐡1,… ,𝐡𝐿𝑥
) ∈ R𝐿𝑥×𝑑𝑢 is the

utput of the text encoder which will be used as the memory bank.

.2. Summary decoder

The summary decoder uses a undirectional GRU to generate an
utput summary 𝑦 = (𝑦1, 𝑦2,… , 𝑦𝐿𝑦

) step by step. We employ the
ecoder of the pointer generator network (See, Liu, & Manning, 2017)
s our summary decoder. Specifically, on each step 𝑡, an unidirectional
RU receives the word embedding of the previous prediction 𝐲𝑡−1 ∈ R𝑑𝑒

and the previous decoder hidden state 𝐬𝑡−1 ∈ R𝑑𝑢 and produces the
current decoder state 𝐬𝑡:

𝐬𝑡 = 𝐺𝑅𝑈 (3) (𝐲𝑡−1, 𝐬𝑡−1
)

, (15)

and note that 𝐲0 is the embedding of the start token. In order to
aggregate the most important information from the review text, we
introduce the attention mechanism to calculate an attention score 𝑎𝑡,𝑖 :

𝛼𝑡,𝑖 = 𝐯𝑇 tanh
(

𝐖ℎ𝐡𝑖 +𝐖𝑠𝐬𝑡 + 𝐛𝑎𝑡𝑡𝑛
)

(16)

𝑎𝑡,𝑖 =
exp

(

𝛼𝑡,𝑖
)

∑𝐿𝑥
𝑗=1 exp

(

𝛼𝑡,𝑗
)

, (17)

where 𝐖ℎ ∈ R𝑑𝑢×𝑑𝑢 , 𝐯 ∈ R𝑑𝑢 , 𝐖𝑠 ∈ R𝑑𝑢×𝑑𝑢 and 𝐛𝑎𝑡𝑡𝑛 ∈ R𝑑𝑢 are model
arameters. Next, the attention score is used to calculate a weighted
um of the memory bank 𝐇 = (𝐡1,… ,
𝐿𝑥
) and produce a vector 𝐡∗𝑡 =

∑𝐿𝑥
𝑖=1 𝑎𝑡,𝑖𝐡𝑖, which serves as the

representation of the input sequence 𝑑 at step 𝑡.
Then we use the decoder hidden state 𝐬𝑡 ∈ R𝑑𝑢 and 𝐡∗𝑡 ∈ R𝑑𝑢 to

calculate the probability distribution over the words in the predefined
vocabulary  :

𝑃 (𝑦𝑡|𝑦1∶𝑡−1, 𝑑) =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖𝑣2 (𝐖𝑣1 [𝐬𝑡;𝐡
∗
𝑡 ] + 𝐛𝑣1 ) + 𝐛𝑣2 )

, (18)

where 𝐖𝑣1 ∈ R𝑑𝑢×2𝑑𝑢 , 𝐖𝑣2 ∈ R||×𝑑𝑢 , 𝐛𝑣1 ∈ R𝑑𝑢 and 𝐛𝑣2 ∈ R|| are
trainable parameters, 𝑦1∶𝑡−1 denotes the partial sequence of previous
generated words (i.e., (𝑦 ,… , 𝑦 )). In order to solve the problem that
5

1 𝑡−1 a
the decoder cannot generate out-of-vocabulary (OOV) words, we incor-
porate the copy mechanism of See et al. (2017) to predict OOV words
by copying words from the input text. Specifically, we introduce a
generating-copying switch 𝑝𝑔𝑒𝑛 ∈ [0, 1] between generating a word from
the predefined vocabulary  according to 𝑃 and copying a word from
the source text 𝑑 according to the attention distribution. We leverage
the encoder–decoder attention weight 𝑎𝑡 as the copy distribution (See
et al., 2017) which determines where to attention in step 𝑡. The final
probability distribution of the ground-truth target word 𝑦𝑡 is:

𝑃 (𝑦𝑡) = 𝑝𝑔𝑒𝑛𝑃 (𝑦𝑡) + (1 − 𝑝𝑔𝑒𝑛)𝑃𝑐𝑜𝑝𝑦(𝑦𝑡) (19)

𝑔𝑒𝑛 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐯𝑇𝑔 [𝐡
∗
𝑡 ; 𝐬𝑡; 𝐲𝑡−1] + 𝑏𝑔𝑒𝑛) (20)

𝑐𝑜𝑝𝑦(𝑦𝑡) =
∑

𝑖∶𝑤𝑖=𝑦𝑡

𝑎𝑡,𝑖, (21)

here we use 𝑃 (𝑦𝑡) to denote 𝑃 (𝑦𝑡|𝑦1∶𝑡−1, 𝑑), 𝐯𝑔 ∈ R2𝑑𝑢+𝑑𝑒 and 𝑏𝑔𝑒𝑛 ∈ R
re trainable parameters.

The loss function of the summarization 𝑔 is defined as the negative
og-likelihood of the ground-truth target word 𝑦𝑡 for each step 𝑡, which
s formulated as follows:

𝑔 = −
𝐿𝑦∗
∑

𝑡=1
𝑙𝑜𝑔𝑃 (𝑦∗𝑡 ), (22)

here 𝐿𝑦∗ denotes the number of words in the ground-truth summary
∗.

.3. Dual-channel label-guided attention network (DLAN)

The DLAN module is designed to learn a label-guided text repre-
entation, consists of three sub-modules, i.e., Label-Guided Attention,
elf-Attention, and Adaptive Fusion. Label-guided attention aims to ex-
licitly introduce the label description information into the words’
ontribution estimation process. In contrast, self-attention attempts to
mplicitly employ a learnable label representation to measure each
ord’s contribution based on their representations. Adaptive fusion is
tilized to fuse the outputted representations from both label-guided at-
ention and self-attention. It is worth noting that the DLAN is leveraged
o learn label-guided text representations from two different views,
.e., the input text view (source view) and the generated summary-view
summary view). For simplicity, here we only focus on discuss DLAN
ased on the source view, and the counterpart based on the summary
iew will share a similar process.

.3.1. Label-guided attention (LGA)
The LGA module explicitly introduces the sentiment label represen-

ation 𝐐 ∈ R𝐶×𝑑𝑒 into the text representation learning process. It first
omputes a label-guided attention matrix 𝐀(𝐶) ∈ R𝐶×𝐿𝑥 between the
ext sequence 𝐇 ∈ R𝐿𝑥×𝑑𝑢 and the label representation 𝐐 ∈ R𝐶×𝑑𝑒 ,
hich is formulated as follows:

(𝐶) = �̃� ⋅𝐇𝑇 (23)
̃ = 𝑅𝑒𝐿𝑈 (𝐐𝐖𝑞), (24)

here 𝐖𝑞 ∈ R𝑑𝑒×𝑑𝑢 is trainable weight. The 𝑗th row of 𝐀(𝐶) (i.e., 𝐀(𝐶)
𝑗⋅ ∈

𝐿𝑥 ) indicates the attention scores of the 𝑗th sentiment label pay
ttention to all words in the input text sequence.

After that, we can obtain the explicit label-guided text representa-
ion 𝐌(𝐶) ∈ R𝐶×𝑑𝑢 as follows:

(𝐶) = 𝐀(𝐶) ⋅𝐇 (25)

t is worth noting that 𝐌(𝐶) can be considered as the text representation

long all sentiment labels.



Expert Systems With Applications 213 (2023) 119194X. Zhu et al.

f

𝐀

w
t
a
i
t

𝐌

4

l
w
𝐌

𝑢

w
r
l
r
f

𝑢

𝑢

T
𝐌

𝐌

A
𝐌
t

𝐦

i
(

4

s
w
t
r

v
p
w

𝑃

w

w
p
v

𝑃

w
p



4

s
t
H
(



I
f
c
a
t
s
i

4


s
o



w
t

5

a
p
m

5

w
d
e
p
&

b
i
p
S
C

4.3.2. Self-attention (SA)
The above-mentioned LGA module learns a label-guided text repre-

sentation 𝐌(𝐶) in an explicitly way, i.e., directly introducing the label
description information into the text representation learning process.
Inspired by Xiao et al. (2019), we also introduce an implicit way to
capture the contribution of all words to each sentiment label, and ob-
tain the corresponding label-guided text representation 𝐌(𝑇 ) ∈ R𝐶×𝑑𝑢 .
Different from LGA, we compute the implicit label-guided attention
matrix 𝐀(𝑇 ) ∈ R𝐶×𝐿𝑥 only based on text sequence 𝐇 ∈ R𝐿𝑥×𝑑𝑢 , which is
ormulated as follows:
(𝑇 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖𝑎2 ⋅ 𝑡𝑎𝑛ℎ(𝐖𝑎1 ⋅𝐇

𝑇 )), (26)

here 𝐖𝑎1 ∈ R𝑑𝑢×𝑑𝑢 , 𝐖𝑎2 ∈ R𝐶×𝑑𝑢 are trainable parameters. Similarly,
he 𝑗th row of 𝐀(𝑇 ) (i.e., 𝐀(𝑇 )

𝑗⋅ ∈ R𝐿𝑥 ) can also be considered as the
ttention scores of the 𝑗th sentiment label assigning to all words in the
nput text sequence. Therefore, we can obtain the implicit label-guided
ext representation 𝐌(𝑇 ) ∈ R𝐶×𝑑𝑢 as follows:
(𝑇 ) = 𝐀(𝑇 ) ⋅𝐇 (27)

.3.3. Adaptive fusion
After we obtain both 𝐌(𝐶) and 𝐌(𝑇 ), the gating mechanism is

everaged to adaptively fuse them. In particular, we introduce two fuse
eights (i.e., 𝑢(𝐶) and 𝑢(𝑇 )) to determine the importance of 𝐌(𝐶) and
(𝑇 ), respectively. The weights can be obtained as follows:

(𝐶) = 𝜎(𝐌(𝐶) ⋅ 𝐯𝑐 ) (28)

𝑢(𝑇 ) = 𝜎(𝐌(𝑇 ) ⋅ 𝐯𝑇 ), (29)

here 𝜎 is the sigmoid function, 𝐯𝑐 ∈ R𝑑𝑢 and 𝐯𝑇 ∈ R𝑑𝑢 are trainable pa-
ameters. 𝑢(𝐶)

𝑖 ∈ R and 𝑢(𝑇 )𝑖 ∈ R indicate the importance of the explicit
abel-guided text representation 𝐌(𝐶) and the implicit label-guided text
epresentation 𝐌(𝑇 ) along the 𝑖th sentiment label, respectively. We
urther normalize 𝑢(𝐶)

𝑖 and 𝑢(𝑇 )𝑖 as follows:

(𝐶)
𝑖 =

𝑢(𝐶)
𝑖

𝑢(𝐶)
𝑖 + 𝑢(𝑇 )𝑖

(30)

(𝑇 )
𝑖 = 1 − 𝑢(𝐶)

𝑖 (31)

hen we obtain the adaptively fused label-guided text representation
̃
𝑖⋅ ∈ R1×𝑑𝑢 along the 𝑖th label:

̃
𝑖⋅ = 𝑢(𝐶)

𝑖 𝐌(𝐶)
𝑖⋅ + 𝑢(𝑇 )𝑖 𝐌(𝑇 )

𝑖⋅ (32)

t last, the fused label-guided text representation along all labels is
̃ = (�̃�𝑖⋅,… , �̃�𝐶⋅) ∈ R𝐶×𝑑𝑢 , and we use the average-pooling mechanism
o get the final source-view representation 𝐦𝑠 ∈ R𝑑𝑢 :

𝑠 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑃 𝑜𝑜𝑙𝑖𝑛𝑔(�̃�) (33)

Similarly, we can obtain the summary-view representation 𝐦𝑡 ∈ R𝑑𝑢

n a similar way by applying DLAN on top of the hidden states 𝐒 =
𝐬1,… , 𝐬𝐿𝑦

) ∈ R𝐿𝑦×𝑑𝑢 of the summary decoder.

.4. Dual-view sentiment classifier

After we get the text representations from both source-view and
ummary-view, we employ a two-layer feedforward neural network
ith ReLU as the activation function (Chan et al., 2020; Ma et al., 2018)

o produce the probability distribution over the sentiment label on each
epresentation, respectively.

Here we first formulate the classification process from the source-
iew representation 𝐦𝑠. In particular, a softmax function is leveraged to
roduce the probability distribution on all sentiment labels. Formally,
e have:

(𝑐|𝐦 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖 (𝑅𝑒𝐿𝑈 (𝐖 𝐦 + 𝐛 ) + 𝐛 )), (34)
6

𝑠 𝑠 𝑠2 𝑠1 𝑠 𝑠1 𝑠2
here 𝐖𝑠1 ∈ R𝑑𝑢×𝑑𝑢 , 𝐖𝑠2 ∈ R𝐶×𝑑𝑢 , 𝐛𝑠1 ∈ R𝑑𝑢 , 𝐛𝑠2 ∈ R𝐶 are trainable
parameters. The sentiment label with the highest probability will be
used as the predicted sentiment label of the source view. We use the
negative log-likelihood as the classification loss function:

𝑠 = −𝑙𝑜𝑔(𝑃𝑠(𝑐∗|𝑑)), (35)

here 𝑐∗ is the ground-truth sentiment label. Similarly, we have the
robability distribution on all sentiment labels based on the summary-
iew representation 𝐦𝑡, which are formulated as follows:

𝑡(𝑐|𝐦𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐖𝑡2 (𝑅𝑒𝐿𝑈 (𝐖𝑡1𝐦𝑡 + 𝐛𝑡1 ) + 𝐛𝑡2 )), (36)

here 𝐖𝑡1 ∈ R𝑑𝑢×𝑑𝑢 , 𝐖𝑡2 ∈ R𝐶×𝑑𝑢 , 𝐛𝑡1 ∈ R𝑑𝑢 , 𝐛𝑡2 ∈ R𝐶 are trainable
arameters. And its corresponding classification loss is:

𝑡 = −𝑙𝑜𝑔(𝑃𝑡(𝑐∗|𝑑, 𝑦)) (37)

.4.1. Inconsistency loss function
The sentiment attitudes of the source-view and the summary-view

hould be consistent, therefore we introduce an inconsistency loss func-
ion to maintain a consistent between their predicted sentiment labels.
ere, we define the inconsistent loss function as the Kullback–Leibler

KL) divergence between 𝑃𝑠 and 𝑃𝑡:

𝑐 = 𝐾𝐿(𝑃𝑠 ∥ 𝑃𝑡)

=
𝐶
∑

𝑐=1
𝑃𝑠(𝑐|𝑑) log

𝑃𝑠(𝑐|𝑑)
𝑃𝑡(𝑐|𝑑, 𝑦)

(38)

t is worth noting that the inconsistency loss will force the two classi-
iers learn from each other to improve the performance of sentiment
lassification. In addition, since the summary-view sentiment classifier
dopts the decoder’s hidden states to predict the sentiment label of
he generated summary, the inconsistency loss will also encourage the
entiment information in the decoder states to be close to the sentiment
nformation in the encoder memory bank.

.5. Objective function

The overall loss consists of four parts, i.e., the summarization loss
𝑔 , the source-view sentiment classification loss 𝑠, the summary-view

entiment classification loss 𝑡, and the inconsistent loss 𝑐 . We jointly
ptimize the four losses as follows:

= 𝛽𝑔𝑔 + 𝛽𝑠𝑠 + 𝛽𝑡𝑡 + 𝛽𝑐𝑐 , (39)

here 𝛽𝑔 , 𝛽𝑠, 𝛽𝑡 and 𝛽𝑐 are hyper-parameters to balance the weights of
he four losses.

. Experiments

In this section, we first introduce the datasets, baseline methods,
nd the evaluation metrics used in our experiments. Then we com-
are the proposed approach LGDSC with seven competitive baseline
ethods on all datasets.

.1. Datasets

To conduct a fair and comprehensive evaluation, we adopt four
idely used datasets from different domains in our experiments. These
atasets are collected from the Amazon 5-core review repository (Chan
t al., 2020; McAuley, Targett, Shi, & van den Hengel, 2015), and
roduct reviews from four domains including Sports & Outdoors, Home
Kitchen, Movies & TV, and Toys & Games, are leveraged.
Each data sample includes a review text, a summary, and a la-

el. It is worth noting that we treat the rating, which is an integer
n the range of [1,5], as the sentiment label. All datasets are pre-
rocessed by lowercasing all letters and tokenizing the text using
tanford CoreNLP (Manning, Surdeanu, Bauer, Finkel, Bethard, & Mc-
losky, 2014). If a summary sentence is not ended properly, a period



Expert Systems With Applications 213 (2023) 119194X. Zhu et al.
Table 1
Statistics of the datasets. ‘‘Max.RL’’, ‘‘Min.RL’’ and ‘‘Ave.RL’’ respectively represent the maximum length, minimum length and average length of
review in the training set. ‘‘Max.SL’’, ‘‘Min.SL’’ and ‘‘Ave.SL’’ respectively represent the maximum length, minimum length and average length
of summary in the training set. ‘‘L𝑘’’ means the ratio of the data samples with sentiment 𝑘th label in the training set.
Dataset Number Max.RL Min.RL Ave.RL Max.SL Min.SL Ave.SL L1 L2 L3 L4 L5

Sports
Train 183,714 800 11 108.3 74 4 6.7 3.30% 3.90% 9.10% 22.90% 60.80%
Valid 9000 769 11 106 30 4 6.8 2.80% 3.70% 9.40% 23.00% 61.10%
Test 9000 796 11 108 53 4 6.7 3.20% 3.90% 9.30% 23.50% 60.10%

Toys
Train 104,296 800 16 125.9 55 4 6.8 2.90% 4.10% 11% 24.00% 58.00%
Valid 8000 800 16 126.3 30 4 6.9 3.10% 4.30% 10.20% 23.70% 58.70%
Test 8000 790 17 124.6 29 4 6.8 2.90% 4.10% 10.60% 24.00% 58.40%

Home
Train 367,395 800 16 120.9 64 4 6.8 5.30% 4.90% 9.10% 20.10% 60.60%
Valid 10,000 800 16 120.6 30 4 6.7 5.70% 4.70% 9.10% 20.50% 60.00%
Test 10,000 795 16 120.3 34 4 6.8 6.30% 6.30% 12.60% 23.30% 51.50%

Movies
Train 1,200,601 800 16 183.1 53 4 6.6 5.30% 4.90% 9.10% 20.10% 60.60%
Valid 20,000 800 16 184.3 35 4 7.3 6.20% 6.50% 13.00% 23.20% 51.10%
Test 20,000 795 16 184.3 32 4 7.3 6.20% 6.70% 12.80% 23.30% 51.00%
5
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will be appended. In order to reduce the noise in these datasets, data
samples with review length less than 16 or longer than 800, or the
summary length is less than 4, will be discarded. At last, each dataset is
split randomly into training, validation, and testing sets. Table 1 shows
the statistics of the datasets.

5.2. Baselines

We compare our proposed approach LGDSC with seven methods
which can be roughly categorized into two groups, including single
sentiment model (i.e., BiGRU+Attention, DARLM) and joint sentiment
and summarization model (i.e., HSSC, MAX, HSSC+copy, Max+copy,
Dual-view):

Single sentiment model only considers the input review text for
sentiment classification, which includes:

• BiGRU-Attention: This method first leverages a bi-directional GRU
layer (Cho et al., 2014) to encode the input review into a hidden
state. Then it incorporates the attention mechanism (Bahdanau,
Cho, & Bengio, 2015) with glimpse operation (Vinyals, Bengio,
& Kudlur, 2016) to aggregate information from the hidden state
to generate a vector, which will be further fed into a two-layer
feedforward neural network to predict the sentiment label.

• DARLM (Zhou, Wang, & Dong, 2018): This is the state-of-the-
art model for sentence classification. It attempts to alleviate the
attention bias problem on sentence classification. The model has
two branches of attention subnets and an example discriminator.
The two branches are jointly trained where one branch tries
its best to classify all sentences and the other is enabled for
sentences that cannot be handled well by the former. An example
discriminator is designed to select the suitable attention.

Joint sentiment and summarization model simultaneously models both
review text and summary for handling the task of sentiment classifica-
tion, which includes:

• MAX (Ma et al., 2018): This method first encodes the input review
with a bi-directional GRU layer, and the output of the encoder
will be shared by a summary decoder and a sentiment classifier.
The sentiment classifier utilizes a max pooling to aggregate the
hidden state of the encoder into a vector. At last, a two-layer feed-
forward neural network predicts the sentiment label based on the
vector.

• Max-copy: It is another strong baseline, which is a variant of
MAX (Ma et al., 2018) via expanding the MAX model with the
copy mechanism.

• HSSC (Ma et al., 2018): It explores a hierarchical end-to-end
model, which consists of a summarization layer and a sentiment
classification layer for improving both text summarization and
sentiment classification.
7
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• HSSC-copy: It is a strong baseline. This baseline is a variant of
HSSC (Ma et al., 2018), where the copy mechanism (See et al.,
2017) is incorporated into HSSC model.

• Dual-view (Chan et al., 2020): This method aims to effectively
leverage the sentiment information in the review and the sum-
mary, and proposes a novel dual-view model for jointly improving
the performance of review summarization and sentiment classi-
fication. It encourages the sentiment information in the decoder
states to be close to that in the review context representation, and
the sentiment classifiers from two distinct views can learn from
each other in order to improve the performance of the sentiment
classification.

5.3. Evaluation metrics

From Table 1, we can observe that the class distribution of the sen-
timent labels is imbalanced. Therefore, we employ the macro-averaged
F1 score (Peng et al., 2018) and the balanced accuracy (Brodersen,
Ong, Stephan, & Buhmann, 2010) as the evaluation metrics. We denote
the macro-averaged F1 score and the balanced accuracy as ‘‘M.F1’’ and
‘‘B.Acc’’, respectively.

• Macro-averaged F1 Score (M.F1): In this work, we use the macro-
averaged F1 score which evaluates averaged F1 score of all dis-
tinct sentiment labels. It gives equal weight to each label. For-
mally, the macro-averaged F1 score is defined as:

𝑀.𝐹1 = 1
𝐶

𝐶
∑

𝑐=1

2𝑃𝑐𝑅𝑐
𝑃𝑐 + 𝑅𝑐

, (40)

where 𝑃𝑐 = 𝑇𝑃 𝑐
𝑇𝑃 𝑐+𝐹𝑃 𝑐

, 𝑅𝑐 = 𝑇𝑃 𝑐
𝑇𝑃 𝑐+𝐹𝑁𝑐

and 𝑇𝑃 𝑐 , 𝐹𝑃 𝑐 , 𝐹𝑁𝑐 denote
the true-positives, false-positives, and false-negatives for the 𝑐th
label in the label set {1, 2,… , 𝐶}, respectively.

• Balanced Accuracy (B.Acc): The balanced accuracy is a variant of
the accuracy metric for imbalanced datasets, which is defined as
the macro-average of the recall obtained on each class. Formally,
the balanced accuracy is defined as:

𝐵.𝐴𝑐𝑐 = 1
𝐶

𝐶
∑

𝑐=1
𝑅𝑐 (41)

, where 𝑅𝑐 = 𝑇𝑃 𝑐
𝑇𝑃 𝑐+𝐹𝑁𝑐

and 𝑇𝑃 𝑐 , 𝐹𝑁𝑐 denote the true-positives
and false-negatives for the 𝑐th label in the label set {1, 2,… , 𝐶},
respectively.

.4. Implementation details

We train a 128-dimensional word2vec (Mikolov, Sutskever, Chen,
orrado, & Dean, 2013) on the training set of each dataset to initialize
he word embeddings of all models including the baseline models. The
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Table 2
The performance comparison of all approaches in terms of Macro-averaged F1 Score (M.F1) and Balanced Accuracy (B.Acc) on all four datasets.
The best performing approach is shown in bold. Note that we use Sports, Toys, Home, Movies to indicate the dataset Sports & Outdoors, Toys
& Games, Home & Kitchen, and Movies & TV, respectively.

Method Sports Toys Home Movies

M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc

BiGRU-Attention 54.21 53.03 53.54 52.82 59.32 58.03 61.14 59.80
DARLM 49.60 47.95 50.58 48.67 54.49 53.43 57.75 53.96

Max 53.27 52.64 55.02 53.64 58.31 57.36 60.66 59.34
Max-copy 53.95 52.53 53.52 52.01 58.85 58.05 60.60 59.25
HSSC 53.49 51.99 54.24 53.66 58.51 57.42 60.67 59.23
HSSC-copy 53.14 52.63 54.38 53.32 58.78 58.02 60.68 59.32
Dual-view 56.31 54.28 55.70 54.06 60.73 59.63 62.00 60.52

LGDSC 57.51** 56.17** 58.02** 58.42** 61.26** 60.63** 62.26* 60.85**

*Indicates statistical significance at 𝑝-value < 0.05 using the paired t-test with regard to the strongest baseline Dual-view.
**Indicates statistical significance at 𝑝-value < 0.01 using the paired t-test with regard to the strongest baseline Dual-view.
ocabulary is defined as the 50,000 words that appear most frequently
n the training set. In the experiment, 𝑑𝑒 is set to 128, 𝑑𝑢 is set to 512, 𝛿

is set to 0.5, 𝛽𝑔 , 𝛽𝑠, 𝛽𝑡 and 𝛽𝑐 are set to 0.8, 0.2, 0.2 and 0.2, respectively.
We use the Adam optimization algorithm (Kingma & Ba, 2014) with an
initial learning rate of 0.001 and a batch size of 32. If the validation
set loss stops decreasing, the learning rate will be reduced by half. In
the testing phase, we use the sentiment labels predicted by the source-
view classifier as the final classification prediction. The reason is that
the decoder has the problem of exposure bias during the test (Ranzato,
Chopra, Auli, & Zaremba, 2015), which affects the performance of the
summary-view classifier during classification.

5.5. Overall performance

To demonstrate the overall performance of our approach LGDSC,
we compare it with seven strong baselines. The overall performance in
terms of both M.F1 and B.Acc on four datasets is shown in Table 2.
From Table 2, we can observe that among the two single sentiment
models, BiGRU-Attention achieves a better performance than DARLM.
This may be because DARLM is mainly designed to address the sentence
classification, and it would be not effective to deal with the review texts
which usually are comprised of multiple sentences. Comparing with the
single sentiment model (e.g., BiGRU-Attention and DARLM), these joint
sentiment and summarization models usually demonstrate a superior
performance. The best performing baseline method is Dual-view which
significantly outperforms all baselines in terms of both M.F1 and B.Acc.

Our approach LGDSC outperforms all baseline methods on all four
datasets in terms of both metrics. More precisely, the relative per-
formance improvement of LGDSC over the best performing baseline
(i.e., Dual-view) are 2.13% (3.48%) on Sports, 4.17% (8.07%) on Toys,
0.87% (1.68%) on Home and 0.42% (0.55%) on Movies in terms of the
metric M.F1 (B.Acc). We have conducted significant tests based on t-
test, and the results suggest that LGDSC has a significant improvement
over the best performing baseline. The result shows the effectiveness of
incorporating the matching clues between text words and class labels
into the learning process of text representation as it can force the
model to attend to the most salient texts with respect to the class label.
Moreover, it also demonstrates the effectiveness of the generated label
description by introducing a novel discrimination capabilities based
word importance measurements, i.e., Inverse Label Entropy (ILE) based
word importance score.

5.6. Ablation study

In this section, we perform ablation study to analyze the role of each
component in our model LGDSC. In particular, we have the following
8

variants:
• -SA: Instead of utilizing the dual-channel label-guided attention
network (DLAN), we leverage a single-channel label-guided at-
tention network by removing the self-attention channel from the
dual-channel label-guided attention network. Note that removing
the self-attention channel will affect the representation learning
from both source-view and summary-view since our approach
LGDSC learns a dual-view representations by applying the dual-
channel label-guided attention network on both source-view and
summary-view.

• -LGA: Similar to ‘‘-SA’’, we employ a single-channel label-guided
attention network by removing the label-guided attention channel
from the dual-channel label-guided attention network. Note that
removing the label-guided attention channel will affect the rep-
resentation learning from both source-view and summary-view as
well.

• -DLAN: We modify the representation learning of both the source-
view and the summary-view at the same time by replacing the
dual-channel label-guided attention network with a simple atten-
tion mechanism.

• -DLANSource: We update the source-view representation learn-
ing by replacing the dual-channel label-guided attention network
with the attention mechanism with the glimpse operation (Vinyals
et al., 2016).

• -DLANSummary: We revise the summary-view representation
learning by replacing the dual-channel label-guided attention net-
work with the attention mechanism with the glimpse operation.

• -Full: This is our propose approach LGDSC, which learns a dual-
view representation by applying the dual-channel label-guided
attention network on both source-view (input review text) and
summary-view.

The results of the ablation study for all datasets are shown in
Table 3. First, we observe that removing one channel, e.g., ‘‘-SA’’ or
‘‘-LGA’’, results in a significant performance degradation on all datasets
in terms of both M.F1 and B.Acc. For example, removing the SA
channel will cause a degradation of 1.12% and 2.62% on the Toys
dataset in terms of M.F1 and B.Acc, respectively. Similar trends can be
observed on other three datasets. Second, removing the Label-guided
Attention (LGA) channel mostly cause a higher performance degrada-
tion as compared with removing the SA channel. For example, on the
Toys dataset, removing the Label-guided Attention (LGA) channel will
lead to a performance degradation of 2.20% and 4.71% in terms of
M.F1 and B.Acc, respectively. Third, removing the dual-channel label-
guided attention network from both views (i.e., -DLAN) or one of the
two views (i.e., -DLANSource and -DLANSummary) will result in a
considerable performance degradation as compared to the proposed
model (i.e., Full). For example, on the Toys dataset, ‘‘-DLANSource’’
is inferior than ‘‘Full’’ with a performance degradation of 3.18% and
6.49% in terms of M.F1 and B.Acc, respectively. Similar results can

also be observed for the variant ‘‘-DLANSummary’’. In addition, the
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Table 3
Results of ablation study on four datasets (i.e., Sports, Movies, Home and Toys).
Method Sports Toys Home Movies

M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc

-SA 57.19 55.26 57.38 56.93 60.31 59.58 61.89 60.56
-LGA 57.18 55.57 56.77 55.79 58.80 59.64 61.95 60.29
-DLAN 57.09 55.52 55.74 56.61 60.57 59.32 61.95 60.50
-DLANSource 57.20 55.75 56.83 55.99 61.23 60.25 61.88 60.62
-DLANSummary 57.36 55.56 56.23 54.86 60.63 59.94 62.11 60.38

Full 57.51 56.17 58.02 58.42 61.26 60.63 62.26 60.85
Fig. 4. The performance of LGDSC on four datasets with different number of words 𝐾 which is selected as the description of a sentiment label.
performance of ‘‘-DLAN’’ is inferior to that of both ‘‘-DLANSource’’ and
‘‘-DLANSummary’’, which shows that the dual-channel label-guided at-
tention network plays an important role in the representation learning
of both the source-view and the summary-view.

5.7. Model sensitivity

In this section, we study the sensitivity of the proposed approach
LGDSC to the parameter 𝐾, and also explore the performance of LGDSC

ith respect to different proportion of training data.
Parameter 𝐾. We first look into the parameter 𝐾, which is the
9

number of words selected for generating the description of sentiment
labels. Fig. 4 shows the performance of LGDSC on four datasets with the
𝐾 value varying as {10, 30, 50, 70, 90}. From the figure, we can observe
that the value for 𝐾 affects the performance of LGDSC in both M.F1
and B.Acc. On the Sports dataset, the performance of LGDSC first keeps
rising and achieves the highest M.F1 and B.Acc when 𝐾 equals to
70. After that, it starts to drop quickly. The performance of LGDSC
on the Toys and Movies datasets shares a similar trend as that on
the Sports dataset. For the Home dataset, both the M.F1 and B.Acc
increase quickly and reach the peak when 𝐾 equals to 30, and then
start to decline. The changing trend is reasonable as some important
words would be overlooked when 𝐾 is small, the performance keeps
raising when more useful words are selected as the indicator of the
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Fig. 5. Impact of 𝛽𝑔 , 𝛽𝑠, 𝛽𝑡 and 𝛽𝑐 to the performance of the proposed model LGDSC on the two datasets (i.e., Sports and Toys).
abel. However, when 𝐾 is too large, more noisy words would be
ntroduced which will inevitably affect the performance of the proposed
ethod. The results verify that the proposed strategy of generating

abel description is effective as it can select semantically relevant words
s the description of a label, as well as maintain a high discriminative
apability among different labels.
Parameter 𝛽𝑔 , 𝛽𝑠, 𝛽𝑡 and 𝛽𝑐 . We analyze the impact of the four

yper-parameters 𝛽𝑔 , 𝛽𝑠, 𝛽𝑡 and 𝛽𝑐 to our proposed model, where 𝛽𝑔 ,
𝑠, 𝛽𝑡, 𝛽𝑐 weight the summarization loss, the source-view sentiment
lassification loss, the summary-view sentiment classification loss and
he inconsistent loss in the objective function, respectively. To study
he influence of the individual parameter on the classification results,
e vary the target parameter from 0 to 1.0 with a step size 0.1, while
eeping the other three parameters fixed. Fig. 5 shows the performance
f the proposed model on the Sports and Toys datasets with respect
o the metrics M.F1 and B.Acc. On both datasets, the performance
f LGDSC continues to raise when we increase 𝛽𝑔 and reaches the
eak when 𝛽𝑔 = 0.8. If we further increase 𝛽𝑔 , it starts to decrease.
his indicates that the summarization quality plays a substantial role

n the proposed model. For the weight of the source-view sentiment
lassification loss 𝛽𝑠, we can see that on both datasets the performance
f LGDSC rises quickly with the increase of 𝛽𝑠 and reaches the peak
hen 𝛽𝑠 = 0.2. After that, it starts to drop gradually. Similar trends are
bserved for 𝛽𝑡 and 𝛽𝑐 .
Impact of the Size of Training Data. To evaluate the performance

f LGDSC, we compare it with two state-of-the-art baseline approaches,
.e., HSSC (Ma et al., 2018) and Dual-view (Chan et al., 2020), with re-
pect to different proportion of training data {20%, 40%, 60%, 80%, 100%}.

From Fig. 6, we can observe that with the growth of training data, the
performance of all approaches raises gradually in terms of both M.F1
and B.Acc. Moreover, our proposed approach LGDSC consistently out-
performs the two most competitive baselines at all different proportions
of training data.

5.8. Comparison of different generation strategies of label description

In this section, we compare our proposed model LGDSC, i.e.,
LGDSC(TFIDF-ILE), with six different generation strategies of label
description. LGDSC(TF) is a variant which only leverages the Term-
Frequency (TF) as the measurement to select the top-𝐾 words for
10
describing sentiment labels. LGDSC(TF-ILF) and LGDSC(TF-ILE) further
incorporate the discrimination capability, i.e., Inverse Label Frequency
(ILF) and Inverse Label Entropy (ILE), into the LGDSC(TF) model,
respectively. Similarly, LGDSC(TFIDF) is the variant which utilizes the
TFIDF (Ramos et al., 2003) as the measurement to select the top-
𝐾 words. And LGDSC(TFIDF-ILF) and LGDSC(TFIDF-ILE) are the two
variants of introducing ILF and ILE into the LGDSC(TFIDF) model,
respectively.

As shown in Table 4, we can observe that: (1) Considering the
TF based variants, incorporating the discrimination capability, such
as ILF and ILE, usually improve the performance effectively. For ex-
ample, both LGDSC(TF-ILF) and LGDSC(TF-ILE) have demonstrated
superior performance to LGDSC(TF); (2) The TFIDF based variants
usually show a better performance when comparing with their cor-
responding TF based variants; (3) The ILE based variants, such as
LGDSC(TF-ILE) and LGDSC(TFIDF-ILE), demonstrate superior perfor-
mance to their corresponding variants; (4) Our proposed model LGDSC,
i.e., LGDSC(TFIDF-ILE), consistently outperforms all other variants.

5.9. Case study

In Table 5, we present a randomly sampled example to illustrate the
attention distribution of words generated by our LGDSC and two most
competitive baselines, i.e., HSSC (Ma et al., 2018) and Dual-view (Chan
et al., 2020), which demonstrates how the rationale behind of proposed
approach. We use the red color of the background to indicate the
attention scores of words. The darker the color of a word, the higher
attention score of that word. From Table 5, we can see that HSSC
pays more attentions to words, such as ‘‘9’’, ‘‘old’’, ‘‘one’’, and ‘‘big’’,
which are less important for identifying the sentiment of the review.
Dual-view performs better than HSSC as it pays attentions to words,
e.g., ‘‘fun’’ and ‘‘loves’’, which carry useful signals for capturing the
sentiment of the review. However, Dual-view casts attentions to some
less sentiment relevant words, such as ‘‘tennis ball’’ and ‘‘geode’’, while
attentions paid to ‘‘fun’’ and ‘‘loves’’ are relatively small. Moreover,
some important words, like ‘‘surprise’’, are even overlooks. In contrast,
in our approach LGDSC, these important words, such as ‘‘properly’’,
‘‘surprise’’, and ‘‘fun’’, are assigned with larger attention weights. Mean-
while, less important words are assigned with relatively very small
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Fig. 6. The performance of LGDSC with respect to different proportion of training data (20%, 40%, 60%, 80%, 100%).
Table 4
Comparison of different generation strategies of label description. The best results are in bold. Note that we use Sports, Toys, Home, Movies
to indicate the dataset Sports & Outdoors, Toys & Games, Home & Kitchen, and Movies & TV, respectively.
Method Sports Toys Home Movies

M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc M.F1 B.Acc

LGDSC (TF) 56.71 55.13 57.42 56.43 60.62 59.25 61.56 59.87
LGDSC (TF-ILF) 57.08 55.27 57.63 56.30 60.66 59.49 62.02 60.40
LGDSC (TF-ILE) 57.25 55.45 57.77 56.72 60.78 59.85 62.05 60.57

LGDSC (TF-IDF) 57.14 56.14 57.99 56.85 61.03 60.33 61.89 60.56
LGDSC (TFIDF-ILF) 57.36 55.67 57.73 57.98 60.43 60.10 62.10 60.77
LGDSC (TFIDF-ILE) 57.51 56.17 58.02 58.42 61.26 60.63 62.26 60.85
attention weights. Through this comparison, we can observe that our
proposed approach can make the attention mechanism more effective
as compared with state-of-the-art baseline methods, and has a better
capacity to capture the sentiment characteristics within a review text.

5.10. Discussion

In this subsection, we discuss where the proposed approach suc-
ceeds and where it fails. As mentioned before, a major deficiency of
existing methods is that they heavily rely on the availability of label
content, and become impracticable when label content is unavailable.
The proposed approach aims at automatically generating informative
11

label descriptions by developing a novel inverse label entropy based
word importance measurement. It is applicable in scenarios where label
content is unavailable, and achieves the state-of-the-art performance.

Despite the successes the proposed approach in the task of senti-
ment analysis, it still suffers from several limitations. First, the label
description is generated with a pre-extraction strategy, i.e., we esti-
mate the word importance by the inverse label entropy based word
importance measurement. It is better to design an adaptive way to
generate effective label description and train the model in an end-to-
end way. Second, the proposed approach employs a summary decoder
to generate a summary and introduces a summarization loss to guide
the summary-view representation learning process. It will becomes
impracticable when the corresponding summary information of each
input text is unavailable.



Expert Systems With Applications 213 (2023) 119194X. Zhu et al.

D

D

c
i

D

A

t
a
s
o

Table 5
Attention distribution of words generated by our LGDSC and two most competitive baselines, i.e., HSSC (Ma et al., 2018) and Dual-view (Chan et al., 2020).
The darker the color of a word, the higher attention score of that word.
Model Review Predict label True label

HSSC it is just as it states one tennis ball sized geode ... it was fairly easy to bust

open with a hammer and did so properly , 2 halves ... my 9 yr old son loves

gems , rocks , etc and this was fun for him to crack open and see the surprise

inside ... i opted for this one over others that had several small ones since

the real fun i think ends after the first one ... so go big

3 5

Dual-view it is just as it states one tennis ball sized geode ... it was fairly easy to bust

open with a hammer and did so properly , 2 halves ... my 9 yr old son loves

gems , rocks , etc and this was fun for him to crack open and see the surprise

inside ... i opted for this one over others that had several small ones since the

real fun i think ends after the first one ... so go big

4 5

LGDSC it is just as it states one tennis ball sized geode ... it was fairly easy to bust

open with a hammer and did so properly , 2 halves ... my 9 yr old son loves

gems , rocks , etc and this was fun for him to crack open and see the surprise

inside ... i opted for this one over others that had several small ones since the real

fun i think ends after the first one ... so go big

5 5
G
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6. Conclusion

In this paper, we propose a novel label-guided dual-view sentiment
classifier LGDSC. Our model generates effective label description by
introducing a well-designed measurement, i.e., inverse label entropy
based word importance measurement. Moreover, we design a novel
DLAN module to learn text representation via two different channels.
The DLAN will further serve for learning label-guided text representa-
tions from two different views, i.e., the source view and the summary
view. At last, on top of each learnt representation, a two-layer feed-
forward neural network will be utilized to predict the sentiment label.
We evaluate the performance of our propose model on four widely
used public datasets, and compare it with seven competitive baseline
methods. Experimental results show that our model is consistently
superior to all baseline methods in terms of both M.F1 and B.Acc.
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