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Abstract
Graph Convolutional Network (GCN) for aspect-based sentiment classification has 
attracted a lot of attention recently due to their promising performance in handling complex 
structure information. However, previous methods based on GCN focused mainly on exam-
ining the structure of syntactic dependency relationships, which were subject to the noise 
and sparsity problem. Furthermore, these methods tend to focus on one kind of structural 
information (namely syntactic dependency) while ignoring many other kinds of rich struc-
tures between words. To tackle these problems, we propose a novel GCN based model, 
named Structure-Enhanced Dual-Channel Graph Convolutional Network (SEDC-GCN). 
Specifically, we first exploit the rich structure information by constructing a text sequence 
graph and an enhanced dependency graph, then design a dual-channel graph encoder to 
model the structure information from the two graphs. After that, we propose two kinds of 
aspect-specific attention, i.e., aspect-specific semantic attention and aspect-specific struc-
ture attention, to learn sentence representation from two different perspectives, i.e., the 
semantic perspective based on the text encoder, and the structure perspective based on the 
dual-channel graph encoder. Finally, we merge the sentence representations from the above 
two perspectives and obtain the final sentence representation. We experimentally validate 
our proposed model SEDC-GCN by comparing with seven strong baseline methods. In 
terms of the metric accuracy, SEDC-GCN achieves performance gains of 74.42%, 77.74%, 
83.30%, 81.73% and 90.75% on TWITTER, LAPTOP, REST14, REST15, and REST16, 
respectively, which are 0.35%, 4.22%, 1.62%, 0.70% and 2.01% better than the best per-
forming baseline BiGCN. Similar performance improvements are also observed in terms of 
the metric macro-averaged F1 score. The ablation study further demonstrates the effective-
ness of each component of SEDC-GCN.
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1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task (Singh 
and Singh 2021; Zhu et al. 2021; Berka 2020), which aims at identifying the aspect term 
and their sentiment polarities. Figure 1 shows an example of aspect-based sentiment anal-
ysis with multiple sentiment polarities, and in the review “The appetizers are excellent, 
while the service is quite slow.”, there are two aspects (i.e., “appetizers” and “service”) 
and the sentiment labels corresponding to the two aspects within this review are “posi-
tive” and “negative”, respectively. ABSA can be divided into two strongly coupled sub-
tasks including opinion aspect extraction (OAE) and aspect-based sentiment classification 
(ABSC). The former focuses on extracting the explicit aspects which consist of the single 
word aspect and the compound aspect, while the latter sheds light on identifying sentiment 
polarity of a specified aspect in a review. In this paper, we focus on the task of ABSC, 
which is challenging due to the fact that a review may contain various sentiments for differ-
ent aspects.

Early studies on aspect-based sentiment classification mainly rely on employing 
machine learning classification methods and labor-intensive hand-crafted features as their 
key features (Kiritchenko et  al. 2014; Wagner et  al. 2014). In recent years, many neural 
network models such as Recurrent Neural Networks (RNNs) (Liu and Zhang 2017; Wang 
et al. 2016), which is augmented by the attention mechanism (Bahdanau et al. 2015), have 
been utilized for the task of aspect-based sentiment classification. The attention mecha-
nism can facilitate the identification of potentially relevant words with respect to the target 
aspect (Yang et  al. 2017). Some researchers also propose to utilize convolutional neural 
networks (CNNs) (Xue and Li 2018; Kalchbrenner et  al. 2014; Conneau et  al. 2017) to 
capture multi-word phrase information for aspect-based sentiment classification. More 
recently, many research efforts have been devoted to exploit the syntactic dependency tree 
(Zhang et  al. 2019; Liang et  al. 2019), and apply a graph convolutional network (GCN) 
(Yao et al. 2019; Linmei et al. 2019) to capture long-distant relationships among words.

Although state-of-the-art performance has been achieved, existing GCN-based methods 
mainly focus on capturing words’ distant relationship based on the structure of the syntac-
tic dependency tree, which would lead to inferior performance due to the sparsity issue. 
In addition, these methods usually model one kind of structure information (i.e. syntac-
tic dependency structure) while neglect other kinds of rich structure information between 
words, such as the consecutive structure of words within a time window, or the co-occur-
rence structure between words in the entire corpus.

In this paper, we propose a novel GCN based model, called Structure-Enhanced Dual-
Channel Graph Convolutional Network (SEDC-GCN), for dealing with the task of aspect-
based sentiment classification. More precisely, we first exploit the rich structure informa-
tion by constructing a text sequence graph and an enhanced dependency graph. The former 
is utilized to capture the sequential structure information among words, i.e., words within 
a small window in a text sequence are connected and yields the sequential structure. The 
latter is leveraged to incorporate the syntactic dependency structure information among 

The appetizers are excellent while the service is quite slow

positive negative

aspect1 aspect2

Fig. 1  An example of aspect-based sentiment classification with multiple sentiment polarities
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words, i.e., each text sequence corresponds to a syntactic dependency tree, where the col-
lection of such dependencies in the sequence yields the syntactic dependency structure.

To deal with the sparsity issue of the dependency structure, we further enrich the syn-
tactic dependency structure by introducing high correlated relationships between words 
based on their global co-occurrence information. Then a dual-channel graph encoder is 
designed to model the two kinds of structure information. Note that in the dual-channel 
graph encoder, a CoGCN (Coordinate Graph Convolution Network) module is developed 
to seamlessly integrate these two kinds of structure information in a mutual reinforcement 
manner. In particular, CoGCN consists of a multi-layer Co-Attention and a gate layer, 
where the former is developed to ensure the collaboration of different types of information 
to be performed at different levels and the latter is designed to merge information from 
both perspective (i.e., the text sequence graph and the enhanced dependency graph). After 
that, we design an aspect-specific structure attention module to obtain sentence represen-
tation. Similarly, we also leverage a text encoder to obtain word representation sequence 
from the semantic perspective, and design an aspect-specific semantic attention module 
to obtain sentence representation on top of the text encoder. Finally, we merge the sen-
tence representations from the above two perspectives with the concatenation operation 
and obtain the final sentence representation. The main contribution of this work are sum-
marized as follows:

– We exploit the rich structure information by constructing a text sequence graph and an 
enhanced dependency graph.

– We propose two kinds of aspect-specific attention, i.e., aspect-specific semantic atten-
tion and aspect-specific structure attention, to obtain sentence representation from two 
different perspectives, i.e., the semantic perspective and the structure perspective.

– We design a dual-channel graph encoder to effectively model the two kinds of rich 
structure information.

– We conduct extensive experiments on five widely used datasets, and the results demon-
strate that our proposed approach has overwhelming superiority over the state-of-the-
art baseline methods in terms of both metrics, i.e., Accuracy and F1 score.

2  Related work

Aspect-based sentiment classification is a common task in natural language processing. 
Most of the early works use basic machine learning classification methods with labor-
intensive hand-crafted features as their key features (Kiritchenko et  al. 2014; Wagner 
et al. 2014). In recent years, many neural network models such as Recurrent Neural Net-
works (RNNs) (Liu and Zhang 2017; Wang et al. 2016) have been utilized for the task of 
aspect-based sentiment classification. Tang et al. (2015) model the relatedness of a target 
word with its context words based on the long short-term memory (LSTM) (Hochreiter 
and Schmidhuber 1997). Tang et al. (2016) attempt to explore the attention mechanism to 
explicitly capture the importance of context words by developing a deep memory network. 
Wang et al. (2016) develop an aspect-to sentence attention mechanism to enforce the model 
to attend to the important context words. Chen et  al. (2017) model the sentiment of the 
phrase-like word sequence based on position-weighted memories and a multiple-attention 
mechanism. Ma et al. (2017) learn context by using attention mechanisms associated with 
targets to gain relevant information about context, and they then model the target based on 
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the information determined by the attention mechanisms. Some researchers also propose to 
adopt convolutional neural networks (CNNs) (Xue and Li 2018; Kalchbrenner et al. 2014; 
Conneau et al. 2017) for aspect-based sentiment classification, which has been shown that 
competitive performance can be achieved by capturing multi-word phrases. Xue et  al. 
(2018) employ convolutional neural networks and gating mechanisms. It has two separate 
convolutional layers on the top of the embedding layer, and a gating unit is then used to 
combine the output of the two convolutional layers.

More recently, inspired by the success of applying graph neural network (GNN) in a 
wide variety of tasks, including node classification, text classification, some researchers 
have recently tried to employ GNN to improve the performance of aspect-based sentiment 
classification. For example, Zhang et  al. (2019) applied a graph convolutional network 
(GCN) to capture long-range relationships between words. Specifically, they take the out-
put of LSTM as the initial representation of word nodes in a sentence, then apply a two-
layer graph convolutional network to obtain syntactic structure features, and retain only 
specific aspects of features through a masking mechanism, and finally obtain sentence rep-
resentation by aspect-aware attention. Sun et al. (2019) leverage the Bi-LSTM to account 
for contextual information between successive words, and then exploit a GCN to model 
the dependencies along the syntactic paths of the dependency tree. Huang et  al. (2020) 
incorporate external pre-training knowledge by BERT to model the interaction between the 
context and aspect words, and utilize the graph attention network on the dependency tree 
structure to model the long-distance dependency. Liang et al. (2022) propose a graph con-
volutional network based on SenticNet, which exploits the contextual affective knowledge 
of a sentence with respect to the target aspect. Xiao et al. (2022) develop a relational graph 
attention network (RGAT) based on a part-of-speech guided syntactic dependency graph, 
which is constructed to capture the information in the syntactic dependency trees.

Although these GNN-based methods above have achieved promising results and 
become the state-of-the-arts, they still have some limitations. First, these methods mainly 
model the word distant relationship based on the structure of the syntactic dependency 
tree, which would suffer from the sparsity issue. Given an example sentence “It fucking 
harry potter weekend annoying!”, a colloquial sentence in twitter. Since this sentence has 
no explicit syntactic structure, it will inevitably lead to a sparse extracted syntactic depend-
ency structure. Second, these works only focus on modeling one kind of structure informa-
tion (i.e. syntactic dependency structure) while ignore other kinds of rich structure infor-
mation between words, such as the consecutive structure of words within a sentence, the 
co-occurrence structure between words in the corpus. Differ from existing research works, 
our proposed approach attempts to simultaneously model both the text sequence structure 
and the enhanced dependency structure via a dual-channel graph encoder. It is worth not-
ing that we expand the syntactic dependency tree structure by further accounting for the 
global word co-occurrence information in order to alleviate the sparsity issue.

3  Our approach

We assume that there is a sentence S = (w1,⋯ ,w�+1,⋯ ,w�+m,⋯ ,wn) consisting of 
n-words, where (w�+1,⋯ ,w�+m) represents the aspect. The framework of our proposed 
model SEDC-GCN is shown in Fig.  2, which mainly consists of three components: 1) 
Text Encoder. It aims to model the contextual information of the text; 2) Dual-Channel 
Graph Encoder. This component is designed to capture the structure information from 
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two different channels, i.e., the text sequence structure channel and the enhanced depend-
ency structure channel. A CoGCN module is employed to fuse information from the two 
channels; 3) Aspect-Specific Attention Module. It is utilized to learn aspect-specific sen-
tence representations based on the outputs of the text encoder and the dual-channel graph 
encoder.

3.1  Text encoder

The text encoder first embeds the sentence S to a word embedding sequence 
(e1,⋯ , e�+1,⋯ , e�+m,⋯ , en) ∈ ℝ

n×de with a pre-trained matrix of word embeddings 
M ∈ ℝ

|V|×de , where |V| denotes the vocabulary size and de is the dimension of the word 
embedding. Intuitively, as the objective of aspect-based sentiment classification is to iden-
tify the sentiment polarity of the target aspect, it should focus on words relating to the 
aspect while alleviate the influence of other less relevant words. Given the sentence “The 
appetizers are excellent, while the service is quite slow.” and the target aspect “appetizers”, 
it should pay more attention to these close words (e.g., “excellent”) instead of these distant 
ones (e.g., “quite slow”). Therefore, words that are closer to the aspect in position should 
contribute more in judging the sentiment of the aspect (Gu et al. 2018), and we introduce 
the absolute distance from each context word wt to the corresponding aspect, and get a posi-
tion sequence (a1,⋯ , a�+1,⋯ , a�+m,⋯ , an) for S. Then a position embedding lookup table 
with random initialization Ep ∈ ℝ

n×da is utilized to map the position sequence to a position 
embedding sequence (p1,⋯ , p�+1,⋯ , p�+m,⋯ , pn) ∈ ℝ

n×da , where da is the dimension of 
the position embedding. For each word wi , its embedding e′

i
 is represented as the concat-

enation of its word embedding ei and position embedding pi , i.e., e�
i
= [ei;pi] ∈ ℝ

dw , where 
dw = de + da , and [; ] denotes the concatenation operation.

To capture the contextual representation of each word wi in S, we employ the bidirec-
tional long short-term memory (BiLSTM) (Zhou et al. 2016) to learn the word embedding 
hi ∈ ℝ

2dw for wi as follows:
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Fig. 2  The framework of the proposed approach SEDC-GCN
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where hi = [ �⃗hi;
�⃖hi] , �⃗hi ∈ ℝ

dw and �⃖hi ∈ ℝ
dw are the forward and backward rep-

resentations, respectively. Finally, we get the output of the text encoder 
H = (h1,⋯ , h�+1,⋯ , h�+m,⋯ , hn) ∈ ℝ

n×2dw.

3.2  Dual‑channel graph encoder

After obtaining the contextual representations from the text encoder, we develop a dual-
channel graph encoder to model the structure information from two different perspectives, 
i.e., the text sequence structure channel and the enhanced dependency structure chan-
nel. We leverage a CoGCN module to seamlessly integrate these two kinds of structure 
information in a mutual reinforcement manner. As demonstrated in Fig.  2, dual-channel 
graph encoder mainly consists of two graph (i.e., the text sequence graph and the enhanced 
dependency graph) construction modules and a CoGCN module.

3.2.1  Text sequence graph (SeqGCN)

Inspired by Huang et  al. (2019), we build a text sequence graph for each text sequence, 
where word nodes within a small window in the sequence are connected, and the rep-
resentations of nodes will be updated in the text sequence graph through a GCN, i.e., a 
node aggregates information from its neighboring nodes to update its representation. In 
particular, to construct a graph for a given text, we first treat all words that appear in the 
text as graph nodes, and connect two words if they are in the same window. Note that we 
set a threshold p to gather information for different window size in the text. Formally, the 
sequence graph of the text S is defined as:

where hi denotes the representaion of the i-th word, V and E are the node set and edge set 
of the graph. Figure 3a shows an example of the construction process of the text sequence 
graph. A node i and node j’s edge weight is expressed in the following form:

As suggested in Zhang et al. (2019), self-loops are added to each node and the activa-
tions are normalized in the graph convolution prior to converting it into linearity as follows:

(1)�⃗hi =LSTM( �⃗hi−1, e
�
i
)

(2)�⃖hi =LSTM( �⃖hi−1, e
�
i
)

(3)V ={hi|i ∈ [1, n]}

(4)E ={eij|i ∈ [1, n];j ∈ [i − p, i + p]}

(5)As
ij
=

{
1 i ∈ [1, n], j ∈ [i − p, i + p]

0 otherwise

(6)ĥ
s,(l)

i
=g(

n∑

j=1

Ãs
ij
Ws,(l)h

s,(l−1)

j
∕ds

i
+ bs,(l))
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where hs,(l−1)
j

 is the learned representation of the j-th node in the (l − 1)th layer ( hs,(0)
j

= hj ), 
g(⋅) is a nonlinear function, e.g., ReLU. Norm(⋅) is a normalization layer, and Ãs = As + I 
where I is the n × n identity matrix, ds

i
=
∑n

j=1
Ãs
ij
 denotes the degree of the i-th node, Ws,(l) 

and bs,(l) are layer-specific trainable parameters, l is the layer number and i is the target 
node for aggregation. By applying GCN on the text sequence graph, we obtain the output 
representation in the l-th layer Hs,(l) = (h

s,(l)

1
,⋯ , h

s,(l)

�+1
,⋯ , h

s,(l)
�+m,⋯ , hs,(l)

n
).

3.2.2  Enhanced dependency graph (EdepGCN)

We also incorporate the syntactic information by modeling the syntactic dependency tree 
in order to capture distant relationship between words. Existing approaches (Zhang et al. 
2019; Hou et al. 2021) model the word distant relationship only based on the structure of 
the syntactic dependency tree, which would suffer from the sparsity issue. To address this 
issue, we take into account the global word co-occurrence information, e.g., point-wise 
mutual information (PMI), to obtain word pairs with high correlation (Yao et  al. 2019). 
Different from conventional methods (Zhang et al. 2019) which directly utilize the syntac-
tic dependency tree, we further expand the syntactic dependency tree by adding edges with 

(7)h
s,(l)

i
=Norm(h

s,(l−1)

i
+ ĥ

s,(l)

i
)
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Fig. 3  Construction processes of the two kinds of graphs. The top part corresponds to the text sequence 
graph, where we set p=2 for each node. The bottom part corresponds to the enhanced dependency graph, 
which relies on the syntactic dependency structure and the global word co-occurrence structure
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high correlated relationships, and obtain the enhanced dependency graph. Formally, the 
PMI value of the word pair (wi,wj) is calculated as:

where #W(i) is the number of sliding windows containing the word wi in the corpus, 
#W(i, j) is the amount of sliding windows that contain both words wi and wj , and #W is the 
number of sliding windows total in the corpus. If the PMI values of two words are positive 
, then they have edges. Figure 3b demonstrates an example of the construction process of 
the enhanced dependency graph.

It is worth noting that the weight of edges in the syntactic dependency tree is equal 
(e.g., 1 by default), while the PMI value is in a large range (e.g., [0, +∞)). If we directly 
incorporate the PMI values as the weight of edges, the influence of these syntactic edges 
will be largely weakened. To deal with this issue, we assign an edge weight for each of the 
PMI edge rather than using the original PMI value as the edge weight. A node i and node 
j’s edge weight is expressed in the following form:

As there are two types of edges (i.e., PMI edge and syntactic edge) in the enhanced depend-
ency graph, we adopt a heterogeneous graph based graph convolution networks (Zhang 
and Qian 2020) to aggregate information from different types of edges. In this case, each 
node first aggregates information from the same type of edges, then concatenates the cor-
responding representations of each edge type as a new representation of the node:

where hd,(l−1)
j

 is the learned representation of the j-th node in the (l − 1)th layer ( hd,(0)
j

= hj ), 
and Wd,(l) is the weight matrix in the lth-layer. Ãdp = Adp + I , where Adp denotes the adja-
cency matrix corresponding to the PMI dependency of the graph and I being the n × n 

(8)PMI(i, j) = log
p(i, j)

p(i)p(j)

(9)p(i, j) =
#W(i, j)

#W

(10)p(i) =
#W(i)

#W

(11)A
dp

ij
=

{
1 PMI(i, j) > 0

0 otherwise

(12)Add
ij

=

{
1 wi,wj with a dependency edge

0 otherwise

(13)ĥ
dp,(l)

i
= 𝜎(

n∑

j=1

Ã
dp

ij
Wd,(l)h

d,(l−1)

j
∕d

dp

i
)

(14)ĥ
dd,(l)

i
= 𝜎(

n∑

j=1

Ãdd
ij
Wd,(l)h

d,(l−1)

j
∕ddd

i
)

(15)h
d,(l)

i
= Norm(h

d,(l−1)

i
+ [ĥ

dp,(l)

i
;ĥ

dd,(l)

i
] + bd,(l))
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identity matrix. ddp
i

=
∑n

j=1
Ã
dp

ij
 denotes the degree of the i-th node. Ãdd = Add + I , where 

Add denotes the adjacency matrix corresponding to the syntactic dependency of the graph 
and I being the n × n identity matrix, ddd

i
=
∑n

j=1
Ãdd
ij

 denotes the degree of the ith node. bd,(l) 
is a bias term. By applying GCN on the enhanced dependency graph, we obtain the output 
representation in the l-th layer Hd,(l) = (h

d,(l)

1
,⋯ , h

d,(l)

�+1
,⋯ , h

d,(l)
�+m,⋯ , hd,(l)

n
).

3.2.3  CoGCN

We further leverage information learnt from the text sequence graph and enhanced depend-
ency graph to get better representation for the sentence S. To the end, we develop a CoGCN 
module which includes a multi-layer Co-Attention and a gate layer. The former is used to 
ensure the collaboration of different types of information to be performed at different lev-
els, and the latter is utilized to merge information from both perspectives. Figure 2b illus-
trates the architecture of the CoGCN module.

We leverage the output of text encoder to initialize the node representa-
tions of both the text sequence graph and the enhanced dependency graph, i.e., 
Hs,(0) = (h1,⋯ , h�+1,⋯ , h�+m,⋯ , hn) and Hd,(0) = (h1,⋯ , h�+1,⋯ , h�+m,⋯ , hn) . Then 
we employ the collaborative attention (Ma et al. 2019) to integrate information from both 
graph channels as follows:

where Hs,(l) ∈ ℝ
n×2dw and Hd,(l) ∈ ℝ

n×2dw are the learned representation from the text 
sequence graph and the enhanced dependency graph in the l-th Co-Attention layer, respec-
tively. W1 ∈ ℝ

2dw×2dw , W2 ∈ ℝ
2dw×2dw are all trainable parameters, A1 ∈ ℝ

n×n and A2 ∈ ℝ
n×n 

are the temporary alignment matrices projecting from Hd,(l) to Hs,(l) and Hs,(l) to Hd,(l) , 
respectively. Then we have the updated representations Hs,(l),Hd,(l) as follows:

where CoAttention represents Equations (16)-(19).
We use the gating mechanism to fuse the two learnt representations at the last layer L, 

and get a new feature representation with complementary enhancements as follows:

where � denotes the sigmoid function, L is the number of layers of the CoGCN, 
Wg ∈ ℝ

2dw×4dw are learnable parameters. Finally, the structure representation of the text is 
Hg = (h

g

1
,⋯ , h

g

�+1
,⋯ , h

g

�+m,⋯ , h
g
n) ∈ ℝ

n×2dw.

(16)A1 = softmax(Hs,(l)W1H
d,(l)T )

(17)A2 = softmax(Hd,(l)W2H
s,(l)T )

(18)Hs,(l) =A2H
d,(l)

(19)Hd,(l) =A1H
s,(l)

(20)Hs,(l),Hd,(l) =CoAttention(Hs,(l),Hd,(l))

(21)g =�(Wg[h
s,(L)

i
;h

d,(L)

i
])

(22)hg =gh
s,(L)

i
+ (1 − g)h

d,(L)

i
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3.3  Aspect‑specific attention module

In this subsection, we introduce the process of obtaining sentence representations from 
two different perspectives, i.e., the semantic perspective based on the text encoder, and 
the structure perspective based on the dual-channel graph encoder. In particular, we apply 
two kinds of aspect-specific attention, i.e., Aspect-specific Semantic Attention  and Aspect-
specific Structure Attention, to obtain sentence representation from different perspectives.

Aspect-specific Semantic Attention: From the text encoder module, we get seman-
tic representation of the sentence H = (h1,⋯ , h�+1,⋯ , h�+m,⋯ , hn) . We mask non-
aspect words and keep aspect word unchanged in H, and get a zero-masked representation 
Hmask_a = (0,⋯ , h�+1,⋯ , h�+m,⋯ , 0) . Then we utilize the max-pooling operation to get 
the aspect representation ha ∈ ℝ

2dw.
Finally, we retrieve the important features that are semantically related to the aspect, 

and set the retrieval-based attention weights (Zhang et al. 2019) for each word. The final 
semantic representation zsem for the sentence is formulated as:

where at is the attention score of the t-th word with respect to the aspect.
Aspect-specific Structure Attention: From the Dual-Channel Graph Encoder, we 

obtain the structure representation of the text Hg = (h
g

1
,⋯ , h

g

�+1
,⋯ , h

g

�+m,⋯ , h
g
n) . The 

contextual information related to the aspect is retrieved from a structure perspective. Simi-
lar to the aspect-specific semantic attention module, we get a zero-masked representa-
tion Hmask_b = (0,⋯ , h

g

�+1
,⋯ , h

g

�+m,⋯ , 0) and then apply the max-pooling operation on 
Hmask_b to obtain the aspect representation hb ∈ ℝ

2dw . The final structure representation zstru 
for sentence is formulated as follows: 

 where at is the attention score of the t-th respect to the aspect.
After we get the sentence representations from both semantic and structure perspectives, 

we merge them with the concatenation operation and obtain the final aspect-specific sen-
tence representation r as follows:

(23)et =h
T
a
ht

(24)at =
exp(et)∑n

i=1
exp(ei)

(25)zsem =

n∑

t=1

atht

(26)et =h
T
b
h
g

t

(27)at =
exp(et)∑n

i=1
exp(ei)

(28)zstru =

n∑

t=1

ath
g

t

(29)r = [zsem;zstru]

106 Journal of Intelligent Information Systems (2023) 60:97–117



1 3

3.4  Final representation and model training

We feed r to a fully connected layer and a softmax layer to generate the probability distri-
bution over sentiment labels y ∈ ℝ

dy , as follows:

where dy is the number of labels, and Wy ∈ ℝ
dy×4dw and by ∈ ℝ

dy represents trainable 
weights and bias.

To train the classifiers, the objective is to minimize the cross-entropy loss between the 
predicted probability and the ground truth:

where YD represents the set of sentences with labels, Y is the ground-truth label matrix, 
ydk is the predicted probability of the sentence d to the k-th label, � is the coefficient of L2 
regularization, and Θ denotes all parameters. Figure 4 illustrates the flow diagram of the 
proposed methodology.

4  Experiment

4.1  Datasets

Our experiments are conducted on five benchmark datasets, including Twitter, LAPTOP, 
REST14, REST15, and REST16. Specifically, The dataset Twitter is originally built from 
Dong et al. (2014). Both LAPTOP and REST14 are constructed from SemEval 2014 task 
4 (Pontiki et al. 2014). REST15 and REST16 are constructed from SemEval 2015 task 12 
(Pontiki et al. 2015) and SemEval 2016 task 5 (Pontiki et al. 2016), respectively. Following 
previous studies (Tang et al. 2016; Zhang et al. 2019; Zhang and Qian 2020), we remove 
the samples with conflicting polarities and those without explicit aspects in the sentences. 
The statistics of datasets are demonstrated in Table 1.

4.2  Compared methods

Our proposed model (SEDC-GCN) was compared to the following methods:

– LSTM (Tang et al. 2016): It proposes a target-dependent LSTMs to model the interac-
tion between the target and the context words.

– MemNet (Tang et al. 2016): MemNet leverages deep memory network for aspect level 
sentiment classification. It utilizes multi-hop attention layers on the context word 
embeddings for sentence representation.

– AOA (Huang et al. 2018): It captures the interaction between aspect words and contex-
tual words by employing an attention-over-attention module (Cui et al. 2017).

– IAN (Ma et al. 2017): It proposes an interactive attention network to interactively learn 
the attention scores in the context and the target, and generates representations of the 
target and the context, respectively.

(30)y = softmax(Wyr + by)

(31)L = −
∑

d∈YD

dy∑

k=1

Ydk log ydk + �||Θ||2
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– TNet-LF (Li et al. 2018): This model applies a target-specific transformation compo-
nent to better integrate target information into the word representations.

– ASGCN (Zhang et al. 2019): It apply a multi-layered graph convolution structure with 
in dependency graphs to capture long-distance syntactical relationships among words.

– BiGCN (Zhang and Qian 2020): It uses hierarchical graph structure to integrate word 
co-occurrence information and dependency type information.

4.3  Experimental settings

For SEDC-GCN, we initialize the word embeddings with 300-dimensional GloVe vectors 
(Pennington et al. 2014). The dimensionality of the position (i.e., the relative position of 

Input Data

Data Pre-Processing

Model Training & Classification

Text Sequence Graph Dependency Graph PMI Graph 

Enhanced Dependency Graph 

Coordinate Graph Convolution Network

Rich Structure Extraction

Aspect-specific Attention Module

Fig. 4  Illustration of the proposed methodology

Table 1  Statistics of the datasets Dataset #Positive #Neutral #Negative

TWITTER Train 1561 3127 1560
Test 173 346 173

LAPTOP Train 994 464 870
Test 341 169 128

REST14 Train 2164 637 807
Test 728 196 196

REST15 Train 912 36 256
Test 326 34 182

REST16 Train 1240 69 439
Test 469 30 117
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each word in a sentence with respect to the aspect) embeddings is set to 30. The threshold p 
for constructing the text sequence graph is set to 2, the sliding window size of the enhanced 
dependency graph is set to 3, and the number of CoGCN layers is set to 3. The dropout rate 
for the input word embeddings of BiLSTM is set to 0.4. We use Adam as the optimizer 
with a learning rate of 0.003. The L2 regularization coefficient is 10−5 and the batch size is 
16. We implement SEDC-GCN using PyTorch and conduct the dependency parsing using 
Spacy. All the experiments are conducted on the hardware with Intel Core CPU I7-9700K 
3.6 GHz and NVIDIA GeForce GTX 2080TI. Our code and dataset are available at https:// 
github. com/ julin 1991/ SEDC- GCN.

4.4  Main results

As can be seen in Table  2, and we can observe that our proposed method SEDC-GCN 
achieves the best results on all datasets, which proves that it is superior. In particular, the 
baseline method LSTM obtains the worst results on five datasets. MemNet achieves a bet-
ter performance than LSTM because it utilizes the multi-hops attention on the contextual 
word embeddings for sentence representation. AOA and IAN both rely on the attention 
mechanism to capture the interaction information between context and opinion target and 
demonstrate a better performance than MemNet. However,TNet-LF proposes to exploit 
a aspect-specific transformation component to better apply aspect information into the 
word representations. Obviously, it outperforms the previously mentioned baseline mod-
els. ASGCN uses syntactic dependency graphs to learn relational representations of dis-
tant words. The best performing baseline method BiGCN leverages the hierarchical graph 
structure to integrate word co-occurrence information and dependency tree information. 
Compared with all baselines, our proposed approach SEDC-GCN achieves the best perfor-
mance. In particular, in terms of the metric accuracy, SEDC-GCN achieves performance 
gains of 74.42%, 77.74%, 83.30%, 81.73% and 90.75% on TWITTER, LAPTOP, REST14, 
REST15, and REST16, respectively, which are 0.35%, 4.22%, 1.62%, 0.70% and 2.01% 
better than the best performing baseline BiGCN. Similar performance improvements are 
also observed in terms of the metric macro-averaged F1 score. The main reason is that we 
develop a dual-channel graph encoder to effectively capture the rich structure information 
from two different perspectives.

Table 2  Performance comparison of all methods in terms of accuracy (ACC) and Macro-averaged F1 score 
(F1). The best performance on each dataset are in bold

Model TWITTER LAPTOP REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

LSTM 69.56 67.70 69.28 63.09 78.13 67.47 77.37 55.17 86.80 63.88
MemNet 71.48 69.90 70.64 65.17 79.61 69.64 77.31 58.28 85.44 65.99
AOA 72.30 70.20 72.62 67.52 79.97 70.42 78.17 57.02 87.50 66.21
IAN 72.50 70.81 72.05 67.38 79.26 70.09 78.54 52.65 84.74 55.21
TNet-LF 72.98 71.43 74.61 70.14 80.42 71.03 78.47 59.47 89.07 70.43
ASGCN 72.15 70.40 75.55 71.05 80.77 72.02 79.89 61.89 88.99 67.48
BiGCN 74.16 73.35 74.59 71.84 81.97 73.48 81.16 64.79 88.96 70.84
SEDC-GCN 74.42 73.37 77.74 74.68 83.30 77.51 81.73 66.23 90.75 73.84

109Journal of Intelligent Information Systems (2023) 60:97–117

https://github.com/julin1991/SEDC-GCN
https://github.com/julin1991/SEDC-GCN


1 3

4.5  Ablation study

In this Section, we perform an ablation study to investigate how different components 
in our proposed model contribute to the overall performance. We compare the complete 
model SEDC-GCN with its four variants:

– SEDC-GCN (w/o SeqGCN): We remove the text sequence graph from the dual-chan-
nel graph encoder, where the text sequence graph is leveraged to learn representations 
through neighbor words within a reasonably small window.

– SEDC-GCN (w/o EdepGCN): We discard the enhanced dependency graph which 
explores the syntactic information extracted from a dependency tree. Note that mod-
eling the enhanced dependency graph is useful to capture distant relationship between 
words.

– SEDC-GCN (w/o PMI): We remove the PMI edges from the enhanced dependency 
graph, where the PMI edge is leveraged to capture the global word co-occurrence infor-
mation.

– SEDC-GCN (w/o Dual.): This variant does not consider the dual-channel graph 
encoder which models the structure information from two different perspectives, i.e., 
the text sequence structure channel and the enhanced dependency structure channel.

– SEDC-GCN (w/o Atten.): We replace the aspect-specific structure attention with a sim-
ple retrieval-based attention (Zhang et al. 2019).

The results of the ablation study are reported in Table 3. First, we observe that the removal 
of text sequence graph from the dual-channel graph encoder, i.e., SEDC-GCN (w/o 
SeqGCN), leads to large performance degradation on all datasets. It validates the effective-
ness of capturing text sequence information through neighbor words within a reasonably 
small window. Similarly, the removal of the enhanced dependency graph, i.e., SEDC-GCN 
(w/o EdepGCN), results in a significant drop in performance, which reveals the impor-
tance of modeling the enhanced dependency graph. The removal of PMI edges from the 
enhanced dependency graph, i.e., SEDC-GCN (w/o PMI), leads to a substantial perfor-
mance degrades on all datasets, which indicates the effectiveness of expanding the syn-
tactic dependency tree with PMI edges. In addition, if we remove the dual-channel graph 
encoder, i.e., SEDC-GCN (w/o Dual.), performance will be affected, especially on the 
datasets LAPTOP, REST14 and REST15. This is reasonable as the dual-channel graph 
encoder exploits structure information from both the text sequence graph and the enhanced 
dependency graph, and the removal of the dual-channel graph encoder will cause more 
information loss as compared with SEDC-GCN (w/o SeqGCN) and SEDC-GCN (w/o Ede-
pGCN). It also shows that the text sequence graph and the enhanced dependency graph 
are complementary to some extent when they are explored in the the dual-channel graph 
encoder. At last, the removal of aspect-specific structure attention, i.e., SEDC-GCN (w/o 
Atten.), results in a substantial drop in performance on all datasets, indicating the impor-
tance of the use of the aspect-specific structure attention module.

4.6  Impact of the number of layers

To investigate the impact of the number of layers in the dual-channel graph encoder, we 
study the performance of SEDC-GCN with various number of layers ranging from 1 to 8. 
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The results are demonstrated in Fig. 5. We can see that the performance on dataset TWIT-
TER first increases with the increase of the number of layers, reaching the peak at layer 3 
in terms of both metrics. After that, it starts to decline gradually when we further raise the 
number of layers. Similar results are observed on other datasets. This is mainly because if 
we choose a small number of layers, the structure information from both channels (i.e., the 
text sequence channel and the enhanced dependency channel) can not be well explored. 
On the contrary, when we employ a large number of layers, it may lead to less distinguish-
able node representations and suffer from the over-smoothing issue (Wang et al. 2021). It 
demonstrates that our model can achieve a promising performance with a relatively small 
number of layers.

4.7  Impact of the sliding window size

The sliding window size is leveraged to calculate word co-occurrence in the construction 
process of the enhanced dependency graph, i.e., if two words appear in a sliding window, 
then they are considered as co-occurrence. A larger sliding window size indicates that the 
two words would be considered as correlated even they are distant from each other in a 
sequence. Figure  6 shows the performance of SEDC-GCN on all five datasets with the 

Table 3  Experiments on the ablation study on five datasets. The best results on each dataset are in bold

Ablation TWITTER LAPTOP REST14 REST15 REST16

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

SEDC-GCN 74.42 73.37 77.74 74.68 83.30 77.51 81.73 66.23 90.75 73.84
SEDC-GCN (w/o SeqGCN) 73.84 72.53 77.43 73.88 82.77 76.07 80.44 67.20 88.80 73.18
SEDC-GCN (w/o EdepGCN) 74.13 72.55 76.96 73.10 83.21 76.84 81.37 64.40 89.61 72.85
SEDC-GCN (w/o PMI) 73.99 72.76 76.80 72.84 82.14 74.77 80.26 64.93 87.99 71.18
SEDC-GCN (w/o Dual.) 74.28 72.65 75.71 72.02 82.86 75.27 80.07 63.95 89.29 74.29
SEDC-GCN (w/o Atten.) 73.84 71.91 76.33 71.79 82.50 75.50 81.00 66.36 88.96 70.98
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Fig. 5  The impact of the number of layers (L). The performance of SEDC-GCN with respect to different 
number of CoGCN Layer are reported
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window size varying from 1 to 8. From Fig. 6, we can observe that the sliding window size 
affects the performance of SEDC-GCN in both accuracy and F1.

The changing of accuracy and F1 with different sliding window size share a similar 
trend on all five datasets. Specifically, with the increase of the sliding window size, the 
performance of SEDC-GCN first rises up until it reaches the peak when the window size 
equals to 3. When we keep increasing the sliding window size, it starts to decline gradually. 
This changing trend is reasonable as when the sliding window size is small, it could not 
encode enough correlation information between words, resulting in inferior performance. 
When the sliding window size is set to a large value, it may introduce more irrelevant cor-
relation information, making it less effective for the task.

4.8  Performance analysis of multiple aspects

In order to further analyze the performance improvement of our proposed model SE-GCN 
for multi-aspects sentences, similar to Zhu et  al. (2021), we also divide the test set into 
three groups. Figure 7 shows the results of SEDC-GCN and two best performing baseline 
methods on four datasets. From Fig. 7, we can observe that on the Single-Aspect & Single-
Polarity category our proposed model SEDC-GCN achieves a higher accuracy than both 
ASGCN and BiGCN on the REST14 and REST15 datasets and a comparable performance 
on the two remaining datasets (i.e., LAPTOP and REST16). When considering the metric 
F1, our method is consistently superior to both ASGCN and BiGCN on all four datasets. 
The results show that SEDC-GCN can achieve a better performance when the task is sim-
ple where only each sentences only contains a single aspect.

When on the category of the Multi-Aspect & Single-Polarity, our method demonstrates 
a competing performance compared to the two competing baselines on all datasets in terms 
of both accuracy and F1. It is interesting that all three methods have obtained a better per-
formance on the Multi-Aspect & Single-Polarity category than the other categories (i.e., 
Single-Aspect & Single-Polarity and Multi-Aspect & Multi-Polarity). This may be because 
that the sentiment classification task becomes easier on the Multi-Aspect & Single-Polarity 
category. When a sentence contains multiple aspects with the same polarity, the sentiment 
consistency between these aspects will help each other to correctly identify the sentiment 
polarity of each aspect.
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On the contrary, when the polarities of multiple aspects are different, i.e., Multi-Aspect 
& Multi-Polarity, the task will become more complicate. That is why all methods perform 
inferior on the Multi-Aspect & Multi-Polarity category as compared with the other two cat-
egories. It is worth noting that our method performs considerably better than ASGCN and 
BiGCN on the most difficult category in terms of both metrics. It verifies the capability of 
our method in modeling the corresponding information of each aspect.

4.9  Case study

In this section, we present a case study with several randomly sampled cases. Specifically, 
we visualize the attention scores generated by our proposed approach SEDC-GCN and two 
best performing baselines in Table 4. The color scale of the background indicates the atten-
tion scores of words in each sample, where a darker color corresponds to a higher attention 
score.

For the aspect “chinese style indian food” in the first sample, ASGCN makes a wrong 
prediction as it is prone to attend to the opinion word “not” which is correlated to another 
aspect “place” in the sample. While both BiGCN and our proposed model SEDC-GCN 
effectively attend to the corresponding opinion words of the aspect. Considering the second 
sample, both baseline methods ASGCN and BiGCN attend to improper opinion words like 
“bigger”, and incorrectly prediction the sentiment of the aspect “cd/dvd drive” as “nega-
tive”. In contrast, SEDC-GCN mainly attends to the aspect words themselves and assigns 
the correct label “neutral” to the given aspect. The last sample “a beautiful atmosphere, 
perfect for drinks and appetizers” which contains two aspects (i.e., “atmosphere” and 
“drinks”) with different sentiment attitudes. All three methods can correctly identify the 
sentiment of the aspect “atmosphere” via placing more attention to opinion words “beauti-
ful” and “perfect”. However, considering the aspect “drinks”, both ASGCN and BiGCN 
make incorrectly classification as they attend to the opinion words “perfect”, which are the 
opinions towards the aspect “atmosphere” while not “drinks”. Our method SEDC-GCN 
assigns less attention to these unrelated opinion words like “beautiful” and “perfect” and 
correctly identifies the sentiment label of the aspect “drinks” as “neutral”. This result is 
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also consistent with the experimental analysis of the different number of aspects and polar-
ities where our method performs consistently better than ASGCN and BiGCN when the 
polarities of multiple aspects are different. Through the above comparison, we can see that 
our method SEDC-GCN can correctly attend to aspect-specific opinion words via effec-
tively modeling the rich structure information from different channels .

5  Conclusion

In this paper, we propose a novel method, named SEDC-GCN, for aspect-based sentiment 
classification. Specifically, we develop a dual-channel graph encoder to model the struc-
ture information from two different perspectives, i.e., the text sequence structure channel 
and the enhanced dependency structure channel. Then, we obtain sentence representations 
from two different perspectives, i.e., the semantic perspective based on the text encoder, 
and the structure perspective based on the dual-channel graph encoder. Experimental 
results on five benchmark datasets show that the proposed SEDC-GCN can perform better 
than state-of-the-art baseline methods. Compared to the best performing baseline BiGCN, 
SEDC-GCN achieves relative performance improvements of 0.35%, 4.22%, 1.62%, 0.70% 
and 2.01% in terms of accuracy on TWITTER, LAPTOP, REST14, REST15, and REST16, 
respectively. Similar performance improvements are observed in terms of the metric 
macro-averaged F1 score. In addition, we verify the effectiveness of each component in our 
proposed method SEDC-GCN, and the results show that each component plays an impor-
tant role in SEDC-GCN. The impact of the number of layers and the sliding window size 
are also investigated, and the results demonstrate that on most of the datasets our model 
obtains the best performance when both the number of layers and the sliding window size 
equal to 3 in terms of both metrics.

It is worth noting that the main contribution of this work is to verify the effectiveness 
of exploiting the rich structure information by constructing a text sequence graph and an 
enhanced dependency graph, which is a general strategy and can be easily applied to these 

Table 4  Case Study. Visualization of attention scores from ASGCN, BiGCN, and SEDC-GCN on testing 
examples, along with their corresponding predictions and ground truth labels. The darker background color 
indicates a higher attention score, and the notations 

√
 and × indicate correct and incorrect predictions, 

respectively

Model Aspect Attention visualization Prediction Label
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BERT-based approaches. In the future work, we plan to investigate its effectiveness with 
regard to these BERT-based frameworks.
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