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Motivation

® Query Similarity Calculation: Key element of
various IR applications

® query recommendation
® query expansion
® advertisement matching
o ..
® Properly define the similarity is Non-Trivial

® High ambiguity: multiple potential search intent
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Motivation
Apple

Apple tree Apple store
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»
HEHEHES

search intent: search intent:
looking for apple fruits

Intent-aware query similarity

Similarity between queries defined upon search intent
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Existing Methods

Intent-Not-Aware Intent-Aware

Pare-wise Measu res Mixed representation

Independent measured on each pair Biased by popular intent
lgnore unpopular ones

Jaccard coefficient [Beeferman et al. 2000] Apple ~ Apple store
cosine similarity [Baeza-Yates et al. 2004;VVen et al. 2002] APP|e +App|e tree

®

Hybrid methods [Zhang et al. 2006; Jones et al. 2006]
Jaccard & cosine [Deng et al. 2009]
Kernel method [Sahami et al. 2006]

G raph-based Measures Propagate across the boundary

Propagate similarity over query relation graph Wrongly connect queries from
different search intents

Random walk [Craswell et al. 2007] APPIe store ~ App|e tree

®

hitting time [Mei et al. 2008]

SimRank [Antonellis et al. 2008]
Matrix Factorization [Ma et al. 2008]
Graph Projection [Bordino et al. 2010]
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Main ldea

A. ldentify the potential search intent of queries

B. Intent-aware similarity measure
|. Extract intent-aware representations

ll. Apply different types of similarity measures
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A. ldentify Search Intents (Data)

leverage two types of auxiliary data

Clickthrough

Great Context Describing the query Precise information from
ofce Wisdom of crowds

( ﬁlf‘w.,f;;i' Mfice.com -[ S ft
OINERTICIOSOR.con - FEpvTm SO Ware ms office download
Try or buy Office 2010, view product information, get help a

images, and downloads

office.microsoft.com

Shoes & Footwear Onlme High Street Fashion Shoes at Office UK “+ -[ @5 Ofﬁce tv show

www.office.co.uk/ - f 7 ¢
ffice Shoes online shoe shop presenting all the latest hig Shoe SUPPI ier

The Office “\ - #iFH )

www.nbc.com/The_office/

microsoft office

www. b com/The_Office! - A 75 ¢R P www.openoffice.org
Official network site. Cast bios, episode recaps, video clips, photo gallery, games, and orrice
Dwaght's weblog . .
the office www.imdb.com/title/
»enOffice. - The Fre ven Productivit
www.openoffice.org’ - i3 7 th 5 tt0386676/
A multiplatform and muhlmqun office suite and an open-s ath all
other major office suites, free to download, use, and distribe SOftwa-re Ofﬁce Shoes WWW Ofﬁce co Uk
Office - Wiki i fr OpenOfﬁce
en. wikipedia. org/'wiki/Office - ¥ iR M .
An office is generally a room or other area in which people work, but may also denote a Ofﬁce.mlcrOSOft.Com/
position within an organization with specific duties attached to it (see ... footware ofﬁce Uk en-US/DrOdUCtS/
The Office LTV Series 2005 ) lMDb - BT
www.imdb, comtithe/ 1t 03866 -3
$9i%41: 9.1/10 - 419 TV ShOW office season 6
A mockumentary on a group of lypccal ffice workers, wheré
clashes. inappropnate behavior, and ledium. Based on the vt BBC senes
Pro: higher recall Pro: higher precision
Con:irrelevant/spam/advertisement/ambiguity Con: sparse

NEITR7HEHR—


http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/
http://www.nbc.com/The_office/

A. ldentify Search Intents (Algorithm)

Topic Model

PLS| model
top search result snippets — virtual documents 1. select a query g; with probability P(g;),
words in snippets —>» words 2. pick a potential search intent s; with probability P(sx|g:)
potential search intents —> topics 3. generate a word w; with probability P(w;|sk).
) ) N M
log-likelihood | £=%" Z n(gi, w;)log (P(q,) Z P(wa|sk)P(sk|qt))
i=1 j=

Clickthrough

Regularization

powerful constraint:

two queries share many

. — convey similar search intent
same clicked URLs Y

N K
R=3" 3" Cy(P(skla) — P(sklas))’

i,j=1k=1

—1 :
co-click matrix

£ = L-AR
N M N K ,
Regularized lop ode = Zzn(qi,wj)log( q;)ZP w;|sk) P(sk|qi) ) Z Y Ci;(P(skla:) — P(sklgs))’
i=1 j=1 =1 J=1 k=1
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A. ldentify Search Intents (Learning)

E-step:

P(wj|sk)P(sk|g:)
S, P(w;|sp ) P(sy|qi)

posterior probabilities P(sk|g:, w;) =

M-step:
maximize the expected complete data log-likelihood

Q(?,0) = Q:1(2,0) — AQo(e)

N M

N K
=> > nla, w])zpsuqz w;) log[P(ws|si)Plskla)] =X )} Y Cis(P(sklas) — P(sklgs))’
k=1

i=1j=1 i,j=1k=1

N
Ej=1cijp(sk |q; )51)+1

Zivzl n(qi, w;)P(sk|qgi, w;) |
P(sila) &t )= (1 —~)Psila)?, +v

P(wjlzk) = :
o S SN (as, wyr ) P(slae, wy) (
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B.Intent-Aware Similarity Measure
(Pair-wise)

[Similarity independently measured by pair-wise metricsl

|. Extract intent-aware representations

word vector representation qi[l] = n(qi, wr)

: : word vector representation
P el = e ) Pl 1)

under k-th search intent

expected search intent distribution for
each word occurrence w; given query q

ll. Apply Pair-wise similarity measures

Jik - ik
| @ix ||| @ik ||

similarity under k-th search intent  Simi(qi,q5) =
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B.Intent-Aware Similarity Measure
(Graph-based)

similarity calculated over the query graph

. . . — H/ij i,j=1,....,]
query similarity graph A = [Wij] v

adjacency matrix
intent-aware:

Jaccard coefficient

the probability that an edge will be generated between query ------------ccommnune :
qi with search intent sk and query q; with search intent sy | P(sxla:)P(s1 las)

query similarity graph under k-th search intent Wk = w,; P(sk|q:)P(sk|q;)

Il. Apply Graph-based similarity measures §<
spectral embedding 1,y = AD.y ‘// \\

query representation under k-th search intent Gix=(y,(i),...,y,,(%)) §< §< §<

similarity under k-th search intent Simi(qi,q;) = 1+ Cosfzq*'kvqﬂ'k)
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Experiment Setting

® Data set:

- one month sampled query logs from a commercial search engine
- top 10 search results from the same search engine

- 11,524 unique queries; 87,415 unique URLs; 45,882 unique words

® Baselines:

= Intent-not-aware measures:

® pair-wise (Cos=-Word): cosine similarity based on tf-ldf weighted word vector

® graph-based (Embed-Click): spectral embedding over the similarity graph based on clickthrough
- Intent-aware measures:

® pair-wise: Cos=-Intent

® graph-based: Embed-Intent
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Qualitative Evaluation

Example Queries Pairs with Similarity Scores Calculated by Different Methods

taylor
. Intent! taylor swift taylor swilt taylor ice cream taylor SOf.t Serve taylor acoustic | taylor guitars
new songs machine
Cos-Word | N/A 0.55 0.51 | 0.49 0.58 | 0.62 0.59
singer 0.76 0.68 0 0 0 0
Cos-Intent instrument 0 0 0 0 | 0.87 0.85
company 0 0 | 0.52 | 0.61 0 0
Embed-Click | N/A | 048 | 0.47 | 0.47 | 0.46 | 0.44 0.51
singer 1 1 0 0 0 0
Embed-Intent | instrument 0 0 0 0 0.60 0.63
company 0 0 | 0.87 | 0.72 0 0

"the search intents are manually labeled for illustration
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Qualitative Evaluation

Examples of Similar and Dissimilar Query Pairs

T Q Pai Traditional Method Intent-Aware MethodT
ype il Cos-Word Embed-Click | Cos-Intent _ Embed-Intent
_ . (apple, apple store) 0.86 0.89 0/0.92 0|1

Siaiar Faie (apple, apple fruit) 0.17 0.46 0.44|0 0.830
... . (apple store, apple fruit) 0.09 0.37

Dissimilar Pairs | (10 ibod, apple tree) 0.08 0.34 0/0 0/0

Siiler Paire | (taYlor, taylor swift) 0.55 0.48 0.76|0|0 1/0/0

(taylor, taylor soft serve machine) 0.58 0.46 0/0/0.61 0/0]0.72

Dissimilar Pairs (taylor swift, taylor soft serve machine) 0.28 0.36

(taylor ice cream, taylor acoustic) 0.24 0.38 0/0|0 0/0j0

Tsimilarity scores under different intents are separated by vertical bars for clarity
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Quantitative Evaluation

Examples of Manually Built Test Set

Seed Query Major Intents
Ground truth for evaluation: 24 1. tv show 24, 24 on fox, 24 the series
L. . 2. 24 fitness, 24hr fitness, 24 hour gym
manually label similar queries under each sigma 1. sigma aldrich, sigma chemicals, sigma biclogy
. . f f . 2. greek alphabet sigma, sigma symbol, sigma maths
malor Intent Tor a set of test que”es 3. sigma camera, sigma photo, sigma lenses
tOta” I 58| Iabeled ueries svm 1. svin cards, svin gift card, svin gas cards
y ) q 2. svin kernel, svi tutorial, support vector machine
Expected Inter-intent Similarity: Expected Intra-intent Similarity:
InterSz'm(S):é Z Z ZSzm(qz q;) IntraSim(S) — i K Z 25im(qi, q;)
KK -1 L 53, 55 15klI1Sk | nrastme) = K 1Sk|1Sk — 1|
Sk SkIGS k#k QzG kq:,e k= Qz.qJGSk.%¢J
: : : . InterSim(S
Expected inter-intra ratio Hg(Sim) = E ),
IntraSim(S) | g ¢
He(Sim) for Different Similarity Measures
Method Hea(Sim)  Significant differences’
Cos-Word 0.4740.06 >Embed-Click***
Cos-Intent 0.0840.03 >Cos-Word*** >Embed-Click***

Embed-Click 0.5440.02
Embed-Intent | 0.0940.03 >Cos-Word*** >Embed-Click***

"the significant levels are denoted as 0.1% 0.05 ** (.01 ***
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Evaluation of Topic Models

Does the regularization from query co-clicks really helps

for the learning problem?

intent groups predicted S = {s1,...,ss} Topic model learns better if the predicted intent
intent groups labeled 5= {4,...,3%k} groups are more like the human labeled results

.1
Purity(S,S) = — Y max|s; N 3|
N - K

welpeuPS| == Regularized Topic Model

Higher purity score means better
prediction on intent groups

Average Purity
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Application

Query Recommendation

Structured Query Recommendation: diverse recommendation
to enhance users’ click behavior

iphone 3g [iphone related]
apple iphone iphone 3g

. . Iphone price
Iphone price

Iphone review

Iphone review unlock iphone

query: iphone unlock iphone iphone apps
iphone plans [apple product]
iphone jailbreak ipod touch
iphone apps mobileme
. . [smartphones]
!phone rlngtones blackberry
Iphone verizon palm
nexus one

It is natural to apply intent-aware similarity measures for
structured query recommendation
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Evaluation on Query
Recommendation

List approach: Cos-Word  Structured approach: Cos-Intent

Evaluation Metric

Clicked Recommendation Number (CRN)  CRN;, = [{ri|lli > 0,i € [1,k]}|
i b
Clicked Recommendation Score (CRS) CRS, = C}Z{f '
. } click willingness
Total Recommendation Score (TRS) TRS, = _Zf? Li

Comparisons between List Approach and

Our Approach on Click Performance

List Approach Owur Approach
Ave. CRN 4.10 4.63 (+12.9%) |
Ave. CRS 0.43 0.47 (4+9.3%)
Ave. TRS 0.15 0.17 (+13.3%)

Utility and effectiveness of our intent-aware approach in real applications
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Conclusions

® As the first attempt, we cast some light on the problem of “intent-
aware query similarity”

® Measure similarity with respect to search intent

- A regularized topic model to identify search intents using snippets

and co-clicks

- Extract query representation under different intents

- Apply different types of similarity with intent-aware representation
®

Experiments demonstrate the effectiveness of our measure

® Future work

- Using more context information for identify search intents

- Apply intent-aware query similarity in other real applications
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