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Motivation 

   Drawbacks: 

(1) Choice of the specific of the gradations. 

(2) Increasing assessing burdens. 

(3) High level of disagreement on judgments. 

 

 

 

 

 

 

 𝑥  𝑦 

Relevance Score 
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One great challenge for learning to rank: it is 
difficult to obtain reliable training data from 
human assessors! 

 Absolute Relevance Judgment 



Pairwise Preference Judgment 

 

Motivation (cont’) 

  𝑥1  𝑧   𝑥2 

Preference Order     Pros: 
(1) No need to determine the gradation specifications. 
(2) Easier for an assessor to express a preference. 
(3) Noise may be reduced. 

    Cons: 
Complexity of judgment increases! (From O(n) to 𝑂(𝑛2), O( n 
log n).) 
 How to reduce the complexity of pairwise preference judgment? 
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• Do we really need to get a total ordering for each 
query? 

• Users mainly care about the top results in real web 
search application! 

Motivation (cont’) 

Take more effort to figure out the top results and judge 
the preference orders among them. 

Top-K Ground-truth 

𝑥1

𝑥3
𝑥5

𝑥2, 𝑥4

 

Total ordering of top K results 

Preferences between top K 
Documents and the other 
N-K documents 
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Motivation (cont’) 

• Three Tasks: 

– How to design an efficient pairwise preference 
labeling strategy to get top-k ground-truth? 

– How to develop more powerful ranking algorithms 
in the new scenario? 

– How to define new evaluation measures for the 
new scenario? 

 
Top-K Learning to Rank 
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Top-k Learning to Rank：Labeling 

• Top-k Labeling Strategy 

– Pairwise preference judgment 

– HeapSort 

Example: k=3,n=5 

  𝑥1 

  𝑥2   𝑥3 

  𝑥1   𝑥4   𝑥2 

  𝑥4   𝑥3 

  𝑥5   𝑥2 
  𝑥2 

  𝑥4   𝑥3 

𝑥3

𝑥4
𝑥2

𝑥1, 𝑥5

 Top-3 Ground-truth 

Step 1 

Step 2 

Step 3 
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O(k) 

O((n-k)log k) 

O(k log k) 



• New characteristics of top-k ground-truth 

Top-K Learning to Rank：Ranking 

𝑥1

𝑥3
𝑥5

𝑥2, 𝑥4

 

Total ordering of top k items 

Preferences between top k 
Items and the other 
n-k items 

Listiwise ranking algorithms 

Pairwise ranking algorithms 

FocusedRank 

Struct-SVM 
AdaRank 
ListNet 

RankSVM 
RankBoost 
RankNet 

FocusedSVM 
FocusedBoost 
FocusedNet 
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Top-K Learning to Rank: Evaluation 

• Traditional evaluation measures, e.g. MAP, NDCG, 
ERR, are mainly defined on absolute relevance scores. 

• In the scenario of top-k ground-truth, define a 
position-aware relevance score: 

 

 

– 𝜅-NDCG 

 

– 𝜅-ERR 
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Experiments 

• Effectiveness and efficiency of top-k labeling 
strategy 
– Data Sets: all the 50 queries from Topic Distillation 

task of TREC 2003, for each query, sample 50 
documents. 

– Labeling Tools: top-10 labeling tool T1 and five-graded 
relevance judgment tool T2. 

– Assessors: Five graduate students who are familiar 
with web search. 

– Assignment: Divided into five folds Q1,…Q5, Ui judges 
Qi with T1 and Qi+1 with T2, for i=1,2,3,4, and U5 
judges Q5 with T1 and Q1 with T2. 
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Experimental Results I 

• Time Efficiency 

 

 

 

• Agreement 

Top 10 Labeling 5 Graded Labeling 
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Experiments (cont’) 

• Performance of FocusedRank 
– Baselines: 

(1) Pairwise: RankSVM, RankBoost, RankNet, 

(2) Listwise: SVMMAP, AdaRank, ListNet, 

(3) Top-k: Top-k ListMLE 

– Data Sets:  

(1) MQ2007 (From LETOR): Graded MQ2007 and Top-k 
MQ2007 

(2) TD2003 (Previous constructed data): Graded TD2003 
and Top-k TD2003 
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Experimental Results II 
Top-10 MQ2007 Top-10 TD2003 
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Performance  comparison among  
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Experimental Results II (cont’) 
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Experimental Results II (cont’) 
Top-10 MQ2007 Top-10 TD2003 
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Conclusions 

• Top-K Learning to Rank Framework 
– Top-k labeling strategy: obtain reliable relevance 

judgments via pairwise preference judgment. 
Complexity is reduced to O(n log k). 

– FocusedRank: capture the characteristics of the top-k 
ground-truth. 

– Top-k evaluation measures 

• Empirical studies show the efficiency and 
reliability of top-k labeling strategy, and 
demonstrate the effectiveness of FocusedRank. 
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Future Work 

• Further reduce the complexity of top-k 
labeling strategy. 

• Design new ranking models for top-k ranking. 

• Rank aggregations of top-k ground-truth. 

• Active learning in top-k labeling strategy. 
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