A Unified and Discriminative Model for Query Refinement

Jiafeng Guo¹, Gu Xu², Xueqi Cheng¹,Hang Li² ¹Institute of Computing Technology, CAS, China ²Microsoft Research Asia, China

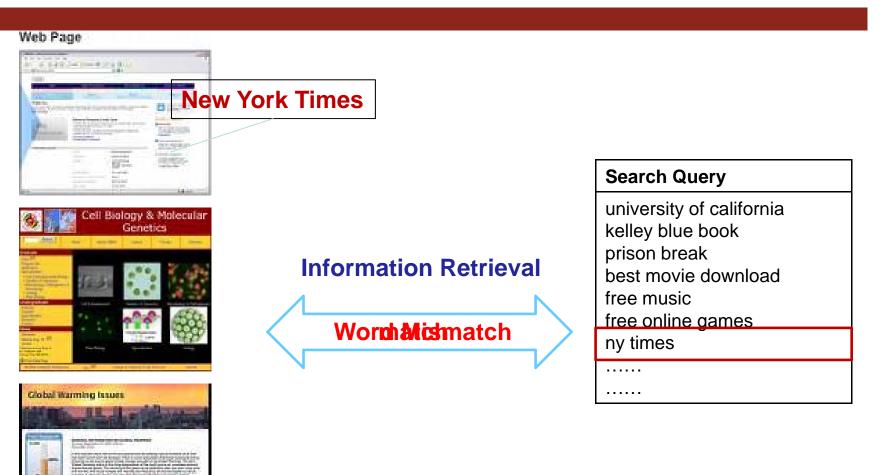
Outline

- Motivation
- Our Approach
- Experimental Results
- Conclusion

Outline

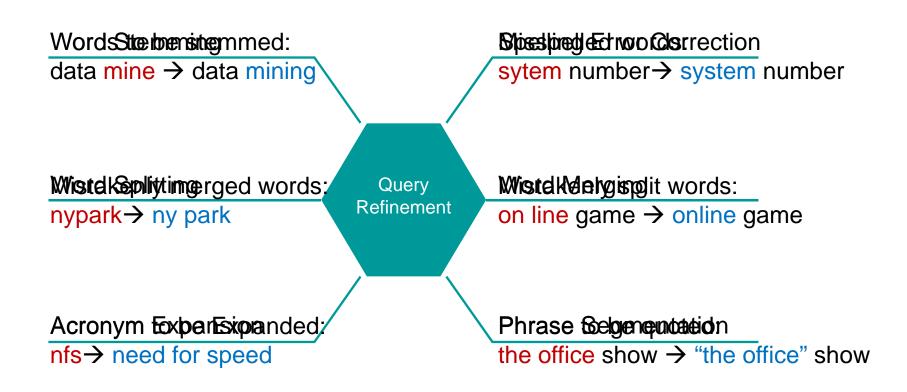
- Motivation
- Our Approach
- Experimental Results
- Conclusion

Introduction



Cont'

ill-formed queries



Previous Work

- Query Refinement:
 - Spelling error correction:
 - [1] Exploring distributional similarity based query spelling correction (Li et al. ACL '06)
 - [2] Spelling correction as an iterative process that exploits the collective knowledge of web users (Cucerzan et al. EMNLP '04)
 - [3] Learning a spelling error model from search query logs (Ahmad et al. EMNLP '05)
 - [4] Improving quary apolling correction using web coareb results (Chap at al. EMNI D

- Query segmentation:
 - [6] Query segmentation for web search (Risvik et al. WWW '03)
 - [7] Learning noun phrase query segmentation (Bergsma et al. EMNLP '07)

Work	Task	Approach
[1][2][3]	spelling correction	generative
[1][3]	spelling correction	discriminative
[5]	word stemming	generative
[6]	phrase segmentation	generative
[7]	phrase segmentation	discriminative

Cont'

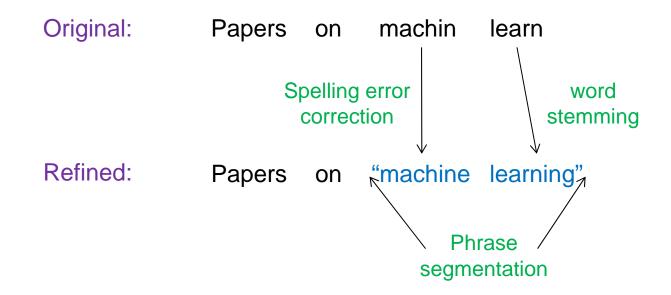
Why unified framework?

- ◆ Various query refinement tasks
 - ✓ Incorporate different tasks easily
- Mutual dependencies between tasks
 - 🖊 Address tasks simultaneously to boost accuracy 🗶

Cascaded Model ?

- Ignore the dependencies between the tasks
- Accumulate errors through the processes

A case of Query Refinement



Cont'

Why discriminative model?

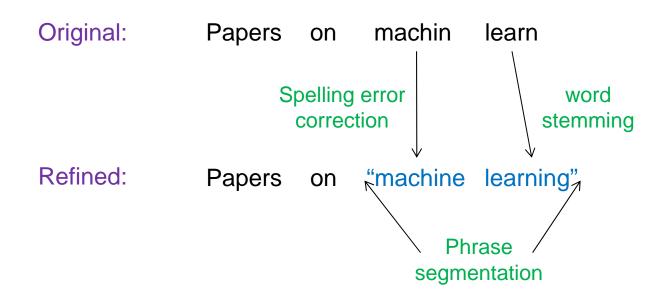
• By nature a structured prediction problem

Enjoy all the merits of discriminative learning

X A direct application of existing models would not work

Conditional Random Fields for Query Refinement (CRF-QR)

A case of Query Refinement

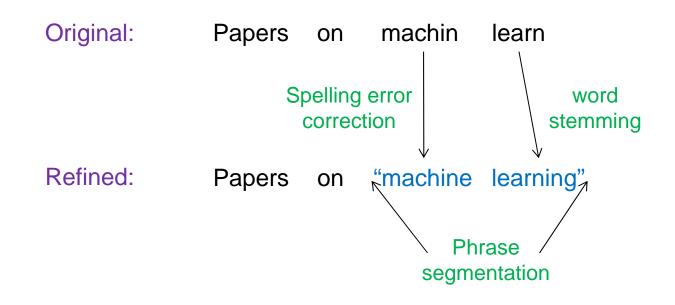


Outline

- Motivation
- Our Approach
- Experimental Results
- Conclusion

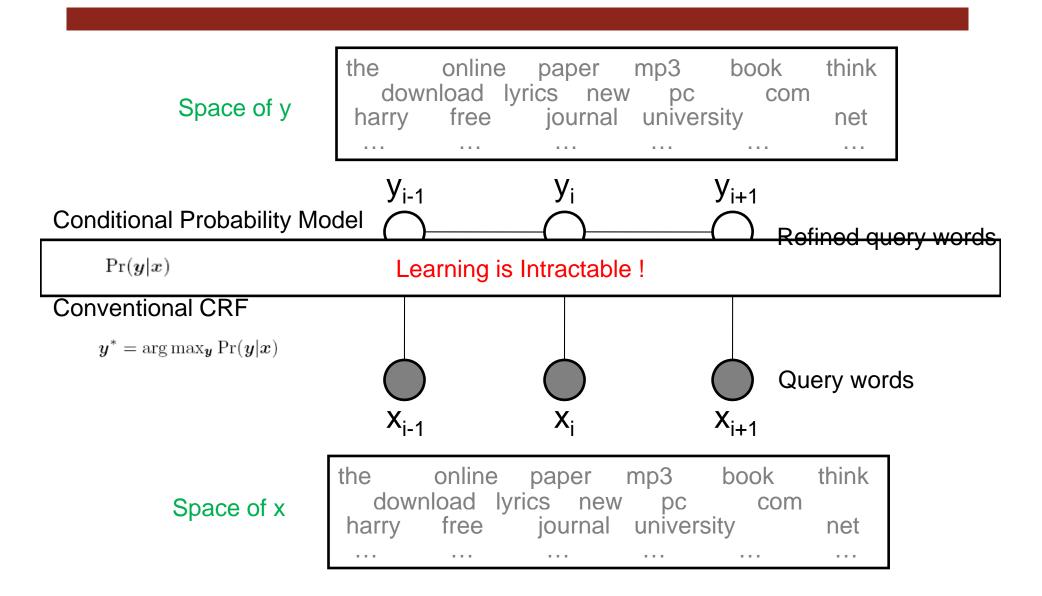
Our Approach

A case of Query Refinement

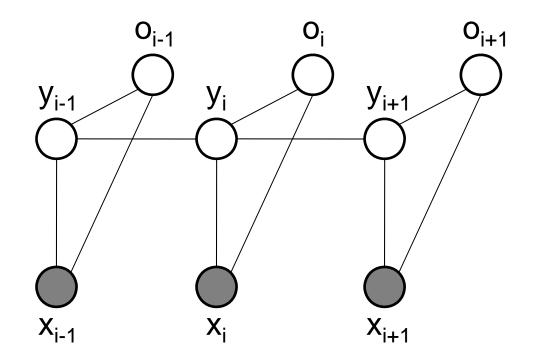


Structured Prediction problem

Conventional CRF



CRF-QR Basic Model



Introducing Refinement Operations

Refinement Operations

Task	Operation	Description
Spelling Error	Deletion	Delete a letter in the word
	Insertion	Insert a letter into the word
Correction	Substitution	Replace a letter in the word with another letter
	Transposition	Switch two letters in the word
Word Splitting	Splitting	Split one word into two words
Word Merging	Merging	Merge two words into one word
	Begin	Mark a word as beginning of phrase
Phrase	Middle	Mark a word as middle of phrase
Segmentation	End	Mark a word as end of phrase
	Out	Mark a word as out of phrase
	+s/-s	Add or Remove suffix `-s'
Word Stemming	+ed/-ed	Add or Remove suffix `-ed'
	+ing/-ing	Add or Remove suffix `-ing'
Acronym Expansion	Expansion	Expand acronym

Conditional Function

$$y^{*} = \arg \max_{y} \Pr(y|x)$$

$$y^{*}o^{*} = \arg \max_{yo} \Pr(y, o|x)$$
Conditional Function
$$\Pr(y, o|x) = \frac{1}{Z(x)} \prod_{i=1}^{n} \phi(y_{i-1}, y_{i})\phi(y_{i}, o_{i}, x)$$
Potential Function
$$\phi(y_{i-1}, y_{i}) = \exp(\sum_{k} \lambda_{k} f_{k}(y_{i-1}, y_{i}))$$

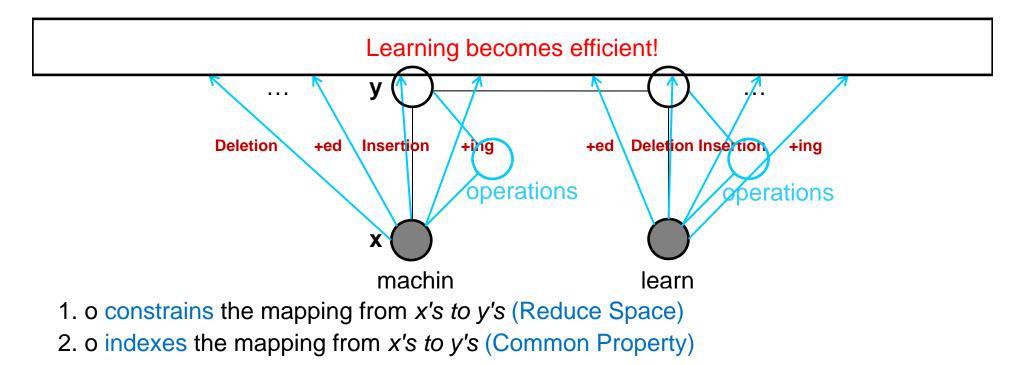
$$\phi(y_{i}, o_{i}, x) = \exp(\sum_{k} \lambda_{k} h_{k}(y_{i}, o_{i}, x))$$

Basic CRF-QR model

$$\Pr(\boldsymbol{y}, \boldsymbol{o} | \boldsymbol{x}) = \frac{1}{Z(\boldsymbol{x})} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_k f_k(y_{i-1}, y_i) + \sum_{k} \lambda_k h_k(y_i, o_i, \boldsymbol{x})))$$

Function of Operations

lean walk machined super soccer machining data the learning paper mp3 book think macin clearn machina lyrics learned machi new pc com lear harry machine journal university net blearn course



Learning and Prediction

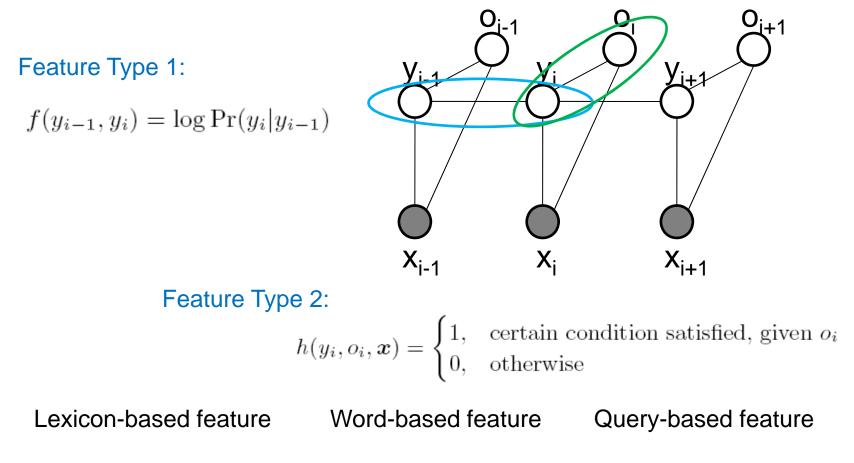
- Learning:
 - Labeled data (x, y, o)
 - Maximize the regularized log-likelihood function

$$\hat{\lambda} = \arg \max_{\lambda} \left\{ \sum_{i=1}^{N} \log(\Pr_{\lambda}(\boldsymbol{y}^{(i)}, \boldsymbol{o}^{(i)} | \boldsymbol{x}^{(i)})) - C \| \boldsymbol{\lambda} \|_2 \right\}$$

- Quasi-Newton Method
- Global optimal is guaranteed
- Prediction:
 - Viterbi algorithm

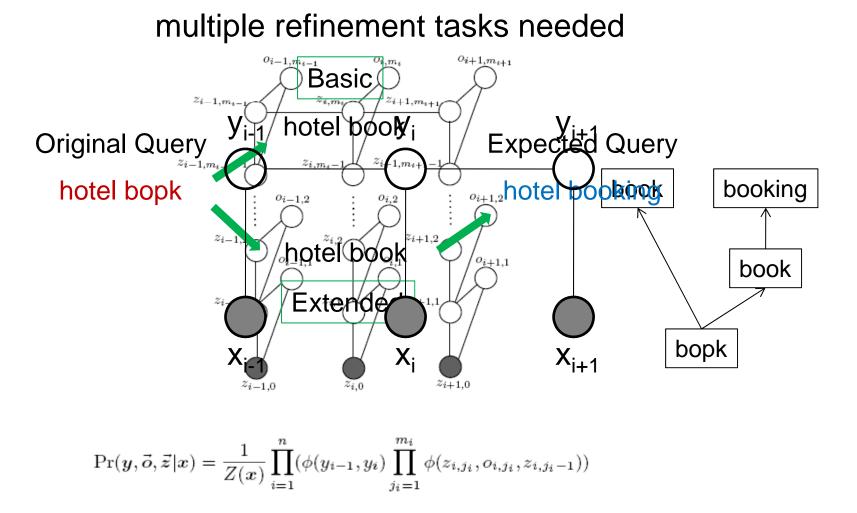
$$y^* o^* = \arg \max_{y,o} \Pr(y, o | x)$$

Features



Position-based feature Corpus-based feature

CRF-QR Extended model



Outline

- Motivation
- Our Approach
- Experimental Results
- Conclusion

Experimental Result

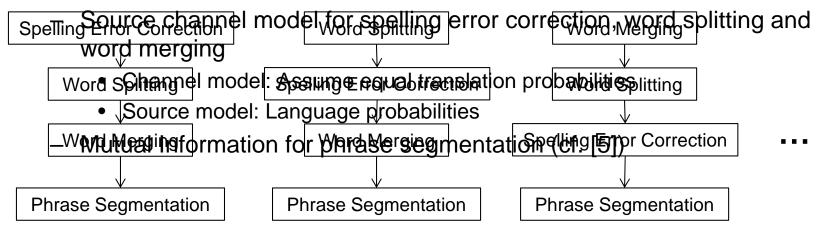
• Data Set

- Random select 10,000 queries
- Average length: 2.8 words
- Four human annotators
- Four refinement types:
 - Spelling error correction
 - Word merging
 - Word splitting
 - Phrase segmentation
- Training 7000 Testing 3000

Refinement Task	Num. of Refined Queries
Spelling Correction	733
Word Splitting	221
Word Merging	323
Phrase Segmentation	5,876

Baseline Method

- Cascaded approach
 - Build one sub-model for each task
 - Same structure and feature set for each sub-model
 - Sequentially connect the sub-models in different orders
- Generative approach



Experiment on Query Refinement

Comparisons between CRF-QR and Baselines on Query Refinement at Query level (%)

	Pre.	Rec.	F1	Acc.
CRF-QR	54.48	40.75	46.63	56.27
Cascaded1	53.38	39.71	45.54	55.57
Cascaded2	53.38	39.71	45.54	55.57
Cascaded3	53.38	39.71	45.54	55.57
Cascaded4	53.45	39.76	45.60	55.60
Cascaded5	53.45	39.76	45.60	55.60
Cascaded6	53.45	39.76	45.60	55.60
Generative	30.46	32.95	31.66	39.10

Relative Improvement: F1 Score 2.26% Accuracy 1.21%

Cont'

Comparisons between CRF-QR and Baselines on Query Refinement Tasks (%)

	Spelli	Spelling Correction Word Splittin		ting	ing Word Merging			Phrase Segmentation				
	Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1	Pre.	Rec.	F1
CRF-QR	77.16	71.84	74.40	76.47	76.47	76.47	88.89	82.35	85.50	69.21	50.78	58.58
Cascaded1	73.91	68.39	71.04	74.19	67.65	70.77	86.67	76.47	81.25	69.00	50.13	58.07
Cascaded2	73.91	68.39	71.04	74.19	67.65	70.77	86.67	76.47	81.25	69.00	50.13	58.07
Cascaded3	74.68	67.43	70.87	70.59	70.59	70.59	86.67	76.47	81.25	69.01	50.16	58.09
Cascaded4	75.16	67.43	71.09	70.59	70.59	70.59	86.89	77.94	82.17	69.01	50.16	58.09
Cascaded5	74.38	68.39	71.26	74.19	67.65	70.77	86.89	77.94	82.17	69.00	50.13	58.07
Cascaded6	75.16	67.43	71.09	70.59	70.59	70.59	86.89	77.94	82.17	69.01	50.16	58.09
Generative	30.86	92.57	46.29	39.06	59.52	47.17	34.44	84.93	49.01	57.36	53.47	55.35

CRF-QR performs best!

Case Study

- Why CRF-QR can outperform the Baseline methods?
 - Cascaded approach suffers from the neglect of mutual dependencies between tasks
 - E.g. nypark hitel → ny "park hotel"
 - Cascaded approach accumulate errors
 - E.g. bankin las vegas → banking "las vegas" (bank in "las vegas")
 - Generative approach produces more incorrect results
 - E.g. pick up stix \rightarrow pick up six door to door \rightarrow "door to" door

Error Analysis

- (1) Errors were mainly made by one of the refinement tasks
 - E.g. parnell roberts \rightarrow pernell roberts
 - Adding new features
 - Increasing data size for language model training
- (2) Competition between refinement tasks
 - E.g. skate board dudes \rightarrow "skate board" dudes (skateboard dudes)
 - Adding new features
 - Increasing training data size
- (3) Some queries were difficult to refine even for humans
 - E.g. ohio buckeye card \rightarrow "ohio buckeye" card (ohio "buckeye card")

Experiment on Relevance Search

Measure: NDCG

Results on Relevance Search with Entire Query Set (NDCG@3)

	Before	After
Human	0.265	0.304 (+14.7%)
CRF-QR	0.265	0.288 (+8.7%)

Results on Relevance Search with Refined Queries (NDCG@3)

	Refined	Before	After
Human	2023	0.254	0.312 (+22.8%)
CRF-QR	1546	0.258	0.304 (+17.7%)

Cont'

Results on Relevance Search by Query Refinement Tasks (NDCG@3)

		Refined	Before	After
Spelling	Human	208	0.093	0.339
Correction	Unified	163	0.078	0.322
Word	Human	61	0.190	0.333
Splitting	Unified	51	0.180	0.294
Word	Human	120	0.198	0.305
Merging	Unified	111	0.207	0.278
Phrase	Human	1881	0.281	0.308
Segmentation	Unified	1351	0.276	0.288

Outline

- Motivation
- Our Approach
- Experimental Results
- Conclusion

Conclusion

- Query Refinement
 - Automatically reformulate ill-formed queries
 - Better represent users' search needs
- CRF-QR model
 - Unified
 - Discriminative
- Experimental results
 - Query Refinement
 - Relevance Search

Thank You!