

More Than Relevance: High Utility Query Recommendation By Mining Users' Search Behaviors

Xiaofei Zhu, **Jiafeng Guo**, Xueqi Cheng, Yanyan Lan Institute of Computing Technology, CAS

Information Seeking Tasks

The ultimate goal of query recommendation Assist users to reformulate queries so that they can acquire their desired information successfully and quickly

Relevant query recommendation:

Providing alternative queries similar to a user's initial query

Problem: relevant query —Xsatisfy users' needs not necessarily

High Utility Recommendation:

Providing queries that can better satisfy users' information needs

Query Utility Definition:

The information gain that a user can obtain from the search results of the query according to her original information needs.

true effectiveness of query recommendation

High Utility Recommendation is Emphasize users' post-click satisfaction

Challenges for high utility recommendation

 \rightarrow How to infer query utility?

Query Utility Model

\rightarrow How to evaluate?

Two evaluation metrics

Our Approach

how to infer query utility?

Key Idea: Through user's search behaviors

Query Utility Model (dynamic Bayesian network)

how to infer query utility?

$$P(R_i = 1 | R_{i-1} = 1, S_{i-1} = 1) = 0.$$

$$P(C_i = 1 | R_i = 1, A_i = 1) = 1,$$

$$P(A_i = 1) = \alpha_{\phi(i)},$$

$$P(S_i = 1 | C_{1:i}) = \sigma(\sum_{k=1} \beta_{\phi(k)} \cdot I(C_k = 1)),$$

$$\sigma(x) = \frac{1}{1 + e^{-x}}.$$

Perceived Utility α : control the probability of the attractiveness

Posterior Utility β : control the probability of users' satisfaction

- R_i: whether there is a reformulation at position i
- C_i : whether the user clicks on sor Query Utility $\mu_t = \alpha_t * \beta_t$ ation at position A_i : whether the user is attracted by the search results of the reformulation at position I; ation at position i;

The expected information gain users obtained from the search results of the query according to their original information needs

Parameter Estimation

how to infer query utility?

Maximum Likelihood Estimation $P(C_{1:M}, R_{1:M}, A_{1:M}, S_{1:M})$ $= \prod_{i=1}^{M} P(C_i \mid A_i, R_i) \cdot (R_i \mid R_{i-1}, S_{i-1}) \cdot P(A_i) \cdot P(S_i \mid C_{1:i})$

$$\alpha_{t} = \frac{\sum_{j=1}^{N} \sum_{i=1}^{M} A_{i}^{j} \cdot I(\phi_{j}(i) = t)}{\sum_{j=1}^{N} \sum_{i=1}^{M} I(\phi_{j}(i) = t)}$$
$$= \frac{\frac{\sum_{j=1}^{N} \sum_{i=1}^{M} I(C_{i}^{j} = 1) \cdot I(\phi_{j}(i) = t)}{\sum_{j=1}^{N} \sum_{i=1}^{M} I(\phi_{j}(i) = t)}$$

$$\begin{bmatrix} \frac{\partial^2 \mathcal{L}}{\partial \beta_t^2} - 2\mu & 0 & 2\lambda_t \\ -1 & 2z_t & 0 \\ \lambda_t^2 & 0 & 2\lambda_t \beta_t \end{bmatrix} \begin{bmatrix} \Delta \beta_t \\ \Delta z_t \\ \Delta \lambda_t \end{bmatrix} = -\begin{bmatrix} \frac{\partial \mathcal{L}}{\partial \beta_t} - 2\mu \beta_t + \lambda_t^2 \\ -\beta_t + z_t^2 \\ \lambda_t^2 \beta_t \end{bmatrix}$$

$$\begin{cases} \Delta \beta_t = \frac{-\beta_t \frac{\partial \mathcal{L}}{\partial \beta_t} + 2\mu \beta_t^2}{\beta_t \frac{\partial^2 \mathcal{L}}{\partial \beta_t^2} - 2\mu \beta_t - \lambda_t^2}, \\ \Delta z_t = \frac{\beta_t - z_t^2 + \Delta \beta_t}{2z_t}, \\ \Delta \lambda_t = \frac{-\lambda_t^2 \beta_t - \lambda_t^2 \Delta \beta_t}{2\lambda_t \beta_t}. \end{cases}$$

Newton-Raphson Algorithm

任母前的出口

how to evaluate ?

Query Level Judgment

Original query

Evaluation

how to evaluate?

Document Level Judgment

Original query

Recommendations & Clickthrough

Evaluation

how to evaluate ?

- QRR (Query Relevant Ratio) $QRR(q) = \frac{RQ(q)}{N(q)}$

Measuring the probability that a user finds(clicks) relevant results when she uses query q for her search task.

- MRD (Mean Relevant Document)

$$MRD(q) = \frac{RD(q)}{N(q)}$$

Measuring the average number of relevant results a user finds(clicks) when she uses query q for her search task.

Experiments

Dataset: UFindIt log data (SIGIR'11 Best Paper)

- A period of 6 months, consisting 1484 search sessions conducted by 159 users (reformulation and click).
- Manual relevant judgments on results with respect to the original needs

Data Processing:

- We process the data by ignoring some interleaved sessions, remove sessions which have no reformulations, and sessions started without queries, after processing, we obtain:
 - 1,298 search sessions
 - 1,086 distinct queries
 - 1,555 distinct clicked URLs
- For each test query, the average number of search sessions is 32 and the average number of distinct candidate queries is 26.

Baseline Methods

Frequency-based methods

- Adjacency (ADJ) (WWW 06)
- Co-occurrence (CO) (JASIST 03)

Graph-based methods

- Query-Flow Graph (QF) (CIKM 08)
- Click-through Graph (CT) (CIKM 08)
- Component utility methods
- Perceived Utility (PCU)
- Posterior Utility (PTU)

Experimental Results

Comparison of the performance of all approaches (ADJ,CO,QF,CT,PCU,PTU,QUM) in terms of QRR and MRD.

(a) QRR

(b) MRD

The performance improvements are significant (t-test, p-value <= 0.05)

Experimental Results

The improvement is larger on difficult queries!

Query Difficulty	Method	QRR		MRD	
		@ 5	@10	@5	@10
Easy	ADJ	0.588(18.64%)	0.526(26.30%)	0.771(20.32%)	0.674(25.22%)
	CO	0.609(14.55%)	0.529(25.63%)	0.830(11.80%)	0.687(22.89%)
	QF	0.618(12.94%)	0.604(9.89%)	0.846(9.67%)	0.806(4.69%)
	CT	0.654(6.62%)	0.635(4.65%)	0.836(11.02%)	0.805(4.79%)
	PCU	0.656(6.37%)	0.611(8.74%)	0.889(4.35%)	0.798(5.79%)
	PTU	0.689(1.22%)	0.663(0.17%)	0.908(2.18%)	0.837(0.86%)
	QUM	0.698	0.664	0.928	0.844
Medium	ADJ	0.460(30.00%)	0.429(33.19%)	0.596(24.14%)	0.527(33.76%)
	CO	0.495(20.81%)	0.441(29.65%)	0.640(15.72%)	0.550(28.10%)
	$_{\rm QF}$	0.511(17.07%)	0.500(14.39%)	0.615(20.43%)	0.630(11.79%)
	CT	0.534(12.07%)	0.549(4.02%)	0.689(7.54%)	0.692(1.81%)
	PCU	0.544(9.91%)	0.485(17.74%)	0.703(5.31%)	0.588(19.76%)
	PTU	0.581(2.87%)	0.557(2.70%)	0.722(2.53%)	0.689(2.18%)
	QUM	0.598	0.572	0.740	0.704
Hard	ADJ	0.259(65.27%)	0.216(91.19%)	0.351(54.37%)	0.284(77.27%)
	CO	0.314(36.29%)	0.261(58.17%)	0.412(31.63%)	0.340(48.00%)
	$_{\rm QF}$	0.324(32.08%)	0.312(32.20%)	0.441(22.94%)	0.414(21.78%)
	CT	0.334(28.08%)	0.343(20.17%)	0.437(24.15%)	0.424(18.85%)
	PCU	0.404(5.90%)	0.324(27.07%)	0.534(1.54%)	0.413(22.02%)
	PTU	0.426(0.28%)	0.402(2.51%)	0.526(3.18%)	0.485(3.92%)
	QUM	0.427	0.412	0.542	0.504

Conclusions

Contribution

- Recommend high utility queries rather than only relevant queries: to directly toward the ultimate goal of query recommendation;
- A novel dynamic Bayesian network (i.e., QUM) to mine query utility from users' reformulation and click behaviors;
- Introduce two evaluation metrics for utility based recommendation
- Evaluate the performance on a real query log and show the effectiveness

Future work

- Extend our utility model to capture the specific clicked URLs for finer modeling

Thanks! guojiafeng@ict.ac.cn

