Top-K Learning to Rank:
Labeling, Ranking and Evaluation

Shuzi Niu, Jiafeng Guo, Yanyan Lan, Xueqi Cheng
Institute of Computing Technology,
Chinese Academy of Sciences



Outlines

Motivation

Top-K Learning to Rank Framework
— Top-K Labeling Strategy

— FocusedRank

— Top-K Evaluation

Experimental Results
Conclusions & Future Work



Motivation

One great challenge for learning to rank: it is
difficult to obtain reliable training data from

human assessors!
Absolute Relevance Judgment -
et @=> @ B

Relevance Score
Drawbacks:

(1) Choice of the specific of the gradations.
(2) Increasing assessing burdens.
(3) High level of disagreement on judgments.
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Motivation (cont’)

Pairwise Preference Judgment

TEY

Preference Order

Pros:
(1) No need to determine the gradation specifications.
(2) Easier for an assessor to express a preference.
(3) Noise may be reduced.

Cons:
Complexity of judgment increases! (From O(n) to 0(n?), O( n
log n).)

How to reduce the complexity of pairwise preference judgment?
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Motivation (cont’)

Do we really need to get a total ordering for each

query? NO!
e Users mainly care about the top results in real web
search application!

Take more effort to figure out the top results and judge
the preference orders among them.
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Motivation (cont’)

* Three Tasks:

— How to design an efficient pairwise preference
labeling strategy to get top-k ground-truth?

— How to develop more powerful ranking algorithms
in the new scenario?

— How to define new evaluation measures for the
new scenario?

Top-K Learning to Rank
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Top-k Learning to Rank: Labeling

* Top-k Labeling Strategy

— Pairwise preference judgment

— HeapSort
Example: k=3,n=5

o

Step1 O(k)

4/9/2015

(x9—(xy

)

g

$

[ Top-3 Ground-truth }

O(n log k) Yanyan Lan@SIGIR2012




Top-K Learning to Rank: Ranking

* New characteristics of top-k ground-truth
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X1 Total ordering of top kitems - t—) | jstjwise ranking algorithms
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AdaRank CE:I RankBoost > FocusedBoost
ListNet RankNet FocusedNet
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Top-K Learning to Rank: Evaluation

* Traditional evaluation measures, e.g. MAP, NDCG,
ERR, are mainly defined on absolute relevance scores.

* |n the scenario of top-k ground-truth, define a
position-aware relevance score:
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Experiments

* Effectiveness and efficiency of top-k labeling
strategy
— Data Sets: all the 50 queries from Topic Distillation

task of TREC 2003, for each query, sample 50
documents.

— Labeling Tools: top-10 labeling tool T1 and five-graded
relevance judgment tool T2.

— Assessors: Five graduate students who are familiar
with web search.

— Assignment: Divided into five folds Q1,...Q5, Ui judges
Qi with T1 and Qi+1 with T2, for i=1,2,3,4, and U5
judges Q5 with T1 and Q1 with T2.



Experimental Results |

* Time Efficiency

Table 1: Comparison results of time efficiency

Method Time per judgment(s) Time per query(min) Judgment complexity ~#Judgments per query
Top-k labeling 5.51 13.13 O(nlogk) 142.76
Five-grade judgment 13.87 11.78 O(n) 50

* Agreement

A-B A~B A<B A-B A~B A<B

A=B | 0.6749 0.2766 0.0485 A=B | 0.6272 0.2913 0.0815

A~B | 0.1138 0.8198 0.0664 A~B | 0.2825 0.5232 0.1944

A=<B | 0.1047 0.3779 0.5174 A<B | 0.1534 0.3826 0.4640
Top 10 Labeling 5 Graded Labeling
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Experiments (cont’)

* Performance of FocusedRank
— Baselines:
(1) Pairwise: RankSVM, RankBoost, RankNet,
(2) Listwise: SVMMAP, AdaRank, ListNet,
(3) Top-k: Top-k ListMLE
— Data Sets:

(1) MQ2007 (From LETOR): Graded MQ2007 and Top-k
MQ2007

(2) TD2003 (Previous constructed data): Graded TD2003
and Top-k TD2003
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Experimental Results Il
Top-10 MQ2007 Top-10 TD2003

Performance comparison among
FocusedRank, pairwise and listwise algorithms on Top-k datasets.



Experimental Results Il (cont’)

Graded TD2003

Graded MQ2007

NDCG@10

Performance comparison among
FocusedRank, pairwise and listwise algorithms on Graded datasets.



Experimental Results Il (cont’)
Top-10 MQ2007 Top-10 TD2003

Performance comparison between
FocusedRank and Top-k ListMLE on Top-k datasets.



Conclusions

 Top-K Learning to Rank Framework

— Top-k labeling strategy: obtain reliable relevance
judgments via pairwise preference judgment.
Complexity is reduced to O(n log k).

— FocusedRank: capture the characteristics of the top-k
ground-truth.

— Top-k evaluation measures

* Empirical studies show the efficiency and
reliability of top-k labeling strategy, and
demonstrate the effectiveness of FocusedRank.



Future Work

~urther reduce the complexity of top-k
abeling strategy.

Design new ranking models for top-k ranking.

Rank aggregations of top-k ground-truth.
Active learning in top-k labeling strategy.
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