

More Than Relevance: High Utility Query Recommendation By Mining Users' Search Behaviors

Xiaofei Zhu, Jiafeng Guo, Xueqi Cheng, Yanyan Lan Institute of Computing Technology, Chinese Academy of Sciences zhuxiaofei@software.ict.ac.cn, {guojiafeng, cxq, lanyanyan}@ict.ac.cn

2. KEY IDEA how to infer query utility? Key Idea: Through user's search behaviors A typical search session

3. QUERY UTILITY MODEL

 $P(C_i = 1 | R_i = 1, A_i = 1) = 1,$ $P(A_i = 1) = \alpha_{\phi(i)},$ $P(S_i = 1 | C_{1:i}) = \sigma(\sum \beta_{\phi(k)} \cdot I(C_k = 1)),$ $\sigma(x) = \frac{1}{1+e^{-x}}$ $P(R_i = 1 | R_{i-1} = 1, S_{i-1} = 1) = 0.$

4. EVALUATION METRICS Original query our Original query previous **Recommendations & Search Results** Recommendations query 1 **Relevant or Not?** query 1 **Relevant or Not?** doc 1 doc 3 doc 2 query 2 **Relevant or Not?** query 2 doc 1 doc 3 doc 2 **Relevant or Not?** query 3

Perceived Utility α : control the probability of the attractiveness

Posterior Utility β : control the probability of users' satisfaction

- R_i: whether there is a reformulation at position i
- C_i : whether the user clicks on some of the search results of the reformulation at position i;
- : whether the user is attracted by the search results of the reformulation at position I;
- S_i : whether the user's information needs have been satisfied at position i;

Query Utility $\mu_t = \alpha_t * \beta_t$

The expected information gain users obtained from the search results of the query according to their original information needs

query 3 Relevant or Not?

– QRR (Query Relevant Ratio) $QRR(q) = \frac{RQ(q)}{q}$ N(q)

Measuring the probability that a user finds(clicks) relevant results when she uses query q for her search task.

– MRD (Mean Relevant Document) $MRD(q) = \frac{RD(q)}{N(q)}$

Measuring the average number of relevant results a user finds(clicks) when she uses query q for her search task.

5. EXPERIMENTAL RESULTS

6. CONCLUSIONS

Contribution

- Recommend high utility queries rather than only relevant queries: to directly toward the ultimate goal of query recommendation;
- A novel dynamic Bayesian network (i.e., QUM) to mine query utility from users' reformulation and click behaviors;

(a) QRR			(b) MRD		
Query Difficulty	Method	QRR		MRD	
		@5	@10	@5	@10
Easy	ADJ	0.588(18.64%)	0.526(26.30%)	0.771(20.32%)	0.674(25.22%)
	CO	0.609(14.55%)	0.529(25.63%)	0.830(11.80%)	0.687(22.89%)
	\mathbf{QF}	0.618(12.94%)	0.604(9.89%)	0.846(9.67%)	0.806(4.69%)
	\mathbf{CT}	0.654(6.62%)	0.635(4.65%)	0.836(11.02%)	0.805(4.79%)
	PCU	0.656(6.37%)	0.611(8.74%)	0.889(4.35%)	0.798(5.79%)
	PTU	0.689(1.22%)	0.663(0.17%)	0.908(2.18%)	0.837(0.86%)
	QUM	0.698	0.664	0.928	0.844
Medium	ADJ	0.460(30.00%)	0.429(33.19%)	0.596(24.14%)	0.527(33.76%)
	CO	0.495(20.81%)	0.441(29.65%)	0.640(15.72%)	0.550(28.10%)
	\mathbf{QF}	0.511(17.07%)	0.500(14.39%)	0.615(20.43%)	0.630(11.79%)
	\mathbf{CT}	0.534(12.07%)	0.549(4.02%)	0.689(7.54%)	0.692(1.81%)
	PCU	0.544(9.91%)	0.485(17.74%)	0.703(5.31%)	0.588(19.76%)
	PTU	0.581(2.87%)	0.557(2.70%)	0.722(2.53%)	0.689(2.18%)
	QUM	0.598	0.572	0.740	0.704
Hard	ADJ	0.259(65.27%)	0.216(91.19%)	0.351(54.37%)	0.284(77.27%)
	CO	0.314(36.29%)	0.261(58.17%)	0.412(31.63%)	0.340(48.00%)
	\mathbf{QF}	0.324(32.08%)	0.312(32.20%)	0.441(22.94%)	0.414(21.78%)
	\mathbf{CT}	0.334(28.08%)	0.343(20.17%)	0.437(24.15%)	0.424(18.85%)
	PCU	0.404(5.90%)	0.324(27.07%)	0.534(1.54%)	0.413(22.02%)
	PTU	0.426(0.28%)	0.402(2.51%)	0.526(3.18%)	0.485(3.92%)
	QUM	0.427	0.412	0.542	0.504

The performance improvements are significant (t-test, p-value <= 0.05)

- Introduce two evaluation metrics for utility based recommendation
- Evaluate the performance on a real query log and show the effectiveness

Future work

- Extend our utility model to capture the specific clicked URLs for finer modeling
- Extend our utility model to capture the query level utility