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ABSTRACT
This paper is concerned with top-k ranking problem, which
reflects the fact that people pay more attention to the top
ranked objects in real ranking application like information
retrieval. A popular approach to top-k ranking problem
is based on probabilistic models, such as Luce model and
Mallows model. However, whether the sequential generative
process described in these models is a suitable way for top-k
ranking remains a question. According to the riffled inde-
pendence factorization proposed in recent literature, which
is a natural structural assumption on top-k ranking, we pro-
pose a new generative process of top-k ranking data. Our
approach decomposes distributions over the top-k ranking
into two layers: the first layer describes the relative order-
ing between the top k objects and the rest n−k objects,
and the second layer describes the full ordering on the top
k objects. On this basis, we propose a new probabilistic
model for top-k ranking problem, called hierarchical order-

ing model. Specifically, we use three different probabilistic
models to describe different generative processes of the first
layer, and Luce model to describe the sequential generative
process of the second layer, thus we obtain three different
specific hierarchical ordering models. We also conduct ex-
tensive experiments on benchmark datasets to show that
our proposed models can outperform previous models sig-
nificantly.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithm, Performance, Experimentation, Theory

Keywords
Learning to Rank, Top-k, Ranking Model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

1. INTRODUCTION
Ranking is a central problem in a number of machine

learning applications, such as information retrieval, recom-
mendation system and computational advertising etc. In
these real applications, people pay more attention to the top
ranked objects, which means that if two ranked lists of ob-
jects have the same ranking results for the top k positions,
they will likely provide the same experience to the users.
This characteristic of ranking problem has been explored
in earlier studies in different setting [1, 9, 10, 7], which is
referred to as the top-k ranking problem.

Many probabilistic models on permutation have been widely
applied to solve the ranking problem, among which, the Luce
model [11] and the Mallows Model [5] are the most popular
ones. Xia et al. [10] propose Top-k ListMLE to model the
top-k ranking data, which can be viewed as an extension of
the Luce model to the top-k setting; Qin et al. [8] propose a
coset-permutation distance based stagewise (CPS) model to
inherits the advantages of both the Luce model and the Mal-
lows model, which can also be extended to the top-k setting.
Both generative processes of the above methods are sequen-
tial. At the i-th stage, an object is selected and assigned
to position i with a certain probability. We refer to this
approach as sequential generative process. Although these
methods have been proven effective empirically, the rational-
ity of the sequential generative process remains a question
because it is heuristic and lacks theoretical support.

Riffled independence, which was introduced in recent lit-
erature by Huang et al. [2], is a generalized notion of prob-
abilistic independence for ranked data. It corresponds to
ranking disjoint sets of objects independently, then inter-
leaving those rankings, which has been proven to be an ap-
propriate structural assumption on the top-k ranking data
theoretically [3, 4]. Inspired by the assumption of riffled in-
dependence, we argue that a more appropriate generative
process of the top-k ranking data should be comprised of
two layers: in the first layer, the relative ordering between
the top k objects and the rest n−k objects is generated, then
in the second layer, the full ordering on the top k objects is
further generated.

On the basis of the aforementioned hierarchical genera-
tive process, we propose a new probabilistic model for top-k
ranking problem, which is called hierarchical ordering model

(HOM for short). In HOM, the distribution of a top-k rank-
ing is decomposed to the product of two terms, one term
is the distribution of the relative ordering in the first layer
and the other is the distribution of the full ordering in the
second layer. Specifically, we introduce three different prob-



ability distributions to model the relative ordering in the
first layer, and use Luce model to describe the full order-
ing in the second layer. Combining the two-layer proba-
bility distributions, we obtain three different specific hier-
archical ordering models. To evaluate the performances of
our proposed models, we conduct extensive experiments on
benchmark datasets. Our experimental results show that
our models consistently outperform previous top-k ranking
models, such as Top-k ListMLE [10] and Top-k CPS [8].

2. BACKGROUNDS
In this section, we introduce some backgrounds of top-

k ranking problem, including some notations, reviews on
existing top-k probabilistic ranking models and riffled inde-
pendence assumption.

2.1 Notations
Let D = {x1, · · · , xn} be a set of objects to be ranked,

where n is the number of objects. We use σ to denote a
top-k ranking on D, which is comprised of a full ordering of
top k objects and the relative ordering of top k objects and
the rest n − k objects. Let T be the set of top k objects
and F be the set of the rest n− k objects. The full ordering
of T is denoted by σT . We use f to represent the ranking
function to be learned. For evaluation, we relate the top-k
ranking to relevance labels by defining y = {y1, · · · , yn} as
position-aware relevance labels of the corresponding objects.
As did in [7], yj is defined as k + 1− σT (xj) if xj ∈ T , and
yj = 0 otherwise.

2.2 Top-k Probabilistic Ranking Models
Many probabilistic models on permutation have been widely

applied to solve the ranking problem, such as the Luce model
[11] and the Mallows Model [5]. Here we review two recently
proposed probabilistic models based on them, one of which
is directly a top-k ranking model and the other can be easily
extended to the top-k ranking scenario.

Xia et al. [10] proposed Top-k ListMLE to model the top-
k ranking data, which can be viewed as an extension of the
Luce model to the top-k setting. In Top-k ListMLE, the
probability of top-k ranking is formulated as below:

P (σ) =
k∏

i=1

exp(f(xσT (i)))∑k

j=i
exp(f(xσT (j))) +

∑
xl∈F

exp(f(xl))
, (1)

Qin et al. [8] introduced a coset-permutation distance based
stagewise (CPS) model for rank aggregation, which inherits
the advantages of both the Luce model and the Mallows
model. It can also be applied to the setting of ranking by
treating each feature as a weak ranker. As CPS organizes
the probability in the form of Luce model, it can be eas-
ily extended to top-k ranking by similar technique as used
in Top-k ListMLE. Thus we obtain Top-k CPS as in the
following formulation:

P (σ)=

k∏

i=1

exp(
∑M

m=1 θmd(σ, φ(hm)))
∑n

j=i exp(
∑M

m=1 θmd(Sn−i(σT , j), φ(hm)))
, (2)

where M is the number of features, θm suggests the weight of
feature hm and φ(hm) denotes the permutation generated by
the ranking function hm. σ in the right side can be directly
viewed as a right coset as defined in [8], and Sn−i(σT , j)
denotes the right coset including all permutations that rank

objects σ−1
T (1), ..., σ−1

T (i − 1) and σ−1
T (j) in the top i po-

sitions, respectively. The Kendall’s tau coset-permutation
distance d(·, ·) defined in [8] is adopted in this paper.

2.3 Riffled Independence
Riffled independence defines a novel class of independence

structure on ranking [2], which corresponds to ranking dis-
joint sets of objects independently, then interleaving those
rankings. The formal definition is as follows.

Definition 1. Given a ranking π ∈ SD, SD is the collec-
tion of all possible full rankings of object set D, a partition
of D into disjoint sets A and B, let p be a distribution over
SD, the sets A and B are said to be riffle independent if p
decomposes as:

p(π) = mAB(τAB(π)) · fA(πA) · gB(πB), (3)

where interleaving distribution mAB is defined over inter-
leaving of A and B, distributions fA and gB are defined
over relative rankings πA and πB, respectively.

In the top-k ranking scenario, riffled independence indicates
that the distribution over top-k ranking has a natural de-
composition, which provides us a new perspective to look at
top-k ranking.

3. WAYS TO LOOK AT TOP-K RANKING
In this section, we will discuss the generative process of

the top-k ranking data. First, we can see that both Top-k
ListMLE [10] and Top-k CPS [8] take a sequential view of
top-k ranking data. However, whether it is a good choice
remains a question. Inspired by the assumption of riffled in-
dependence [2], we propose a new hierarchical view of top-k
ranking data, which naturally captures the structural char-
acteristics of the top-k ranking data.

{A,B,C,D,E,F,G,H}

G|{A,B,C,D,E,F,H}

G|F|{A,B,C,D,E,H}

G|F|A|{B,C,D,E,H}

{A,B,C,D,E,F,G,H}

{A,F,G}|{B,C,D,E,H}

G|F|A

Sequential Process Hierarchical Process

Figure 1: Different generative processes for top-3 ranking.

3.1 Sequential Generative Process
From Section 2.2, we can see that both Top-k ListMLE

[10] and Top-k CPS [8] are stagewise models, which decom-
pose the process of generating the top-k ranking data into
k sequential stages. At the i-th stage, an object is selected
and assigned to position i according to a probability dis-
tribution. For Top-k ListMLE, the probability is computed
based on the scores of the unassigned objects by Luce Model.
While for Top-k CPS, the probability is based on the dis-
tance between a location permutation and the right coset
of the Top-k ranking by Mallows Model. Therefore, both
generative processes of Top-k ListMLE and Top-k CPS are
sequential, referred to as sequential generative process.

A typical sequential generative process on top-k ranking is
like this. Given 8 objects {A,B,C,D, E, F,G,H}, the top-3
ranking G|F |A|{B,C,D,E,H} is generated as follows: first,



we generate the object to be ranked at the 1-st position, and
we get G; second, we generate the object to be ranked at the
2-nd position, and we get F ; third, we generate the object to
be ranked at the 3-rd position, and we get A. You will find
a sketch map of the above generative process in Figure 1.

Although the sequential view of top-k ranking leads to ef-
ficient computing, the sequential generative process remains
heuristic and lacks theoretical support. We argue that it
is not the unique generative process and there is a more
appropriate way to look at top-k ranking data.

3.2 Hierarchical Generative Process
According to the definition of riffled independence in Sec-

tion 2.3, the distribution over the top-k ranking σ can be
decomposed1 into the interleaving distribution of T and F

and the distribution over ranking σT . Inspired by the above
idea, we propose a new two-layer generative process of top-k
ranking, called hierarchical generative process. In the first
layer, the relative ordering T ≺ F indicating all the k ob-
jects in T are ranked before all the other n− k objects in F

is generated; in the second layer, the full ordering σT on all
the k objects in T is generated.

Take the aforementioned example of {A,B,C,D, E, F,G,H}
in Section 3.1, the top-3 ranking G|F |A|{B,C,D,E,H} is
generated as follows: first, we generate 3 objects which are
ranked higher than the other 5 objects, and we get {A,F,G};
second, we generate the full ordering of {A,F,G}, and we
get G|F |A. The above generative process is also depicted in
Figure 1.

Compared to the sequential generative process, we can see
that our hierarchical generative process can well capture the
structural characteristics of top-k ranking. Furthermore, our
hierarchical generative process inherits the empirical advan-
tages of riffled independence and enjoys theoretical guaran-
tees as in previous work on riffled independence [3, 4].

4. HIERARCHICAL ORDERING MODEL
According to the hierarchical generative process of top-k

ranking as described in Section 3, we propose a new prob-
abilistic model for top-k ranking problem, which is called
hierarchical ordering model, HOM for short.

For each set of objects {x1, · · · , xn}, let PTF be the prob-
ability distribution of the relative ordering in the first layer
of the hierarchical generative process, and PT be the proba-
bility distribution of the full ordering in the second layer of
the hierarchical generative process. HOM defines the prob-
ability of a top-k ranking σ as the following form:

P (σ) = PTF (T ≺ F ) · PT (σT ), (4)

It is easy to verify that the probability defined in HOM
naturally forms a distribution. That is, for every possible
top-k ranking σ, we always have P (σ) ≥ 0, and

∑
σ
P (σ) =

1.
The above hierarchical ordering model HOM is in fact a

general framework. We can obtain different specific forms of
HOM by defining different forms of distributions on relative
ordering T ≺ F and full ordering σT , that is, PTF and PT .
We discuss them separately and give three examples of HOM
in this paper.
1In top-k ranking problem, the ordering among the bottom
n − k objects do not matter. Thus, we can view the distri-
bution over rankings of F as uniform, which can be ignored
in the decomposition.

4.1 Distribution of Relative Ordering
For the probability distribution of the relative ordering

T ≺F , we can model it in the following three different ways.
(1) Taking T as a whole, the probability of T ≺ F can be
viewed as the energy proportion of T to the whole object set,
where the energy of an object set can be computed by adding
the scores of all the objects in the set. This approach is like
the competition between groups, which is called Group-to-
Group. The formulation is as follows:

PTF (T ≺ F ) ∝

∑
xl∈T exp (f(xl))

∑|D|
j=1 exp (f(xj))

. (5)

(2) Considering the relationship of each object in T and that
in F , the probability of T ≺ F can be viewed as the event
that each object in T is ranked higher than that in F . This
approach is like the competition between objects, which is
called One-to-One and can be well formulated by the widely
used Bradley-Terry model [6]. The formulation is as follows:

PTF (T ≺ F ) ∝
∏

xi∈T

∏

xj∈F

exp (f(xi))

exp (f(xi)) + exp (f(xj))
. (6)

(3) Considering the relationship of each object in T and the
whole F , the probability of T ≺ F can be viewed as a multi-
step event that for each step an object in T is ranked higher
than F . This approach is like the competition between each
object and a whole group, which is called One-to-Group and
can be well formulated by the widely used Plackett-Luce
model [6]. The formulation is as follows:

PTF (T ≺ F ) ∝
∏

xi∈T

exp (f(xi))

exp (f(xi)) +
∑

xj∈F
exp (f(xj))

. (7)

4.2 Distribution of Full Ordering
For the probability distribution of the full ordering in T ,

it can be computed by some widely used probabilistic mod-
els on permutation in previous work, such as Luce model
[11] and Mallows model [5]. Considering computational effi-
ciency, here we use Luce model as an example in this paper
with the following formulation:

PT (σT ) =

|T |∏

i=1

exp (f(xσT (i)))∑|T |
j=i

exp (f(xσT (j)))
. (8)

If the probabilities distribution of PT is fixed to Eq.(8), and
PTF takes the form of Eq.(5), Eq.(6) and Eq.(7), we will
call the corresponding HOM as HOM-GG, HOM-OO and
HOM-OG, respectively.

5. EXPERIMENTS
In this section, we compare the empirical performance

of our proposed three kinds of hierarchical ordering models
with state-of-the-art top-k ranking methods on benchmark
datasets, including Top-k ListMLE and Top-k CPS. Note
that k is set to 10 in our experiments.

5.1 Settings
We use the benchmark LETOR4.0 collection2 in the ex-

periments. There are two datasets containing permutation-
level ground-truth in LETOR4.0, MQ2007-list and MQ2008-

2http://research.microsoft.com/en-
us/um/beijing/projects/letor//



Top-10 MQ2007

Methods κ-N@1 κ-N@2 κ-N@3 κ-N@4 κ-N@5 κ-N@6 κ-N@7 κ-N@8 κ-N@9 κ-N@10 κ-ERR
HOM-GG 0.4321 0.4642 0.4972 0.5231 0.5440 0.5618 0.5762 0.5873 0.5958 0.6037 0.5881
HOM-OO 0.4305 0.4640 0.4951 0.5221 0.5415 0.5606 0.5740 0.5873 0.5964 0.6028 0.5873
HOM-OG 0.4355 0.4686 0.4975 0.5250 0.5444 0.5633 0.5788 0.5901 0.5982 0.6050 0.5907

Top-k ListMLE 0.4110 0.4459 0.4730 0.4985 0.5207 0.5359 0.5512 0.5642 0.5740 0.5810 0.5688
Top-k CPS 0.3563 0.3945 0.4234 0.4447 0.4648 0.4819 0.4944 0.5063 0.5157 0.5238 0.5138

Top-10 MQ2008

Methods κ-N@1 κ-N@2 κ-N@3 κ-N@4 κ-N@5 κ-N@6 κ-N@7 κ-N@8 κ-N@9 κ-N@10 κ-ERR
HOM-GG 0.2846 0.3166 0.3458 0.3696 0.3887 0.4045 0.4207 0.4340 0.4434 0.4525 0.4411
HOM-OO 0.2995 0.3238 0.3494 0.3723 0.3921 0.4060 0.4217 0.4370 0.4498 0.4593 0.4508

HOM-OG 0.2951 0.3257 0.3519 0.3803 0.3968 0.4134 0.4286 0.4420 0.4540 0.4665 0.4506
Top-k ListMLE 0.2650 0.2970 0.3202 0.3451 0.3672 0.3829 0.4003 0.4114 0.4220 0.4296 0.4194

Top-k CPS 0.2587 0.2779 0.3025 0.3189 0.3366 0.3556 0.3711 0.3821 0.3914 0.4014 0.4049

Table 1: Performance comparison on Top-10 MQ2007 and Top-10 MQ2008

list. Considering the computational cost of Top-k CPS, we
only use top 100 documents for each query in the experi-
ments. We construct the top-10 ground-truth by only pre-
serving the total order of top 10 documents on each query.
We obtain two datasets containing top-10 ground-truth, re-
ferred to as top-10 MQ2007 and top-10 MQ2008.

All the models including baselines and our methods, are
optimized by gradient descent method. Parameters like the
learning rate and stopping precision are tuned on the vali-
dation set in each trial of the 5-fold cross validation method.
κ-NDCG and κ-ERR [7] are employed to measure the effec-
tiveness of ranking performance, which are natural general-
izations of NDCG and ERR to the top-k ranking scenario.

5.2 Results
The performances of different top-k ranking models on

these two datasets are shown in Table 1, where κ-N@j

stands for κ-NDCG@j. From the results, we can find that
the proposed three kinds of HOMs can consistently and sig-
nificantly outperform Top-k ListMLE and Top-k CPS in
terms of both κ-NDCG and κ-ERR. For example, consider-
ing HOM-OG on Top-10 MQ2007, the relative performance
improvements over top-k ListMLE, top-k CPS are 4.13%,
15.5% in terms of κ-NDCG@10 and 3.85%, 15.0% in terms of
κ-ERR, respectively. Another example is HOM-OG model
on Top-10 MQ2008, the relative performance improvements
over Top-k ListMLE, Top-k CPS are 8.59%, 16.2% in terms
of κ-NDCG@10 and 7.46%, 11.3% in terms of κ-ERR, re-
spectively. Furthermore, we can see that the proposed three
kinds of HOMs reach the best performances (denoted by
numbers in bold) under all metrics on the two datasets.

The results indicate that our hierarchical ordering model
is more effective than models based on the sequential genera-
tive process(i.e. Top-k ListMLE and Top-k CPS). It in some
sense reflects the hierarchical generative process is superior
to the sequential generative process for top-k ranking.

6. CONCLUSIONS
In this paper, we argue that the sequential generative

process of top-k ranking adopted in many previous ranking
models is not unique. Such a process is heuristic and lacks
theoretical support. On the basis of the recently proposed
riffled independence assumption of top-k ranking, we pro-

pose a new hierarchical generative process, which is a more
appropriate way to look at top-k ranking data. According
to the generative process, we propose a hierarchical order-
ing model, which is a new probabilistic model for the top-k
ranking problem. We conducted extensive experiments on
two benchmark datasets, and experimental results show that
the proposed models can outperform previous top-k proba-
bilistic ranking models significantly.
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