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Session-based recommendation is a challenging task, which aims at making recommenda-
tion for anonymous users based on in-session data, i.e. short-term interaction data. Most
session-based recommendation methods only model user’s preferences with the current
session sequence, which ignore rich information from a global perspective. Meanwhile,
previous works usually apply GNN to capture the transformation relationship between
items, however the graph used in GNN is built through a static mode, which may introduce
noise to the graph structure if user’s preferences shift. In this paper, we propose a novel
method called Dynamic Global Structure Enhanced Multi-channel Graph Neural Network
(DGS-MGNN) to learn accurate representations of items from multiple perspectives. In
DGS-MGNN, we propose a novel GNN model named Multi-channel Graph Neural
Network to generate the local, global and consensus graphs dynamically and learn more
informative representations of items based on the corresponding graph. Meanwhile, in
order to reduce the noise information within sessions, we utilize the graph structure to
assist the attention mechanism to filter noisy information within each session, so as to gen-
erate an accurate intention representation for the user. Finally, combined with a repeat and
explore module, a more accurate prediction probability distribution is generated. We con-
duct extensive experiments on three widely used datasets, and the results demonstrate
that DGS-MGNN is consistently superior to the state-of-the-art baseline models.

� 2022 Published by Elsevier Inc.
1. Introduction

Session-based recommendation (SBR) aims at predicting user’s preferences for recommending future items based on
anonymous behavior sequences, and plays a critical role in streaming media platforms or e-commerce platforms such as Tik-
tok, YouTube and Taobao. Within a session, it usually only has short-term historical interactions of a user (e g. users that are
new or not logged in), and conventional recommendation algorithms (e.g., Collaborative Filtering [21,7,3] or Markov Chains
(C. Li),
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[20,23]) which heavily rely on user’s long-term history interactions or user profiles would perform poorly when applied on
in-session data.

In recent years, some research efforts [8,11,13] attempt to leverage Recurrent Neural Networks (RNNs) and attention
mechanism [36] for the task of SBR and achieve encouraging results. For example, GRU4REC [8] addresses the task of SBR
by utilizing a recurrent neural network to exploit the temporal shift of user behavior. NARM [11] further incorporates the
attention mechanism [36] to model the sequential behavior of users, which captures both user’s sequential behavior and
her main interest in the current session. STAMP [13] utilizes a simple multilayer perception and an attentive network to
model user’s general interests from the long-term memory of a session and her current interests from the short-term mem-
ory of the last-click. Since these works mainly focus on modeling sequential transitions between consecutive items, the com-
plex transitions between distant items in the session are largely ignored. To deal with this issue, graph neural networks
(GNNs) based methods [33,37] are proposed to model the complex transition relationships. SR-GNN [33] first constructs ses-
sion graph using items in historical session sequences, and then applies the gated graph neural network (GGNN) [12] to
model the complex transitions among distant items. TAGNN [37] extends SR-GNN by proposing a target attentive network,
which can explore the relevance of historical actions given a target item, to adaptively activate users’ diverse interests in
sessions. DSAN [38] introduces a dual sparse attention network which applies an adaptively sparse transformation function
to alleviate the effect of noise items.

These studies mentioned above model user preference only based on the current session while useful item-transition pat-
terns from other sessions are overlooked, i.e., collaborative information within neighborhood sessions that have been gen-
erated by other users. Very recently, there are few research efforts [29,32] have been devoted to model neighborhood
sessions to improve the representation of the current session. CSRM [29] consists of two parallel modules, i.e., Inner Memory
Encoder (IME) and Outer Memory Encoder (OME). The former leverages RNNs to model the current session, while the latter
exploits neighborhood sessions to better capture the intent of the current session. CSRMmodels sessions based on a session-
level granularity and extracts collaborative information via similarities between the latest m sessions and the current ses-
sion, which may deteriorate the performance by involving irrelevant information of other sessions [31]. GCE-GNN [32]
employs a more fine-grained manner which exploits the item transitions from other sessions to learn representations of
items. Specifically, GCE-GNN models the user preference of the current session by exploiting both session-level and
global-level pairwise item transitions.

Although the above research efforts have achieved encouraging performance by modeling item transition patterns, they
still face some limitations: (1) the item transition information usually contain noisy information caused by users’ accidental
or wrong clicks, which may be injected into the model information propagation process and inevitably lead to inferior pref-
erence representation learning; (2) some previous efforts aim to explore neighborhood sessions for enhancing the represen-
tation of the current session, the consensus signals between both the local session graph and the global session graph is not
well maintained; (3) the position information of items within a session is mostly modeled in an absolute manner, which may
not be suitable for the task of SBR.

To address the above issues, we propose a novel model named Dynamic Global Structure Enhanced Multi-channel Graph
Neural Network (DGS-MGNN). The main idea of our solution is to leverage the item similarity patterns rather than the item
transition patterns to capture high-quality relationships between items, where negative impact caused by users’ accidental
or wrong clicks will be largely alleviated. In addition, three kinds of graphs (i.e., session graph, global graph, and consensus
graph) are constructed in a dynamic manner in order to effectively capture item representation from different perspectives,
where the consensus graph is incorporated to maintain consensus between both the session graph and the global graph. At
last, we enhance the position embedding of each item within a session by integrating the session length information as well
as capturing the inherent topological position structure of the session. DGS-MGNN mainly consists of four modules, includ-
ing Dynamic Global Structure Enhanced Multi-Channel GNN, Graph Position Encoder (GPE), Repeat Module, and Explore
Module. The first module is comprised of two sub-modules, i.e., Dynamic Global Neighbor Attention (DGNA) and Multi-
Channel Graph Neural Network (MC-GNN). DGNA is proposed to learn a global representation of each item in the current
session from a global perspective, i.e., capturing neighboring items from the entire item space which consists of items from
all sessions. And MC-GNN is designed to fuse information from different perspectives, i.e., local representation, global rep-
resentation, and consensus representation. Note that the three types of representations will be dynamically updated by a
multi-layer MC-GNN. As conventional absolute position embedding methods [15,9] overlook the personalized position rela-
tionship within a session, it would lead to inferior performance. To address this issue, we further propose the module Graph
Position Encoder (GPE) to generate a graph position embedding for each item in the current session by capturing both the
session length information and the inherent topological position structure of the current session. The Repeat Module
attempts to generate the probability distribution of items that appear in the current session based on representations from
three perspectives (i.e., local, global and consensus) together with the graph position embedding information. The Explore
Module consists of two sub-modules, i.e., Graph-Enhanced Attention Network (GEA) and Explore Prediction. As conventional
attention mechanism would assign attention weights to the accidental or wrong clicks of users, and bring noise to the rep-
resentation of session. To alleviate this problem, GEA is designed to filter out noisy items within a session and obtain the
long-term structure representation of the current session. Explore Prediction first utilizes the Bi-GRU to get the sequential
representation of the current session. Then it combines both the long-term structure representation and the sequential rep-
resentation to generate the probability distribution of items that didn’t appear in the current session. Finally, we employ the
325
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gate mechanism to integrate the probability distribution of candidate items generated by Repeat Module and Explore Mod-
ule in order to generate the final predict probability distribution.

We conduct extensive experiments on three widely used datasets (i.e., Diginetica, Yoochoose, and Retailrocket) and the
results show that our method significantly outperforms other state-of-the-art baseline methods in terms of both P@20 and
MRR@20. We conduct further experiments to analyze each component of DGS-MGNN in depth so as to explore how each
component affects the performance of session-based recommendation. At last, we also conduct experiments to investigate
the computational complexity of our method. We summarize the main contributions as follows.

� We propose a novel Dynamic Global Structure Enhanced Multi-Channel Graph Neural Network (DGS-MGNN) which
dynamically models information from three different perspectives, including the global representation, the local repre-
sentation, and the consensus representation.
� We develop a novel position embedding method, i.e., the Graph Position Encoder (GPE), by further capturing the session
length information as well as the inherent topological position structure within a session.
� We design the Graph-Enhanced Attention Network (GEA) to filter out noisy items within a session and obtain the long-
term structure representation of the current session.
� We conduct extensive experiments on three widely used datasets, and the results demonstrate that our proposed
approach DGS-MGNN is consistently superior to the state-of-the-art baseline methods.

The rest of the paper is organized as follows. Section 2 gives a brief description of the related work. We introduce our
proposed approach DGS-MGNN in Section 3, and discuss the experimental results in Section 4. In Section 5, we conclude
the paper.
2. Related work

We review the related work of session-based recommendation from three aspects: Traditional recommendation methods,
RNN and attention based methods, and GNN-based methods.

Traditional recommendation methods. Traditional methods based on Collaborative Filtering (CF) [21,7,3] are widely
used in recommendation. Since CF mainly applies matrix factorization on the user-item interaction matrix to obtain general
preferences of users, it is unable to effectively capture the user’s interest shift. Some works also investigate the chain-based
[20,23] models to explore the sequential transaction data for the task of SBR. FPMC [20] extends matrix factorization by
incorporating a first-order Markov chain to model both sequential behavior and long-term user preference. One major lim-
itation of FPMC is that it linearly combines all components which indicates that it makes a strong independent assumption
(i.e., each component affects user’s next interaction independently) among multiple factors [30]. To deal with this issue,
Wang et al. [30] propose a hierarchical representation model (HRM), which combines user’s representation and user’s behav-
ior sequence information hierarchically to improve recommendation performance.

RNN and Attention basedmethods. In recent years, neural network based methods have achieved encouraging results in
SBR. Hidasi et al. [8] first propose to apply a RNN-based model GRU4REC to the session-based recommendation setting by
taking temporal shift of user behavior into consideration [26]. NARM [11] extends GRU4REC by combining GRU and atten-
tion mechanism [36] to model the sequential behavior of users. It leverages a hybrid encoder to model a user’s sequential
behavior and her main interest in the current session. Similar to NARM, STAMP [13] attempts to address the user interests
drift issue by capturing both a user’s general interests from the long-termmemory of a session and her current interests from
the short-term memory of the last-click.

Inspired by the great success of Transformer [27,5], SASRec [9] proposes to build a self-attention based sequential recom-
mendation model, which tends to model long-range dependencies on dense data and focus on more recent actions on sparse
data. Chen et al. [2] utilize a co-attention network to model interactions between actions in a user’s long-term and short-
term interaction histories and generate co-dependent representations of their long-term and short-term interests. Pan
et al. [16] explore a user’s long-term and his current interest to make recommendations. To accurately capture a user’s
long-term preference, they propose an important extraction module (IEM) to extract the importance of each item in the cur-
rent session based on a modified self-attention mechanism. Ren et al. [19] propose a novel encoder-decoder framework
RepeatNet which incorporates a repeat-explore mechanism in a regular neural recommendation approach. Yuan et al.
[38] propose a dual sparse attention network for the task of SBR, which leverages a self-attention network and a vanilla
attention network to generate the target item embedding and the entire session representation respectively. Wang et al.
[29] propose a collaborative session-based recommendation machine, named CSRM, by exploring neighborhood informa-
tion. It consists of two components, i.e., an Inner Memory Encoder (IME) and an Outer Memory Encoder (OME), where
the former captures a user’s own information in the current session and the latter models collaborative information from
neighborhood sessions. A fusion gating mechanism is leveraged to combine the representations produced by IME and
OME. Luo et al. [14] learn the session representation by designing a collaborative self-attention network (CoSAN). They inject
the collaborative information in neighborhood sessions into the representation of the item in the current session, and obtain
a dynamic item representation. RCNN-SR [39] combines GRU and attention mechanism to learn the user’s general interest,
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meanwhile it exploits convolutional operation with horizontal filter and vertical filter to search for user’s current interest
and dynamic interest.

Graph neural network based methods. Very recently, a series of graph neural network (GNN) based models have been
used for SBR, which can effectively capture the complex transitional patterns within sessions. For instance, Wu et al. [33]
propose SR-GNN, which applies the gated graph neural network (GGNN) [12] to model the complex transitions among dis-
tant items. Inspired by SR-GNN, a number of variants [35,17,15,37,32] have been proposed. Xu et al. [35] propose graph con-
textual self-attention model based on graph neural network (GC-SAN). GC-SAN strengthens self-attention network with
graph neural network (GNN), which can well capture the complementary strengths of GNN and self-attention. FGNN [17]
considers the order relationship between items and casts the recommendation task as a graph classification task.
SGNN–HN [15] constructs a star graph to enrich the connection between items and incorporates the highway networks
[25] to alleviate the over smoothing problem that caused by deep GNN. Yu et al. [37] propose TAGNN which jointly models
user interests given a certain target item as well as complex item transitions in sessions to make recommendation. CIAM [4]
exploits different types of graph (i.e., local graph and global graph) and combine superposition and a weighted graph con-
volutional network to obtain users’ general and temporal interests. It relies on utilizing many common features, such as cat-
egory features, as auxiliary information. GCE-GNN [32] exploits the pairwise item-transition information from two levels of
graph models, i.e., session graph and global graph. It employs a GNN model on session graph to learn session-level item
embeddings within the current session and leverages a session-aware attention mechanism on global graph to learn
global-level item embeddings over all sessions. COTREC [34] exploits the session-based graph to augment two views on both
the internal and external connectivities of sessions, and combines self-supervised learning with co-training based on graph
neural network to enhance session-based recommendation.

Our work differs with the above state-of-the-art approaches in threefold. First, only few efforts have been devoted to han-
dle the noise issue in the graph structure caused by accidental or wrong clicks of users, and it is the research gap we attempt
to bridge in this work. Specifically, our proposed method alleviates the influence of noise items by exploiting the structure of
session graph to identify noise items within the session and then adjusting the attention mechanism to eliminate the influ-
ence of them. Second, we propose a novel multi-channel graph neural network (MC-GNN) to capture rich information from
different perspectives, i.e., global, local, and consensus perspectives. Third, we introduce a novel position embedding meth-
ods by integrating the session length information as well as the inherent topological position structure information.

3. Approach

In this section, we first define the session-based recommendation task, and then introduce our proposedmethod Dynamic
Global Structure Enhanced Multi-Channel Graph Neural Network (DGS-MGNN) in detail. The DGS-MGNN framework is
demonstrated in Fig. 1, and it mainly consists of four modules, i.e., Dynamic Global Structure Enhanced Multi-Channel GNN,
Graph Position Encoder, Repeat Module, and Explore Module.

3.1. Problem definition

Let V ¼ v1;v2; � � � ;v jV j
� �

denote the unique items appearing in all sessions, where jV j is the number of all unique items.
Denote H ¼ h1;h2; � � � ;hjV j

� �
as the corresponding embeddings for all items in V, where hj j 2 1; � � � ; jV jf gð Þ is the embedding

of the j-th item v j. Each session (i.e, items clicked by an anonymous user) can be represented as S ¼ v s
1;v s

2; � � � ;vs
n

� �
, which is

an item sequence in chronological order, where v s
i denotes the i-th item clicked by the corresponding user of the session S

and n is the length of the session S. Let Hs ¼ hs
1;h

s
2; � � � ;hs

n

� �
denote the corresponding embedding of the session S, the goal of

session-based recommendation is to recommend the next item that a user is most likely to click based on the current
session.

3.2. Dynamic global structure-enhanced multi-channel GNN

In this subsection, we aim to learn a powerful representation for each item in the session S by proposing a Dynamic Global
Structure Enhanced Multi-Channel GNN module. It consists of two sub-modules, named Dynamic Global Neighbor Attention
(DGNA) and Multi-Channel Graph Neural Network (MC-GNN), which are designed to enhance the representation of items from
different perspectives.

Dynamic Global Neighbor Attention (DGNA). DGNA aims at dynamically learning a global representation of each item v s
i

in the current session S from a global perspective. To this end, we first obtain the K nearest neighborsNi ¼ ni
1;n

i
2; � � � ;ni

K

� �
of

vs
i from V based on a distance metric function (e.g., Euclidean Distance, Cosine Similarity,Pearson Correlation, etc). In particular,

for an item v s
i in S, we calculate its cosine similarity ri;j with each item v j in V as follows:
ri;j ¼ hs
i
T � hj

jjhs
i jj jjhjjj

; ð1Þ
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Fig. 1. Overall framework of DGS-MGNN (A) and model sub-components of DGS-MGNN (B–D).
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where hs
i 2 Rd;hj 2 Rd are the corresponding embeddings for v s

i 2 S and v j 2 V , respectively. Then we take the Kmost similar

items to v s
i as Ni. It is worth noting that we discard neighbors in Ni which are uncorrelated or negatively correlated (i.e.,

ri;j 6 0) to v s
i .

Denote the corresponding embedding of Ni as Ci ¼ ci1; c
i
2; � � � ; ciK

� �
, where cij 2 Rd. Note that Ci is a subset of

H ¼ h1;h2; � � � ;hjV j
� �

, and it corresponds to the embeddings of the K most similar items to the node v s
i . We utilize the Atten-

tion Pooling [18] to aggregate the global neighbors of v s
i , and obtain its global representation gs

i as follows:
gs
i ¼

XK
j¼1

ai
jc

i
j; ð2Þ

ai
j ¼

exp wT
a cij;h

s
i

h i� �
XK
j¼1

exp wT
a cij;h

s
i

h i� � ; ð3Þ
where wa 2 R2d is learnable parameter, [;] is the concatenate operation. Thus, we obtain the global representation
Gs ¼ gs

1;g
s
2; � � � ;gs

n

� �
for the session S. The architecture of DGNA is shown in Fig. 1(B).

Multi-channel Graph Neural Network (MC-GNN). The goal of MC-GNN is to fuse information from different perspec-
tives, including the global representation Gs, the local representation Hs, as well as the consensus representation Ms which
will be discussed in the following. It is worth noting that all three kinds of representations are dynamically updated in our
model. The architecture of MC-GNN is demonstrated in Fig. 1(C).

For each session S ¼ v s
1;v s

2; � � � ;v s
n

� �
, we construct a session graph Gs ¼ Vs;Esð Þ, where Vs denotes all items in S and

ei;j 2 Es denotes the edge of item-pair (vs
i ;v s

j ) in S. First, we apply Cosine Similarity to calculate the connection strength for
item-pairs within the session S. Specifically, the connection strength (si;j) of an item-pair (v s

i ;v s
j ) is defined as follows:
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si;j ¼
hs
i
T � hs

j

jjhs
i jj jjhs

j jj
; ð4Þ
where hs
i ;h

s
j 2 Rd. Then, we apply softmax to normalize the connection strength si;j to get the edge weight:
ei;j ¼

0 if : si;j 6 0;
exp si;jð ÞXn

j¼1
exp si;jð Þ

if : si;j > 0:

8>>><
>>>: ð5Þ
It is worth noting that we set the edge weight between hs
i and hs

j to 0 (ei;j ¼ 0) if hs
i and hs

j are semantically uncorrelated or
negatively correlated (si;j 6 0). This is used to prevent the negative semantic shift of item representation learning during the
graph propagation. For simplicity, we define the whole process on building a session graph (BSG) above as:
AL ¼ BSG Hsð Þ; ð6Þ

where AL is the session graph that is generated by the local representation Hs ¼ hs

1;h
s
2; � � � ;hs

n

� �
.

After that, we utilize the Graph Convolution Network (GCN) [10] on the session graph to enrich the representation of
items. Inspired by the Light-GCN [6], we remove the feature transformation and nonlinear activation in the conventional
GCN. Meanwhile, we also introduce the highway networks [25] to alleviate the problem of over-smoothing caused by the
GCN with deep layers. The graph propagation process of the l-th layer is defined as follows:
ehs; lð Þ
i ¼ gi � hs; lð Þ

i þ 1� gið Þ � hs; 0ð Þ
i ; ð7Þ

hs; lð Þ
i ¼ AL; l�1ð Þ

i
ehs; l�1ð Þ
1 ; ehs; l�1ð Þ

2 ; � � � ; ehs; l�1ð Þ
n

� �
; ð8Þ

gi ¼ r wT
g hs; lð Þ

i ;hs; 0ð Þ
i

h i� �
; ð9Þ
where wg 2 R2d is a trainable parameter, r is the sigmoid function, and AL; l�1ð Þ
i denotes the i-th row of AL; l�1ð Þ. We define the

above graph propagation of the l-th layer as the Highway Graph Convolutional Networks (HWGCN):
eH lð Þ
s ¼ HWGCN AL; l�1ð Þ

; eH l�1ð Þ
s

� �
; ð10Þ

AL; l�1ð Þ ¼ BSG eH l�1ð Þ
s

� �
; ð11Þ
where eH lð Þ
s ¼ ehs; lð Þ

1 ; ehs; lð Þ
2 ; � � � ; ehs; lð Þ

n

� �
is the session representation Hs that after the l-th layer of HWGCN.

Similarly, for each session S ¼ v s
1;v s

2; � � � ;v s
n

� �
, we construct a global graph (AG; l�1ð Þ) which captures the global relationship

between items:
eG lð Þ
s ¼ HWGCN AG; l�1ð Þ

; eG l�1ð Þ
s

� �
; ð12Þ

AG; l�1ð Þ ¼ BSG eG l�1ð Þ
s

� �
: ð13Þ
After the l-th layer HWGCN, we can get session representations eH lð Þ
s ¼ ehs; lð Þ

1 ; ehs; lð Þ
2 ; � � � ; ehs; lð Þ

n

� �
and

eG lð Þ
s ¼ egs; lð Þ

1 ; egs; lð Þ
2 ; � � � ; egs; lð Þ

n

� �
from the local and global perspectives, respectively.

In order to get more topological structure information of session, we design a Graph Fusion Module to get the consensus

graph (AM; l�1ð Þ) that integrates the structure information of both local graph (AL; l�1ð Þ) and global graph (AG; l�1ð Þ). Similar to the
process of modeling the local and global structure, we apply the HWGCN on the consensus graph to obtain session represen-
tation from the consensus perspective as follows:
fM lð Þ
s ¼ HWGCN AM; l�1ð Þ

;fM l�1ð Þ
s

� �
; ð14Þ

AM; l�1ð Þ
i ¼ f i � AL; l�1ð Þ

i þ 1� f ið Þ � AG; l�1ð Þ
i ; ð15Þ

f i ¼ r wT
f

ehs; lð Þ
i ; egs; lð Þ

i

h i� �
; ð16Þ
where wf 2 R2d is a trainable parameter, and r is the sigmoid function. The structure of AL; l�1ð Þ and AG; l�1ð Þ complement each

other to form the consensus graph AM; l�1ð Þ. After feature aggregation through graph AM; l�1ð Þ, the consensus session represen-

tation is formed as fM lð Þ
s ¼ fms; lð Þ

1 ;fms; lð Þ
2

�
; � � � ;fms; lð Þ

n Þ. Noting that when l ¼ 0, we have ehs; 0ð Þ
i ¼ hs

i ; egs; 0ð Þ
i ¼ gs

i , and fms; 0ð Þ
i is the item

representation that combines both the local and global representations of item:
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fms; 0ð Þ
i ¼ ui � ehs; 0ð Þ

i þ 1� uið Þ � egs; 0ð Þ
i ; ð17Þ

ui ¼ r wT
u Wl

ehs; 0ð Þ
i þWgegs; 0ð Þ

i

� �� �
; ð18Þ
wherewu 2 Rd;Wl;Wg 2 Rd�dare trainable parameters, and r is the sigmoid function. We denoteMs ¼fM 0ð Þ
s ; eH Lð Þ

s ;fM Lð Þ
s and eG Lð Þ

s

correspond to the S-L, S-M and S-G respectively in Fig. 1(A). Note that, we use the symbol L interchangeably when the inten-
tion is obvious from the context, e.g., L with parentheses Lð Þ indicates the number of layers in the sub-module MC-GNN.

3.3. Graph position encoder (GPE)

We have noticed that the position of items is also an important factor affecting the performance of the model. Conven-
tional methods modeling the position often focus on absolute position [15,27], which may not be suitable for the SBR task.
Considering examples: S1 = (iPhone, Headset, Short sleeve, Skirt, Sweater) and S2 = (Microphone, Headset), the second item of
both S1 and S2 is Headset. However, the Headset in S2 can better reflect the S2’s current preference than that in S1, because
Headset is located in the last position of S2, while it is the reciprocal fourth position of S1. Therefore, the absolute position
based methods [15,9] ignore the personalized position relationship for sessions and would lead to inferior performance.
To overcome the shortcoming, we integrate the session length information to enhance the position embedding, i.e., we
add the session length embedding to the position embedding in order to obtain an enhanced position embedding. The frame-
work of Graph Position Encoder is demonstrated in Fig. 1(D).
eps
i ¼ ps

i þ ps
len; ð19Þ

ps
len ¼ Embedlen Slenð Þ; ð20Þ
where ps
i 2 Rd is the learnable embedding of position i in session S; Slen is the length of session S;ps

len 2 Rd is the learnable
length embedding of session S which can assist ps

i to obtain the personalized position relation for sessions with different

lengths. It is worth noting that ePs ¼ eps
1; eps

2; � � � ; eps
n

� �
reflects a kind of sequential position structure. In order to capture inher-

ent topological position structure of session, we further apply the consensus relationship graph AM; l�1ð Þ to enhance the
embedding of position:
eP lð Þ
s ¼ HWGCN AM; l�1ð Þ

; eP l�1ð Þ
s

� �
; ð21Þ
and obtain the final position embedding at the L-th layer eP Lð Þ
s ¼ eps; Lð Þ

1 ; eps; Lð Þ
2 ; � � � ; eps; Lð Þ

n

� �
.

3.4. Repeat module

After we obtain the local representation eH Lð Þ
s , global representation eG Lð Þ

s , consensus representation fM Lð Þ
s and position

embedding eP Lð Þ
s of items after the last layer (i.e., the L-th layer), we merge them to generate the new session representation

Xs ¼ xs
1;x

s
2; � � � ;xs

n

� �
as follows:
xs
i ¼ r Wx

ehs; Lð Þ
i ; egs; Lð Þ

i ;fms; Lð Þ
i

h i
þ bx

� �
þ eps; Lð Þ

i Þ; ð22Þ
where Wx 2 Rd�3d;bx 2 Rd are trainable parameters. Inspired by the Repeat-Net [19] and the Copy Mechanism [22], we uti-
lize the Self-Attention mechanism to obtain the representation of the session and score the items that users have clicked:
ŷri ¼
zi if : v i 2 S;
0 if : v i R S;

�
ð23Þ

zi ¼
exp wT

zx
s
i

� �
Xn
j¼1

exp wT
zx

s
j

� � ; ð24Þ
wherewz 2 Rd is a trainable parameter, and ŷr is the repeat probability distribution that generated by Repeat Module. Mean-
while, we also get the session representation or , which is defined as follows:
or ¼
Xn
i¼1

zixs
i : ð25Þ
3.5. Explore module

The Explore Module is designed to score items that do not appear in the current session, which consists of two sub-
modules, i.e., Graph-Enhanced Attention Network (GEA) and Explore Prediction.
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Graph-Enhanced Attention Network (GEA). Conventional attention mechanism usually dynamically assigns weights to
items within a session, and it has been successfully applied in many applications [13,2,32,27]. However, it still has some
defects in the task of SBR. For example, in a session the user may have some accidental or wrong clicks, conventional atten-
tion mechanism would assign attention weights to these accidental or wrong clicks, and bring noise to the representation
learning process of sessions.

To alleviate this problem, we propose a novel Graph-Enhanced Attention Network (GEA). We apply the structure of ses-
sion graph to identify noise items within a session and adjust the attention mechanism to set the attention weights of noise
items to 0, so that the session representation after feature aggregation will be more precise. Taking the local session repre-

sentation eH Lð Þ
s ¼ ehs; Lð Þ

1 ; ehs; Lð Þ
2 ; � � � ; ehs; Lð Þ

n

� �
as an example, we consider a node ehs; Lð Þ

i 2 eH Lð Þ
s as the accidental or wrong click if the

node is negatively correlated or uncorrelated with all it’s neighbors ( ehs; Lð Þ
j jj– i;AL; L�1ð Þ

i;jð Þ 6 0
n o

). Then ehs; Lð Þ
i is put into a wrong

clicks set SLwrong for each session. After that, the new attention weights and feature aggregation process will be defined as
follows:
sLlong ¼
Xn
i¼1

kiehs; Lð Þ
i ; ð26Þ

ki ¼ exp bið ÞXn

j¼1
exp bið Þ

ð27Þ

bi ¼
wT

e W2
ehs; Lð Þ

i þW3eps; Lð Þ
i

� �
; if ehs; Lð Þ

i 2 eHs
Lð Þ � SLwrong

� �
;

�n; if ehs; Lð Þ
i 2 SLwrong ;

8<
: ð28Þ
where we 2 Rd;W2 2 Rd�d;W3 2 Rd�d are trainable parameters, and n is a value near infinity. sLlong is the local representation
of the session after filtering out the user’s accidental or wrong clicks. It is worth noting that for a session S2 = (Microphone,
Skirt), both items would be considered as user’s accidental or wrong clicks. GEA handles this issue by setting equal attention
weights for each items in the session, e.g., the attention weights of both Microphone and Skirt will be set to 0.5.

In addition, considering that user’s preferences may shift, for example, given a session S1 = (iPhone, Computer, Watch,
Sweater), according to above method, the Sweater would be judged as user’s accidental or wrong click. However, the user
clicks Sweater just because her preference has shifted from electronic products to clothing products. To deal with the issue,

we use the gate mechanism to combine long-term preferences sLlong with the current preferences ehs; Lð Þ
n of user.
ŝLlong ¼ r � sLlong þ 1� rð Þ � ehs; Lð Þ
n ; ð29Þ

r ¼ r wT
r sLlong ;

ehs; Lð Þ
n

h i� �
; ð30Þ
wherewT
r 2 R2d is a trainable parameter, r is a learnable parameter which reflects the importance of sLlong and

ehs; Lð Þ
n . We define

the whole process mentioned above as follows:
ŝLlong ¼ GEA eH Lð Þ
s ;AL; L�1ð Þ

� �
; ð31Þ
where eH Lð Þ
s is the local representation of session, AL; L�1ð Þ is the local session graph generated by eH L�1ð Þ

s .
Similarly, we can get the global session representation ŝGlong and the consensus session representation ŝMlong as follows:
ŝGlong ¼ GEA eG Lð Þ
s ;AG; L�1ð Þ

� �
; ð32Þ

ŝMlong ¼ GEA fM Lð Þ
s ;AM; L�1ð Þ

� �
: ð33Þ
After that we obtain the long-term structure representation of session S as follows:
sstrlong ¼ ŝLlong þ ŝGlong þ ŝMlong: ð34Þ

Explore Prediction. Although three types of structure information of the session have been effectively modeled, the

sequential information of the session also plays a critical role in capturing the user’s intention. Here we utilize the Bi-
GRU to get the sequential representation of session:
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di ¼Wseq
ehs; Lð Þ

i ; egs; Lð Þ
i ;fms; Lð Þ

i

h i� �
þ bseq; ð35Þ

dGRU
i

		!
¼ GRU

		!
dGRU
i�1

		!
;di;/gru


 �
; ð36Þ

dGRU
i

 
¼ GRU

 
dGRU
iþ1

 
;di;/gru


 �
; ð37Þ

dGRU
i ¼ LayerNorm Wgru dGRU

i

		!
;dGRU

i �Þ
 

; ð38Þ
�


where Wseq 2 Rd�3d;Wgru 2 Rd�2d;bseq 2 Rd;/gru are trainable parameters, and LayerNorm �ð Þ is the layer normalization[1]. The
long-term sequential representation of session S is represented as:
sseqlong ¼ dGRU
n ; ð39Þ
where dGRU
n denotes the last item representation of the session.

Then, we combine the long-term structural representation sstrlongand long-term sequential representation sseqlong of session to

generate the explore probability distribution ŷei , which is formulated as follows:
ŷei ¼
exp qið Þ

umjV ji¼1exp qið Þ
; ð40Þ

qi ¼
sTehi ; if v i R S;
�1 ; if v i 2 S;

�
ð41Þ

se ¼ sstrlong þ dsseqlong; ð42Þ
where hi 2 Rd is the embedding of the i-th item in V, and d is a hyperparameter.

3.6. Judgment module

In this subsection, we utilize the gate mechanism to integrate ŷr and ŷe to generate the final predict probability distribu-
tion, which is formulated as:
ŷi ¼ p � ŷri þ 1� pð Þ � ŷei ; ð43Þ
p ¼ r wT

p or ; se½ �ð Þ; ð44Þ
�

wherewp 2 R2d is trainable parameter. or (see Eq. (25)) and se (see Eq. (42)) are representations of session from Repeat Mod-
ule and Explore Module respectively. We optimize the model by minimizing the cross-entropy loss:
L ¼ �
XjV j
i¼1

yilog ŷið Þ þ 1� yið Þlog 1� ŷið Þ; ð45Þ
where yi is the one-hot vector of the ground truth item, and ŷi is the predicted probability of the user clicking the i-th item.

4. Experiments

In order to verify the effectiveness of DGS-MGNN, we conduct extensive experiments to answer the following research
questions:

� RQ1: Does the performance of DGS-MGNN beat the best performing baseline?
� RQ2: How each model component affects the performance of DGS-MGNN, including the Dynamic Global Neighbor Atten-
tion Network (DGNA), Multi-channel Graph Neural Network (MC-GNN), Graph Position Encoder, and Graph-Enhanced
Attention Network (GEA).
� RQ3: What are the influence of the structure information, the sequence information, and the number of global neighbors
on the model performance?
� RQ4: How well does DGS-MGNN perform on sessions with different lengths?
� RQ5: What is the computational complexity of the proposed DGS-MGNN?

4.1. Datasets

We employ three widely used benchmark datasets, including Diginetica, Yoochoose and Retailrocket, to evaluate the per-
formance of DGS-MGNN and baselines.
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� Diginetcia1 is obtained from CIKM Cup 2016. Because of its transaction data, it is often used in session-based recommenda-
tion task. Following [15,32,6,33], we extract data of the last week as the test set.
� Yoochoose2 is collected from RecSys Challenge 2015, which contains click streams from an e-commerce website within a
6 month period. Since Yoochoose is very large, following [15,33], we extract the most recent portions 1/64 and 1/4 of the
training sequences as the training data, denoted as ‘‘Yoochoose1/64” and ‘‘Yoochoose1/4”, data of last day as the testing data.
� Retailrocket3 is obtained from Kaggle competition 2016, which contains user behaviors of e-commerce platforms within 4–
5 months. We extract the most recent portions 1/4 of the training sequences as the training data, and data of the last 15 days
as the testing data.

Following [33,32,15], sessions of length 1 and items appearing less than 5 times were filtered across all the three datasets.
We also use sequence splitting pre-processing to increase training samples, i.e, for a session sequenceS ¼ v1;v2;v3; � � � ;vnð Þ,
we generate sequences and labels as v1½ �;v2ð Þ; v1;v2½ �;v3ð Þ; � � � ; v1; � � � ;vn�1½ �;vnð Þ for training and testing.

4.2. Baselines

To evaluate the performance of our model comprehensively, we compare it with eleven baseline methods which can be
roughly grouped into three categories, i.e., traditional recommendation methods, RNN and Attention based methods, graph
neural network based methods. The details of all baseline are briefly described as follows:

Traditional recommendation methods:

� POP [8]: This is a frequently used baseline method in recommendation system, which recommends the top-N frequent
items in the training set.
� Item-KNN [21]: It is based on collaborative filtering to recommend items similar to those in the current session. It is one
of the most common item-to-item solutions for recommendation, and is usually considered as a strong baseline.
� FPMC [20]: This method leverages matrix factorization (MF) and Markov chains (MC) together, where the sequential data
is modeled by the transition matrix and all transition matrices are user-specific. It introduces a factorization model which
gives a low-rank approximation to the transition cube where each slice is a user-specific transition matrix of an under-
lying MC on the users basket history.

RNN and Attention based methods:

� GRU4REC [8]: It applies GRU to simulate the user’s sequential behavior, and modifies the basic GRU by introducing
session-parallel mini-batches, mini-batch based output sampling and ranking loss function.
� NARM [11]: It employs RNN to model the user’s sequential behavior and captures a user’s main preference with the atten-
tion mechanism. The recommendation probability for each candidate item is computed by a bi-linear matching scheme
based on the unified session representation.
� STAMP [13]: This method attempts to address the user interests drift issue by capturing both a user’s general interests
from the long-term memory of a session and her current interests from the short-term memory of the last-click.
� CSRM [29]: This method proposes to leverage collaborative neighborhood information to session-based recommenda-
tions. It captures a user’s own information in the current session with an inner memory encoder and predicts the intent
of the current session by exploiting collaborative information from neighborhood sessions with an outer memory
encoder.
� DSAN [38]: DSAN leverages a dual sparse attention network for the task of SBR. It first explores the interaction between
each item within the session and learns a representation of the target representation by a self-attention network. Then it
applies a vanilla attention network to obtain the importance of items within the current session to get the session rep-
resentation. After that, a neural network is utilized to combine both the target representation and the session represen-
tation to get the final representation.

Graph neural network based methods:

� SR-GNN [33]: SR-GNN attempts to capture the complex transitions of items by modeling session sequences as graph
structured data. It employs the gated graph neural networks to obtain the representation of items and combines a self
attention mechanism to generate session representation.
� TAGNN [37]: This method captures the complex item transitions within sessions by modeling items in sessions as session
graphs and obtains item embeddings using graph neural networks. It also introduces a target attentive module to reveal
the relevance of historical actions given a target item to improve the session representations.
1 https://competitions.codalab.org/competitions/11161.
2 http://2015.recsyschallenge.com/challege.html.
3 https://www.kaggle.com/retailrocket/ecommerce-dataset.
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� COTREC [34]: COTREC combines self-supervised learning with co-training for session-based recommendation. For co-
training, it augments two different views, i.e., item view and session view, by exploiting the internal and external connec-
tivities of sessions.
� GCE-GNN [32]: GCE-GNN learns item representations from two different levels, i.e., session-level and global-level. The
session-level item representation aims to model pairwise item-transitions within the current session while the global-
level item representation attempts to model pair-wise item-transitions over all sessions.

4.3. Parameter setting

In DGS-MGNN, we set the training batch size to 256, the dimension of item embeddings is 256 in all experiments. The
number of global neighbors K is 10 and the number of HWGCN layers is 1. For the setting of hyperparameters, we select
the last 20% of the training data as the validation set which will be used to choose the best hyperparameters. When the same
datasets and evaluation settings are utilized in existing literature, we will employ their best hyperparameter settings
reported in these works and directly report their results. When the datasets or evaluation settings between the existing lit-
erature and ours are different, we will search the set of hyperparameters on the validation set, and report the results with the
best hyperparameter settings. More details about the best hyperparameter settings of baseline models are shown in Appen-
dix A. Following [15,16,32,37], all parameters are initialized using a Gaussian distribution with a mean of 0 and a standard
deviation of 0.1. We use the Adam optimizer with the initial learning rate 0.001, which will decay by 0.1 after every 3 epochs.
The value of d in Eq. (42) is set to 0.4. The dropout [24] is utilized, which is set to 0.4. Meanwhile, the L2 penalty is set to 10�5

in order to avoid overfitting. When investigating the effectiveness of each component of the proposed model, we follow the
same hyperparameter settings as our proposed model, except as otherwise specified.

4.4. Evaluation metrics

Following [33,16,37,32], we adopt two widely used ranking based metrics P@20 and MRR@20 to evaluate the perfor-
mance of all methods. Note that a higher value of P@K and MRR@K indicate a better model performance.

� P@K(Precision): It measures the proportion of cases when the target item is ranked within the top-K recommendations.
P@K ¼ nhit

N
; ð46Þ

where N indicates the number of test cases and nhit is the number of cases that the target item is in the top-K items of the
ranked list.
� MRR@K(Mean Reciprocal Rank): It is the average of the reciprocal ranks of the target item in the recommendation list.
This metric considers the position of correct recommended items in a ranked list.
MRR@K ¼ 1
N

XN
i¼1

1
ranki

; ð47Þ

where N is the number of test cases and ranki is the position of the i-th target item in the list of recommended items. Note
that if the target item is not in the top-K items, its MRR@K score is set to 0.

4.5. Overall performance (RQ1)

In Table 1,2, we report the overall experimental results of DGS-MGNN (including the significance testing) and all baseli-
nes on three benchmark datasets. From Table 2, we can observe that the performance of traditional method POP is worst
since it only focuses on the frequency of items and ignores the characteristics of behavior differences and interest shift of
user. FPMC performs much better than POP because it captures user’s preferences by applying the first-order Markov Chain
and Matrix Factorization. Among all traditional methods, Item-KNN usually achieves the best performance and surpasses
both POP and FPMC.

Comparing with traditional methods, neural network based methods usually outperform these traditional methods.
GRU4REC is the first RNN based approach for the task of session based recommendation, which is superior to all traditional
methods only with an exception on the Diginetica dataset. This shows the capability of RNN in modeling sequence data. Both
NARM and STAMP perform better than GRU4REC as they further incorporate the attention mechanism in order to deal with
the issue where user’s preference changes within the session. CSRM achieves a better performance than NARM and STAMP
on all datasets as it further introduces auxiliary sessions to enhance the current session representation. DSAN obtains the
best performance among all RNN and attention based methods. This mainly is attributed to that DSAN incorporates a dual
sparse attention network where a self-attention network is utilized to explore the interaction between each item within the
current session, and a vanilla attention network is applied to capture the importance of items within the session.

Among all baseline methods, these graph neural network (GNN) based methods usually show a superior performance.
The main reason may be that GNN slightly relaxes the assumption of temporal dependence between consecutive items
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Table 1
Statistics of datasets used in the experiment.

Dataset Diginetica Yoochoose1/4 Yoochosse1/64 Retailrocket

#click 982961 8326407 557248 2756101
#train 719470 5917745 369859 175325
#test 60858 55898 55898 24283
#unique items 43097 29618 16766 22305
#Average length 5.12 7.42 6.16 3.96

Table 2
Comparison of the performance of all methods on all datasets in terms of P@20 and MRR@20. The best and the second best performing results in each column
are in bold and underlined respectively. The significance test between our model DGS-MGCN and the best baseline GCE-GNN has been conducted, and
significant improvements over GCE-GNN are marked with y (t-test, p60.01). The scores marked by � are based on our re-implementation when the datasets or
evaluation settings in existing literature are different from ours.

Dataset Diginetica Yoochoose1/64 Yoochoose1/4 Retailrocket

Methods P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

POP 0.89 0.20 6.71 1.65 1.37 0.31 1.97� 0.75�
Item-KNN 35.75 11.57 51.60 21.81 52.31 21.70 10.23� 3.96�
FPMC 26.53 6.95 45.62 15.01 51.86 17.50 9.65� 4.32�
GRU4REC 29.45 8.33 60.64 22.89 59.53 22.60 41.35� 25.54�
NARM 49.70 16.17 68.32 28.63 69.73 29.23 59.46� 41.48�
STAMP 45.64 14.32 68.74 29.67 70.44 30.00 58.48� 38.96�
CSRM 50.55 16.38 69.85 29.71 70.63 29.68 61.09� 40.28�
DSAN 53.76 18.99 69.68� 31.23� 72.06� 32.22� 62.56� 42.39�

SR-GNN 50.73 17.59 70.57 30.94 71.36 31.89 60.19� 39.64�
TAGNN 51.31 18.03 71.02 31.12 71.32� 32.11� 59.31� 39.65�
COTREC 54.18 19.07 70.72� 29.36� 70.48� 29.19� 63.81� 44.48�
GCE-GNN 54.22 19.04 70.91� 30.63� 71.40� 31.49� 63.29� 40.35�

DGS-MGNN 55:54y 19:68y 72:62y 32:49y 73:10y 33:55y 66:61y 45:78y
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and models more complex user item transitions as pairwise relations (e.g., directed graph). For example, SR-GNN [33]
attempts to capture more implicit connections between items in a session and models session sequences as graph-
structured data. TAGNN [37] further takes into account user preferences with target-aware attentions. COTREC [34] obtains
a comparable performance to SR-GNN and TAGNN. It augments two different views by exploiting both intra- and inter-
connectivity patterns which can alleviate the data sparsity issue. Among all GNN-based methods, GCE-GNN [32] mostly pre-
sents the best performance on all datasets. This is because GCE-GNN effectively learn item representations from both global
context, i.e., other sessions and local context, i.e., the current session.

Our proposed approach DGS-MGCN consistently outperforms all state-of-the-art baseline methods. Specifically, DGS-
MGCN demonstrates a significant improvement (t-test, p60.01) over the best performing baseline GCE-GNN on all datasets,
and the performance improvements of DGS-MGC over GCE-GNN on Diginetica, Yoochoose1/64, Yoochoose1/4 and Retai-
locket in terms of MRR@20 are 3.36%, 6.07%, 6.54% and 13.46%, respectively. Similar performance improvements can also
be observed in terms of P@20. The main reason is that DGS-MGNN can effectively integrate the information of global neigh-
bors in a dynamical way. And it introduces a novel MC-GNN to learn more abundant representation of items from multiple
perspectives. In addition, it incorporates Graph Position Encoder and GEA to enhance the position embeddings and filter
noise items within session, respectively.

4.6. Impact of DGNA and MC-GNN (RQ2)

In order to verify the effectiveness of Dynamic Global Neighbor Attention Network (DGNA) and the superiority of Multi-
channel Graph Neural Network (MC-GNN), we designed four comparing models:

� DGS-MGNN w/o DGNA: Removing the Dynamic Global Neighbor Attention Network (DGNA) in DGS-MGNN.
� DGS-MGNN-MLP: Replacing the MC-GNN in DGS-MGNN with a Multilayer Perceptron (MLP). For this variant, we choose
a 2 layers MLP (i.e., the hidden units are 512 and 256).
� DGS-MGNN-GGNN: Replacing the MC-GNN in DGS-MGNN with the Gated Graph Neural Network (GGNN) [33], which is
used in SR-GNN, and the graph is constructed in the same way as that in SR-GNN [33]. The input dimension of GGNN is set
to 256.
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� DGS-MGNN-GAT: Replacing the MC-GNN in DGS-MGNN with the Graph Attention Neural Network (GAT) [28], which is
applied in GCE-GNN, and the graph constructed in DGS-MGNN-GAT is in the same way as that in GCE-GNN [32]. The input
dimension of GAT is set to 256.

Table 3 shows the performance of all models. We can observe the removal of DGNA from DGS-MGNN will lead to con-
siderably performance degradation, which verifies the effectiveness of DGNA. Considering the module MC-GNN, we can
see that DGS-MGNN with MC-GNN performs consistently better than all other variants, such as replacing MC-GNN with
MLP, GGNN, and GAT. Among all three variants, we can observe that DGS-MGNN-GGNN almost has no improvement com-
pared with DGS-MGNN-MLP, the reason is attributed to that DGS-MGNN-GGNN does not distinguish the connection
strength between items. Moreover, it also suffers from the accidental or wrong clicks of user, which may bring noise infor-
mation to user’s representation. DGS-MGNN-GAT achieves the best performance among all compared variants since it alle-
viates the issue of connection strength by introducing attention weight as the connection strength between items. However,
similar to DGS-MGNN-GGNN, DGS-MGNN-GAT still encounters the issue of noise information caused by the accidental or
wrong clicks of user. Different from DGS-MGNN-GAT, our proposed model DGS-MGNN with MC-GNN can effectively deal
with the connection strength and the noise information issue via dynamically adjust the structure of graph and the connec-
tion strength between items. In addition, we also introduce the graph correction operation to filter out noisy edges (i.e., we
remove connections between items which are semantically uncorrelated or negatively correlated), and design the Graph
Fusion Module to enrich the representation of session.
4.7. Impact of graph position encoder (RQ2)

In this section, we investigate the effectiveness of the Graph Position Encoder module. As position embedding technique
has been widely used in the SBR task, however the absolute position embedding technique used in SASRec [9] and SGNN–HN
[15] would not achieve the ideal performance for the SBR task. To verify the effectiveness of our proposed Graph Position
Encoder, we compare our method with two variants:

� DGS-MGNN w/o GPE: Removing Graph Position Encoder in DSG-MGNN.
� DGS-MGNN-POS: Replacing the Graph Position Encoder with the conventional Position Encoder which is employed in
SASRrec [9] and SGNN–HN [15].

Fig. 2 shows the performance of different comparing models. The results demonstrate that DGS-MGNN with the Graph
Position Encoder is superior to the two variants DGS-MGNN w/o GPE and DGS-MGNN-POS on all datasets in terms of both
metrics. More precisely, the models with a position encoder (i.e., our proposed DGS-MGNN and the variant DGS-MGNN-POS)
consistently outperform the model without taking position embedding into consideration (i.e., the variant DGS-MGNN w/o
GPE). In addition, our proposed DGS-MGNN further performs considerably better than the variant DGS-MGNN w/o GPE
which utilizes the conventional Position Encoder. As described in the subSection 3.3, DGS-MGNN-POS cannot model the per-
sonalized position relationship of sessions with different length. On the contrary, Graph Position Encoder introduces the
information of session length into to the position embedding to alleviate the above problem. Meanwhile, Graph Position
Encoder also captures the inherent topological position structure of session.
4.8. Impact of graph-enhanced attention network (RQ2)

To verify the impact of Graph-Enhanced Attention Network (GEA) in the Explore Module on the performance of recom-
mendation, we employ the following three variants:

� DGS-MGNN-S: Replacing Graph-Enhanced Attention Network (GEA) with Sum-Pooling.
� DGS-MGNN-M: Replacing Graph-Enhanced Attention Network (GEA) with Mean-Pooling.
� DGS-MGNN-SA: Replacing Graph-Enhanced Attention Network (GEA) with Self-Attention Network.

As we can see in Table 4, the sum-pooling based model DGS-MGNN-S obtains the worst performance. In constrast, the
mean-pooling based model DGS-MGNN-M demonstrates a better performance than DGS-MGNN-S. Among all three variants,
the self-attention network based model DGS-MGNN-SA achieves the best performance, which shows the effectiveness of
introducing the attention mechanism to aggregate information dynamically according to the importance coefficient of items.

Comparing to all three variants, our proposed model DGS-MGNN with GEA consistently demonstrates the best perfor-
mance on all datasets. This is mainly because in a session a user may have some accidental or wrong clicks, conventional
attention mechanism will assign attention weights to these accidental or wrong clicks, thus bring noise to the representation
of session. On the contrary, the Graph-Enhanced Attention Network (GEA) module attempts to apply the structure of session
graph to identify user’s accidental or wrong clicks within the session and then adjust the attention mechanism to filter out
the noisy items by setting the attention weights of noise items to 0.
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Table 3
Performance comparison of the model variants with respect to the two sub-modules DGNA and MC-GNN on all datasets in terms of P@20 and MRR@20. The
best performing results in each column are in bold.

Datasets Diginetica Yoochoose1/64 Yoochoose1/4 Retailrocket

Methods P@20 M@20 P@20 M@20 P@20 M@20 P@20 M@20

DGS-MGNN w/o DGNA 53.95 19.42 71.88 32.15 72.46 32.98 63.92 45.21

DGS-MGNN-MLP 53.51 18.33 71.12 31.10 71.72 32.01 62.85 44.82
DGS-MGNN-GGNN 53.68 17.92 68.85 30.52 69.45 31.23 62.52 45.11
DGS-MGNN-GAT 54.22 18.74 71.35 31.36 72.13 32.33 63.75 44.86

DGS-MGNN 55.54 19.68 72.62 32.49 73.10 33.55 66.61 45.78

Fig. 2. Performance comparison of the model variants with respect to the graph position encoder on all datasets in terms of P@20 and MRR@20.

Table 4
Performance comparison of the model variants with respect to the sub-module graph-enhanced attention network (GEA) on all datasets in terms of P@20 and
MRR@20. The best performing results in each column are in bold.

Datasets Diginetica Yoochoose1/64 Yoochoose1/4 Retailrocket

Methods P@20 M@20 P@20 M@20 P@20 M@20 P@20 M@20

DGS-MGNN-S 53.07 18.91 70.02 30.81 70.87 31.68 63.82 44.48
DGS-MGNN-M 53.68 19.42 71.95 32.21 72.55 33.12 62.79 45.12
DGS-MGNN-SA 54.35 19.44 72.31 32.38 72.81 33.34 66.45 45.64
DGS-MGNN 55.54 19.68 72.62 32.49 73.10 33.55 66.61 45.78
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4.9. Impact of structure information and sequential information (RQ3)

To explore the impact of structure information sstrlong (see Eq. (34)) and sequence information sseqlong (see Eq. (39)) of session
in Explore Module on the performance of DGS-MGNN, we compare our model with the following variants:

� DGS-MGNN-STR: A variant of DGS-MGNN, which solely keeps the long-term structure representation of the current ses-
sion while neglects the long-term sequential information in DGS-MGNN.
� DGS-MGNN-SEQ: A variant of DGS-MGNN, which only maintains the long-term sequential representation of the current
session while discards the long-term structure information in DGS-MGNN.

Fig. 3 reports the experimental results.We can observe that our proposedmodel DGS-MGNN,which captures both the long-
term structure representation as well as the long-term sequential representation of the current session, obtains the best per-
formanceonall datasets.WhenDGS-MGNN is only equippedwith either the structure informationor sequential informationof
the current session, its performancewill degrade significantly. In addition, among the twovariants, DGS-MGNN-STR is superior
to DGS-MGNN-SEQ, which demonstrates that: (1) Incorporating the long-term structure representation of the current session
is more important than incorporating the long-term sequential representation of the current session; (2) The two long-term
representations are complementary to each other, and a combination of them will boost the performance considerably.
4.10. Impact of the number of global neighbors (RQ3)

To explore the impact of different number of global neighbors (i.e., K) on the performance of DGS-MGNN, we analyze the
performance of DGS-MGNN with various number of K ranging from 0 to 50, and results are shown in Fig. 4. We can observe
Fig. 3. Performance comparison of the model variants with different structure information on all datasets in terms of P@20 and MRR@20.
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that on the Diginetica dataset the performance of our method DGS-MGNN first increases and reaches the peak when K = 10. If
we further raise K, the performance will become stable or drop slightly. On the Yoochoose1/64 dataset, the performance of
DGS-MGNN increases gradually and reaches the peak when K = 20, after that there is a performance degradation if we con-
tinue to enlarge the number of global neighbors. Similar results can also be observed on other two datasets, i.e., Yoo-
choose1/4 and Retailrocket. The results reveal that our proposed method DGS-MGNN can obtain promising performance
with a relatively small number of global neighbors.

4.11. Model performance on sessions with different lengths (RQ4)

To verify the model performance on sessions with different lengths, we split sessions into two groups (i.e., long sessions
and short sessions), where sessions with a length greater than 5 are considered as long sessions and the remaining sessions
are considered as short sessions. We compare our proposed method DGS-MGNN with two most competitive baseline mod-
els, i.e., DSAN and GCE-GNN, on both long and short sessions. From Fig. 5, we can observe that: First, the performance of all
three methods on the short sessions are superior to their corresponding performance on the long sessions. This can be attrib-
uted to that long sessions usually contains more complicated user interest (e.g., interest shifts) which is difficult to capture,
while user interests within short sessions are usually simple. Second, our proposed model DGS-MGNN consistently performs
better than the two state-of-the-art baseline methods on both short and long sessions in terms of both metrics on all data-
sets. In addition, comparing with DSAN and GCE-GNN, the performance improvements of DGS-MGNN on the long sessions
Fig. 4. Performance of DGS-MGNN with different number of global neighbors K on all datasets in terms of P@20 and MRR@20.
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Fig. 5. Performance of DGS-MGNN on sessions with different lengths on all datasets in terms of P@20 and MRR@20.

X. Zhu, G. Tang, P. Wang et al. Information Sciences 624 (2023) 324–343
are considerably larger than the counterparts on the short sessions. For example, on the Diginetica dataset, the performance
improvements of DGS-MGNN over DSAN and GCE-GNN on the short sessions are 1.58% (2.96%) and 1.78% (2.60%) in terms of
P@20 (MRR@20), respectively. While the corresponding improvements on the long sessions are 5.23% (8.22%) and 5.61%
(7.45%), respectively. Similar results are also observed on other three datasets.

4.12. Computational complexity (RQ5)

In this sub-section, we compare the computational complexity of our proposed approach DGS-MGNN with other five
most competitive baseline methods, including SR-GNN, TAGNN, DSAN, COTREC and GCE-GNN. In Table 5, we report the the-
oretical computational complexity as well as training time and memory costs of these methods. The computational complex-

ity of SR-GNN is O s nd2 þ n3
� �

þ d2
� �

where n is the session length, d is the dimension of item embeddings. For simplicity, we

use s to denote the number of layers in different graph neural networks, i.e., the gated graph neural network (GGNN) [12] in
both SR-GNN and TAGNN, the graph attention network (GAT) [28] in GCE-GNN, the graph convolution network (GCN) [10] in
COTREC, and the multi-channel graph neural network (MC-GNN) in our proposed DGS-MGNN. Similar to SR-GNN, TAGNN
also applies the GGNN to learn node vector. Moreover, it further incorporates a local target attentive module to measure
Table 5
Analysis of the computational complexity of different comparing models.

Datasets Diginetica Yoochose1/64 Yoochose1/4 Retailrocket

Method Complexity Time Memory Time Memory Time Memory Time Memory

SR-GNN O s nd2 þ n3
� �

þ d2
� �

80s 1359M 72s 1311M 1145s 1311M 69s 1435M

TAGNN O s nd2 þ n3
� �

þ njV jd2 þ d2
� �

827s 9745M 331s 8757M 5275s 8757M 250s 10621M

DSAN O n2dþ d2
� �

128s 1523M 64s 1589M 878s 1589M 18s 1437M

COTREC O sjV j2d2 þ sb2d2 þ d2
� �

1459s 3851M 961s 3079M 16023s 3079M 293s 2305M

GCE-GNN O sn2dþ nKdþ d2
� �

152s 2066M 76s 1699M 906s 1699M 20s 2208M

DGS-MGNN O sn2dþ njV jdþ d2
� �

236s 3719M 126s 3371M 2058s 3371M 45s 2479M
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attention scores between each item in the current session and all items in V. Therefore, it shows a higher computational com-

plexity, i.e., O s nd2 þ n3
� �

þ njV jd2 þ d2
� �

where jV j indicates the number candidate items, than that of SR-GNN. For DSAN

and GCE-GNN, the computational complexity are O n2dþ d2
� �

and O sn2dþ nKdþ d2
� �

, respectively. Among all these base-

line methods, COTREC takes the highest computational complexity O sjV j2d2 þ sb2d2 þ d2
� �

, where b denotes the batch size.

For our proposed method DGS-MGNN, the computational complexity is O sn2dþ njV jdþ d2
� �

, where the main costs are from

MC-GNN module and calculating the dynamic global neighbor attention. From the results, we can observe that the compu-
tational complexity of DGS-MGNN is much lower than that of TAGNN and COTREC, and slightly higher than that of SR-GNN,
DSAN, and GCE-GNN.

For the consumption of the training time, we can observe that the baseline DSAN costs less training time than other meth-
ods on all datasets with an exception on the Diginetica dataset. The baseline COTREC shows the highest consumption of the
training time on all datasets. For our proposed approach DGS-MGNN, its cost of training time is much lower than that of
TAGNN and COTREC, and slightly higher than that of SR-GNN, DSAN and GCE-GNN onmost datasets, which is consistent with
the results of the theoretical computational complexity. For the cost of the model memory, the two baselines SR-GNN and
TAGNN demonstrate the lowest and highest memory cost on most datasets, respectively. The memory cost of COTREC is
lower than TAGNN while it is considerably larger than other baselines. The remaining two baselines DSAN and GCE-GNN
shows a comparable or slightly higher memory cost as compared with SR-GNN. The memory cost of our method DGS-
MGNN is much lower than that of TAGNN, and competitive to that of COTREC. Based on the analysis, the computational com-
plexity DGS-MGNN is moderate and can be practicable for potential applications due to its relative low costs of computa-
tional complexity.
5. Conclusion

In this paper, we propose a novel method, named DGS-MGNN, for session-based recommendation. Specifically, we
develop a dynamic global structure enhanced multi-channel graph neural network to dynamically capture information from
three different perspectives, i.e., local, global and consensus representation. Moreover, we design a graph-enhanced atten-
tion network to filter out noisy items within a session and obtain better long-term structure representation of the current
session. A novel position embedding embedding methods, i.e., Graph Position Encoder, is proposed by enhancing the embed-
ding processing with the session length information and the inherent topological position structure within a session. The
experimental results demonstrate that our proposed approach significantly outperforms the state-of-the-art methods in
terms of both metrics on all datasets. In addition, we also analyse the computational costs of the proposed methods, and
the results show that DGS-MGNN has a moderate computational complexity as compared with the state-of-the-art methods,
which makes it practicable for potential applications.
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Appendix A. Model parameters

In our experiments, we choose the best hyperparameters for baseline models by searching the set of hyperparameters on
the validation set. It is worth noting that we will directly utilize the best hyperparameter settings for baseline models when
the same datasets and evaluation settings are utilized in existing literature. In Table 6, we present the best hyperparameter
setting for baseline models used in our experiments.
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Table 6
The best hyperparameter settings for baseline models used in our experiments. The hyperparameters with * indicate that we search the best hyperparameters
on the validation set.

Model Paramater Name Diginetica Yoochoose1/64 Yoochoose1/4 Retailrocket

GRU4REC Batch size 32 32 32 32�
Embedding size 100 100 100 100�
Learning rate 2e�1 2e�1 2e�1 2e�1�

NARM Batch size 512 512 512 512�
Embedding size 50 50 50 50�
Learning rate 1e�3 1e�3 1e�3 1e�3�

STAMP Batch size 512 512 512 256�
Embedding size 100 100 100 256�
Learning rate 3e�3 3e�3 3e�3 3e�3�

CSRM Batch size 512 512 512 256�
Embedding size 150 150 150 150�
Memory size 512 512 512 256�
Memory dim 100 100 100 100�
Learning rate 5e�4 5e�4 5e�4 5e�4�

DSAN Batch size 512 512� 512� 256�
Embedding size 100 100� 100� 256�
Normalize weight(wk) 20 20� 20� 20�
Dropout rate 0.5 0.2� 0.2� 0.2�
Learning rate 1e�3 1e�3� 1e�3� 1e�3�

SR-GNN Batch size 100 100 100 256�
Embedding size 100 100 100 256�
Number of GNN layers 1 1 1 1�
Learning rate 1e�3 1e�3 1e�3 1e�3�

TAGNN Batch size 100 100 100� 100�
Embedding size 100 100 100� 256�
Number of GNN layers 1 1 1� 1�
Learning rate 1e�3 1e�3 1e�3� 1e�3�

COTREC Batch size 100 256� 256� 256�
Embedding size 100 256� 256� 256�
Number of GNN layers 2 2� 2� 2�
Learning rate 1e�3 1e�3� 1e�3� 1e�3�
Self-supervise loss weight(b) 5e�3 5e�3� 5e�3� 5e�3�
Divergence constraint loss weight(a) 5e�3 5e�3� 5e�3� 5e�3�

GCE-GNN Batch size 100 256� 256� 256�
Embedding size 100 256� 256� 256�
Number of GNN layers 1 1� 1� 1�
Dropout rate 0.2 0� 0� 0.2�
Learning rate 1e�3 1e�3� 1e�3� 1e�3�
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