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ABSTRACT
Recently, ‘top-k learning to rank’ has attracted much atten-
tion in the community of information retrieval. The mo-
tivation comes from the difficulty in obtaining a full-order
ranking list for training, when employing reliable pairwise
preference judgment. Inspired by the observation that users
mainly care about top ranked search result, top-k learning
to rank proposes to utilize top-k ground-truth for training,
where only the total order of top k items are provided, in-
stead of a full-order ranking list. However, it is not clear
whether the underlying assumption holds, i.e. top-k ground-
truth is sufficient for training. In this paper, we propose to
study this problem from both empirical and theoretical as-
pects. Empirically, our experimental results on benchmark
datasets LETOR4.0 show that the test performances of both
pairwise and listwise ranking algorithms will quickly increase
to a stable value, with the growth of k in the top-k ground-
truth. Theoretically, we prove that the losses of these typical
ranking algorithms in top-k setting are tighter upper bounds
of (1−NDCG@k), compared with that in full-order setting.
Therefore, our studies reveal that learning on top-k ground-
truth is surely sufficient for ranking, which lay a foundation
for the new learning to rank framework.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Learning to Rank, Top-k, Full-Order, Sufficient
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1. INTRODUCTION
Learning to rank has become an important means to tack-

le the ranking problem in many applications, such as infor-
mation retrieval, collaborative filtering and natural language
processing. Taking Web search as an example, the process
of learning to rank is as follows. In training, a number of
queries are given, and each query associates with a number
of documents and labels representing their rankings (usual-
ly in terms of multi-level ratings). Then a ranking function
is constructed by minimizing a certain loss function on the
training data. In testing, given a new query and associat-
ed documents, the ranking function is applied to produce a
ranking list and the performance of the ranking algorithm is
evaluated by IR measures such as MAP [3], NDCG [11]and
ERR [7].

Recently, a new learning to rank framework named ‘top-k
learning to rank’ has emerged and gain much attention. The
motivation comes from the difficulty in obtaining reliable
training data for applying learning to rank to real systems:
(1) conventional multi-level ratings based training data are
not reliable [16, 19, 20]; (2) when employing more reliable
pairwise preference judgment, it would be prohibitively ex-
pensive to obtain a full-order ranking list [5, 6, 19]. Based
on the fact that users mainly care more about top ranked
search result, top-k learning to rank proposes to utilize top-
k ground-truth for training (k is usually small), where only
the full ordering of top k items are provided, instead of a
full-order ranking list.

The underlying assumption of top-k learning to rank is
that top-k ground-truth is sufficient for ranking, i.e. training
on top-k ground-truth is as good as that on a full-order
ranking list. On this basis, top-k learning to rank describes
how to conduct labeling, ranking and evaluation process.
However, it is unclear whether the assumption holds. In this
paper, we propose to study this problem from both empirical
and theoretical aspects.

Empirically, we proposed to conduct experiments to study
how the test performances of ranking algorithms change with
respect to k in the training data of top-k learning to rank.
Intuitively, with the increase of k, more information is con-
veyed by the training data, and the test performances of
ranking algorithms will increase. If k reaches the maximum
(i.e. full-order ground-truth), we obtain the best test perfor-
mance as all the ranking information is involved. Therefore,
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if the test performances quickly increase to a stable value,
we say that top-k ground-truth is sufficient for ranking.
We conduct extensive experiments based on benchmark

data sets LETOR4.0, and consider three state-of-the-art pair-
wise algorithms, Ranking SVM [10], RankBoost [9] and RankNet
[1], and a popular listwise algorithm, ListMLE [22]. We plot
the test performance curves of these algorithms on two data
sets in LETOR4.0, MQ2007-list and MQ2008-list. Our ex-
perimental results indeed show that the test performances
of all the four algorithms increase quickly to a stable value
with the increase of k. As a consequence, we haven proven
empirically that top-k ground-truth is sufficient for ranking.
At a first glance, the theoretical analysis of ‘whether top-k

is sufficient for ranking’ is to study the relationship between
the loss functions of these algorithms in top-k setting and
that in full-order setting. It is obvious that the former ones
are lower bounds of the latter ones, which means that the
minimization of these loss functions in full-order setting will
lead to the minimization of them in top-k setting. However,
what we really care about is the opposite side of the coin,
i.e. whether the minimization of these loss functions in top-
k setting will lead to the minimization of them in full-order
setting. Seemingly the answer is negative.
By revisiting the problem of ‘whether training on top-

k ground-truth is as good as that on a full-order ranking
list’, we find that the theoretical analysis need to further
take IR evaluation measures into consideration, due to the
fact that the performances of ranking algorithms are usually
evaluated by them. In this paper, we take NDCG as an
example to conduct the theoretical analysis.
To reveal the relationships among the three, we define

a loss function named Weighted Kendall’s Tau (WKT for
short). First, it can be proved that WKT is an upper bound
of (1−NDCG@k). Second, it can be proved that the pairwise
losses in Ranking SVM, RankBoost and RankNet, and the
listwise loss in ListMLE are all upper bounds of WKT, in
top-k setting. As a consequence, we come to the conclu-
sion that the loss functions used in these ranking algorithms
in top-k setting can bound (1−NDCG@k). Further consid-
ering the relationship between loss functions in full-order
setting and that in top-k setting, we can see that loss func-
tions in top-k setting are tighter bounds of (1−NDCG@k),
as compared with those in full-order setting. Therefore, we
have proven theoretically that top-k ground-truth is not on-
ly sufficient, but even better than full-order ground-truth for
ranking.
According to the above empirical and theoretical study,

we come to the conclusion that top-k ground-truth is suffi-
cient for ranking, which lay a foundation for the new top-k
learning to rank.
The reminder of the paper is organized as follows. In Sec-

tion 2, we introduce some background on conventional learn-
ing to rank and top-k learning to rank. In Section 3, we de-
scribe some ranking algorithms both in top-k and full-order
settings, including Ranking SVM, RankBoost, RankNet and
ListMLE. Section 4 and Section 5 presents our experimen-
tal and theoretical analysis on whether top-k is sufficient for
ranking, respectively. Section 6 concludes the paper.

2. BACKGROUNDS
In this section, we will introduce some backgrounds on

conventional learning to rank and top-k learning to rank,
respectively.

2.1 Conventional Learning to Rank
Taking Web search as an example, we describe the frame-

work of conventional learning to rank as follows.
In the training process, a number of queries q1, q2, · · · , qN

are given. For each query qi, we are given a set of associ-

ated documents xi = (x
(i)
1 , · · · , x(i)

ni ) and their ground-truth

labels yi = (y
(i)
1 , y

(i)
2 , · · · , y(i)

ni ), which are usually represent-
ed in the form of multi-level ratings, such as 3-level ratings
(highly relevant:2, relevant:1, irrelevant:0).

With the training data, different ranking algorithms are
proposed to conduct the learning process. According to the
different objects considered in the loss functions, they are
mainly divided into three categories: pointwise, pairwise
and listwise approach. In pointwise approach [13], single
items are viewed as the objects and ranking is transformed
to regression on items to represent the absolute label on
each item. In pairwise approach [1, 9, 10], item pairs are
recognized as the objects and ranking is transformed to a
pairwise classification problem to represent the preference
between these two items. In listwise approach [4, 18, 22, 23],
instances as document lists are taken as objects and ranking
is transformed to a permutation level prediction problem.

In the testing process, for a query qt, we are given it-

s associated documents xt = (x
(t)
1 , x

(t)
2 , · · · , x(t)

nt ) and the

ground-truth labels yt = (y
(t)
1 , y

(t)
2 , · · · , y(t)

nt ). State-of-the-
art IR measures such as MAP [3], NDCG [11], ERR [7] are
usually adopted to evaluate the performance of the learned
ranking function.

2.2 Top-k Learning to Rank
Although conventional learning to rank techniques have

been widely applied to many real applications, such as in-
formation retrieval and collaborative filtering, and made a
great success, they are mainly criticized for depending on
unreliable training data [2, 19, 20]. To address this prob-
lem, many researchers have proposed to utilize more reli-
able pairwise preference judgment as an alternative [6, 19,
20]. However, the complexity would be O(n logn) to con-
struct a full-order ranking list with size n under the pairwise
preference judgments [16, 19].

Based on the assumption that top-k ground-truth is suf-
ficient for ranking, i.e. training on top-k ground-truth is as
good as that in full-order setting, a new top-k learning to
rank framework [16, 21] is proposed to utilize top-k ground-
truth for training, instead of a full-order ranking list. Specif-
ically, the top-k ground-truth is represented as a mixture of
the total order of the top k items, and the relative prefer-
ences between the set of top k items and the set of the rest
n−k items. With the top-k ground-truth, new top-k ranking
algorithms are proposed to facilitate the learning process.
For example, Xia et.al [21] proposed to modify traditional
listwise ranking algorithms such as ListMLE[22], ListNet [4]
and RankCosine [18] to fit the top-k setting. Niu et.al [16]
introduced a mixed model named FocusedRank, in which
pairwise losses and listwise losses are employed to model the
relative preference relationship and the total order relation-
ship, respectively. In [17], a new probabilistic model based
on the sequential generation process was proposed for the
top-k ranking problem.

Since top-k learning to rank introduces a novel reliable
training data construction method and the performances of
top-k ranking methods have been shown more effective, it
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has gained great attention recently1. However, it is not clear
whether the underlying assumption that top-k ground-truth
is sufficient for ranking is correct. In [21], the authors prove
that listwise ranking algorithms such as ListMLE, ListNet
and RankCosine are consistent with respect to a permuta-
tion level 0-1 loss in top-k setting. However, permutation
level 0-1 loss is not appropriate for evaluation since it omits
the position information, which is quite an important factor
for the ranking problem [8, 14]. Therefore, the correctness
of the underlying assumption remains an open question. In
this paper, we propose to study the problem from both em-
pirical and theoretical aspects.

3. RANKING ALGORITHMS
As mentioned above, the underlying assumption of top-k

learning to rank is that training on top-k ground-truth is
as good as that on a full-order ranking list. Therefore, to
investigate the correctness of the assumption, we propose to
conduct both empirical and theoretical analysis on ranking
algorithms in both full-order and top-k settings. Before the
analysis, we first introduce the precise forms of ranking algo-
rithms in both full-order and top-k settings in this section.
Specifically, four state-of-the-art ranking algorithms are u-
tilized in this paper, including pairwise ranking algorithms
such as Ranking SVM [10], RankBoost [9] and RankNet [1],
and a listwise ranking algorithm ListMLE [22].

3.1 Algorithms in Full-Order Setting
In full-order setting, a full-order ranking list is utilized

as the ground-truth. Therefore, we formulate the training
data as {(qi,xi,yi)}Ni=1, where qi stands for a query, xi =

(x
(i)
1 , ..., x

(i)
ni ) stands for the ni associated documents, and

yi=(y
(i)
1 , ..., y

(i)
ni ) stands for a full-order ranking list with y

(i)
j

denotes the index of the item ranked in the j-th position of

yi. Please note that x
(i)

y
(i)
j

is simply denoted as x
(i)
yj hereafter.

3.1.1 Pairwise Algorithms in Full-Order Setting
Pairwise ranking algorithms utilize the losses on all the

pairs as the training objective, therefore the training loss in
the full-order setting can be formulated as follows.

N∑
i=1

ni−1∑
j=1

ni∑
l=j+1

Lp(f ;x(i)
yj , x

(i)
yl ), (1)

where Lp stands for a pairwise loss, such as the hinge loss
used in Ranking SVM, the exponential loss used in Rank-
Boost and the logistic loss used in RankNet.
(1) Ranking SVM in Full-Order Setting
Ranking SVM [10] utilizes the following hinge loss as the

loss function, and applies the SVM technology to optimize
the number of misclassified pairs respectively.

Lp
hig(f ;x

(i)
yj , x

(i)
yl ) = max{0, 1− wT (x(i)

yj − x(i)
yl )}. (2)

Based on the total loss represented by Eq.(1), we formu-
lated Ranking SVM in full-order setting as the following

1Please note that [16] has won the best student paper award
of SIGIR2012.

Alg.1: Learning Algorithm for RankBoost in Full-Order Setting
1 Input: training data in terms of full-order ground-truth.
2 Given: initial distributionDi on all the pairs of qi, i=1,· · ·,N .
3 For t = 1, · · · , T
4 train weak ranker ft to minimize:

rt=
∑N

i=1

∑ni−1
j=1

∑ni
l=j+1 Dt(x

(i)
yj , x

(i)
yl )L

p
exp(f ;x

(i)
yj , x

(i)
yl ).

6 choose αt =
1
2
log( 1+rt

1−rt
).

7 update

Dt+1(x
(i)
yj , x

(i)
yl ) =

1
Zt

Dt(x
(i)
yj , x

(i)
yl ) exp(αt(w

Tx
(i)
yj − wTx

(i)
yl )),

where,

Zt=
∑N

i=1

∑ni−1
j=1

∑ni
l=j+1Dt(x

(i)
yj , x

(i)
yl ) exp(αt(w

Tx
(i)
yj−wTx

(i)
yl )).

8 Output: f(x) =
∑

t αtft(x).

optimization probelm:

min
1

2
∥w∥2 + C

∑N
i=1

∑ni−1
j=1

∑ni
l=j+1 ξ

(i)
j,l

s.t. : wTx
(i)
j − wTx

(i)
l ≥1−ξ

(i)
j,l ,

ξ
(i)
j,l ≥ 0, i = 1, ...,m; ∀j = 1, ..., ni − 1; l = j + 1, ..., ni,

where 1
2
∥w∥2 controls the complexity of the model w, and C

is a trade-off parameter between the model complexity and
hinge loss relaxations.

(2) RankBoost in Full-Order Setting
RankBoost [9] adopts the boosting technology to output

a ranking model by combining the week rankers, where the
combination coefficients are determined by the probability
distribution on document pairs.

Based on the total loss represented by Eq.(1) and the ex-
ponential loss presented as follows, we give the detailed algo-
rithm for RankBoost in full-order setting, as shown in Alg.1.

Lp
exp(f ;x

(i)
yj , x

(i)
yl ) = exp (−(wT (x(i)

yj − x(i)
yl ))), j < l (3)

(3) RankNet in Full-Order Setting
RankNet aims to optimize a cross entropy between the

target probability and the modeled probability, where the
probability is defined based on the exponential function of
difference between the scores of any two documents in all
document pairs given by the scoring function f . The loss
function in full-order setting is presented as follows.

Lp
log(f ;x

(i)
yj ,x

(i)
yl )=−P̄jllogPjl(f)−(1−P̄jl)log(1−Pjl(f)). (4)

where, P̄jl = 1, if j < l, and P̄jl = 0, otherwise.

Pjl(f) =
exp(wTx

(i)
yj − wTx

(i)
yl )

1 + exp(wTx
(i)
yj − wTx

(v)
yl )

,

3.1.2 Listwise Algorithms in Full-Order Setting
In this paper, we use ListMLE [22] as an example of list-

wise ranking algorithms due to its nice empirical and the-
oretical properties [8]. ListMLE models the generation of
a ranking list according to Plackett-Luce Model [15], and
utilizes the following likelihood loss for training.

Ll(f ;x,y) = − logP (y|x, f), (5)

where P (y|x) is defined as:

P (y|x, f) =
n−1∏
j=1

exp{f(xyj )}∑n
l=j exp{f(xyl)}

.
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On this basis, the total loss on the training data {(qi,xi,yi)}Ni=1

is represented as follows.

N∑
i=1

ni−1∑
j=1

{−f(x(i)
yj ) + log(

ni∑
l=j

exp{f(x
y
(i)
l

)})}. (6)

3.2 Algorithms in Top-k Setting
According to the definition of top-k ground-truth that on-

ly the total order of top k items are given, we can formu-

late the training data in top-k setting as (qi,xi, Y
(i)
k ), i =

1, · · · , N , where qi stands for a query, xi stands for the

ni associated documents, Y
(i)
k stands for a set of full-order

ranking lists with size ni, such that the total orders of the
top k items in these ranking lists are the same while the
remaining ni − k items form different permutations.

3.2.1 Pairwise Algorithms in Top-k Setting
Pairwise algorithms are proposed to utilize all the pairs

constructed from training data as the total loss for optimiza-
tion. Therefore, with top-k ground-truth, pairs constructed
between the last n− k items will no longer exist in the total
loss, different from the setting of full ordering ground-truth.
Furthermore, according to the definition of top-k ground-
truth, for any y ∈ Yk, the following loss is the same.

N∑
i=1

k∑
j=1

ni∑
l=j+1

Lp(f ;x(i)
yj , x

(i)
yl )

Therefore, the total loss of a pairwise ranking algorithm
in top-k setting can be represented as follows.

N∑
i=1

min
y∈Y

(i)
k

k∑
j=1

ni∑
l=j+1

Lp(f ;x(i)
yj , x

(i)
yl ). (7)

Incorporating different loss functions Lp as described in
Eq.(2), Eq.(3) and Eq.(4) into the above equation, we can
obtain the total loss of Ranking SVM, RankBoost and RankNet
in top-k setting. Since the optimization processes are the
same as that in full-order setting, we omit them here for
clear representation.

3.2.2 Listwise Algorithms in Top-k Setting
As described in [21], the top-k ground-truth with respec-

t to a full-order ranking list y is generated according the
probability as follows.

k∏
j=1

exp{f(xyj )}∑ni
l=j exp{f(xyl)}

.

Similarly to the above analysis for pairwise algorithms, for
each y ∈ Yk, the above probability is the same. Therefore,
the probability of top-k ground-truth can be represented as
follows.

P (Yk|x, f) = min
y∈Yk

k∏
j=1

exp{f(xyj )}∑ni
l=j exp{f(xyl)}

.

As a consequence, the total loss in top-k setting can be
formulated as the following form.

N∑
i=1

k∑
j=1

min
yi∈Y

(i)
k

{−f(x(i)
yj ) + log(

k∑
l=j

exp{f(x(i)
yl )})}. (8)

4. EMPIRICAL ANALYSIS
In this section, we propose to empirically study whether

the assumption that top-k ground-truth is sufficient for rank-
ing holds. As described in Section 2, the assumption can be
formulated as training in top-k setting is as good as that
in full-order setting. Therefore, the empirical study can be
conducted by comparing the test performances of ranking
algorithms in top-k setting and that in full-order setting.

4.1 Experimental Settings
We conduct extensive experiments on the benchmark dataset-

s LETOR4.02. In LETOR4.0, the ground-truth for a query
is a full-order ranking list in MQ2007-list and MQ2008-list.
Therefore, it is easy to construct top-k ground-truth by just
preserving the total order of top k items. As a result, these
two datasets are suitable for our study in both top-k and
full-order setting. The four learning to rank algorithms as
mentioned above are all included in our experiments, in-
cluding pairwise ranking algorithms such as Ranking SVM,
RankBoost and RankNet and a listwise ranking algorithm
ListMLE. The training set, validation set and test set have
already been divided in LETOR4.0 and we follow the default
setting of LETOR 4.0 in our experiments.

In order to compare the test performances of ranking al-
gorithms in top-k setting and that in full-order setting, we
conduct training process for each ranking algorithm with
top-k ground-truth. It is obvious to see that, when k e-
quals to the total number of documents for each query, the
top-k setting becomes the full-order setting. For each k,
parameters are selected through the validation set. For ex-
ample, in RankSVM, the tradeoff parameter C is tuned from
{10−5, 10−4, · · · , 10−1, 0.2, · · · , 1, 10, 100, 1000}. In Rank-
Boost, the relative loss variation between two iterations are
chosen from 0.1 to 10−6 to control the stop condition, and
the maximal number of iterations is set to 500. For gra-
dient descent procedures as in RankNet and ListMLE, the
learning rate is selected from {10−5, 10−4, · · · , 10−1} with
the maximal number of iterations 500.

Finally, the performances on test set with selected pa-
rameters is evaluated with the full-order ground-truth, using
NDCG as the evaluation measure.

4.2 Experimental Results
We plot the performance curves of different ranking al-

gorithms with the increase of k in terms of NDCG@5 and
NDCG@10, as shown in Figure 1 and Figure 2. For each
ranking algorithm, the top sub-figure stands for the overall
test performance curves, with k varies from 1 to 1000, and
the value in full-order setting is plotted as the rightmost
point in the figure. The bottom sub-figure stands for the
test performance curves with k varies from 1 to 100.

From the results in Figure 1 and 2, we can see that:
(1) Overall, the test performances of ranking algorithms

in top-k setting increase to a stable value with the growth
of k. This can be clearly illustrated by the experimental
results on MQ2008-list as shown in Figure 2. In general,
the experimental results on MQ2007-list also agree with the
claim. However, it shows in the figure that when k keep-
s increasing, the performances will decrease. For example,
the performances of Ranking SVM, RankNet and ListMLE

2http://research.microsoft.com/en-
us/um/beijing/projects/letor//
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Figure 1: Performance variations of different ranking algorithms in top-k setting on MQ2007-list with the increase of k

will drop when k exceeds 100. More surprisingly, the perfor-
mances of these algorithms in full-order setting are even not
comparable with that in top-1 setting. At a first glance, this
experimental results seem deviate from our intuition that
the performance should be better with larger k since more
information is conveyed in the training data. However, the
results can be explained since there are usually many noises
in real training data, especially for labels on the tail docu-
ments in a full-order setting. For example, in MQ2007-list,
there are 1700 queries and 700 documents per query on av-
erage. Therefore, it is difficult to obtain a reliable full-order
ground-truth with respect to such a large data set, especially
to obtain reliable orders among the tail documents in a list.
That is why ranking algorithms in full-order setting perform
so badly.
(2) By carefully looking into the variance of curves with

k varying from 1 to 100 as shown in the bottom sub-figure
of each ranking algorithm, we can see that the test perfor-

mances of all the four ranking algorithms increase quickly
to a stable value with the increase of k. For example, when
k exceeds 10 in MQ2007-list and MQ2008-list, the perfor-
mances of Ranking SVM, RankNet and ListMLE keep sta-
ble. when k exceeds 20, the performance of RankBoost also
keeps stable.

In summary, our experimental results on benchmark dataset-
s LETOR4.0 show that the test performances quickly in-
crease to a stable value with the growth of k in the train-
ing data. Therefore, we have empirically proven that top-k
ground-truth is sufficient for ranking.

5. THEORETICAL ANALYSIS
In this section, we propose to study whether the assump-

tion of top-k is sufficient for ranking holds from theory as-
pect.

Firstly, we formalize the problem as finding the relation-
ships among losses in top-k setting, losses in full-order set-
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Figure 2: Performance variation of different ranking algorithms in top-k setting on MQ2008-list with the increase of k

ting and IR evaluation measures, theoretically. Inspired by
the technique used in [8], we propose a new loss function
named Weighted Kendall’s Tau (WKT for short), and then
deduce the concerned relationships by finding the relation-
ship between WKT and losses in top-k setting, and the re-
lationship between WKT and IR evaluation meeasures, re-
spectively.

5.1 Problem Formalization
As described in Section 2, the assumption can be formulat-

ed as training in top-k setting is as good as that in full-order
setting. At a first glance, it seems natural to formalize the
problem (i.e. whether the assumption holds) as finding the
relationship between losses in top-k setting and that in full-
order setting. Based on the formulations of total losses in
top-k setting and that in full-order setting, we can obtain
the following relationships.

(1) The pairwise loss functions in full-order setting are
upper bounds of that in top-k setting, described as follows.

N∑
i=1

min
yi∈Y

(i)
k

k∑
j=1

ni∑
l=j+1

Lp(f ;x(i)
yj , x

(i)
yl )

≤
N∑
i=1

ni−1∑
j=1

ni∑
l=j+1

Lp(f ;x(i)
yj , x

(i)
yl ),

(2) The listwise loss function of ListMLE in full-order set-
ting are upper bounds of that in top-k setting, described as
follows.

N∑
i=1

min
yi∈Y

(i)
k

k∑
j=1

{−f(x(i)
yj ) + log(

ni∑
l=j

exp{f(x
y
(i)
l

)})}

≤
N∑
i=1

ni−1∑
j=1

{−f(x(i)
yj ) + log(

ni∑
l=j

exp{f(x
y
(i)
l

)})}.
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These relationships mean that the minimization of the
former (i.e. loss functions in full-order setting) will lead to
the minimization of the latter (i.e. loss functions in top-k
setting). However, what we really care about is the opposite
side of the coin, i.e. whether the minimization of these loss
functions in top-k setting will lead to the minimization of
them in full-order setting. Seemingly the answer is negative.
Inspired by the contradiction between the negative answer

and the claim of top-k learning to rank, we need to revisit
the assumption: training on top-k ground-truth is as good
as that on a full-order ranking list. We can see that the term
‘as good as’ is actually related to the evaluation procedure
in ranking. According to the fact that a ranking algorithm
is usually evaluated by IR evaluation measures in learning to
rank, we find that the theoretical analysis on whether the as-
sumption holds need to further take IR evaluation measures
into consideration.
Therefore, a more appropriate formalization of the theo-

retical problem is to study the relationships among losses in
top-k setting, losses in full-order setting and IR evaluation
measures. In this paper, we take NDCG as an example to
conduct the theoretical analysis, and leave the analysis on
other measures such as MAP, ERR in the future work.

5.2 Theoretical Results
As described above, a reasonable theoretical formalization

is to study the relationships between the losses in full-order
setting, losses in top-k setting and NDCG. Since the re-
lationships between losses in full-order setting and that in
top-k setting has been revealed in the last subsection, we
focus on the relationship between losses in top-k setting and
NDCG here.
Firstly, we give the precise definition of NDCG as follows.

NDCG@k(f,x,y) =
1

Nk

k∑
j=1

g(l(yj))D(rj), (9)

where x and y stands for the set of documents and the corre-
sponding full-order ground-truth, respectively. rj stands for
the rank of xj in the ranking list obtained by f . In the eval-
uation[16], the position information is transformed to labels
for the computation of NDCG as l(yj) = n − yj . g(l(yj))

is the gain function with g(l(yj)) = 2l(yj) − 1, D(rj) is the
discount function with D(rj) =

1
log(1+rj)

, and Nk stands for

the maximum of
∑K

j=1 g(yj)D(rj).
Here we also list the pairwise losses and listwise loss in

top-k setting to make theoretical analysis easier.

Lp(f ;x, Yk)=min
y∈Yk

k∑
j=1

n∑
l=j+1

Lp(f ;xyj , xyl). (10)

Ll(f ;x, Yk)=min
y∈Yk

k∑
j=1

{−f(xyj )+log(

n∑
l=j

exp{f(xyl)})}. (11)

5.2.1 Weighted Kendall’s Tau
Inspired by [8] and [12], we propose a new loss named

Weighted Kendall’s Tau (WKT) to facilitate the theoretical
analysis, which is defined as follows.

Lα(f ;x, Yk)=min
y∈Yk

k∑
j=1

α(j)

n∑
l=j+1

I{f(xyj
)−f(xyl

)<0}, (12)

where α(·) is a decreasing function to represent the impor-
tance of position information, and I{·} is the indicator func-
tion with IA = 1 if A is true, otherwise IA = 0.

Weighted Kendall’s Tau has a nice property that for any
full-order ranking list in which the top-k items are consis-
tent with that in top-k ground-truth, the loss is the same,
described as the following lemma. The property makes WK-
T easier to relate NDCG to losses in top-k ground-truth.

Lemma 1. For any set of items x, given the full-order
ground-truth y and the top-k ground-truth Yk, for any rank-
ing function f , the following equalities hold,

Lα(f ;x, Yk)=

k∑
j=1

α(j)

n∑
l=j+1

I{f(xyi
)−f(xyj

)<0}, (13)

Proof. Firstly, from the definition of the top-k ground-
truth as a set of full-order ranking lists where the total orders
of the top k items are the same, we can see that y ∈ Yk.

Secondly, we prove that for ∀y1,y2 ∈ Yk, the following
equality holds.

k∑
j=1

α(j)

n∑
l=j+1

I{f(x
y
(1)
j

)−f(x
y
(1)
l

)<0}

=
k∑

j=1

α(j)
n∑

l=j+1

I{f(x
y
(2)
j

)−f(x
y
(2)
l

)<0}.

According to the definition of top-k ground-truth Yk, the
orders of top k items in y1 and y2 are the same. Therefore,
the following statement holds.

y
(1)
j = y

(2)
j , j = 1, · · · , k.

As a consequence, we have

k∑
j=1

α(j)

n∑
l=j+1

I{f(x
y
(1)
j

)−f(x
y
(1)
j

)<0}

=

k∑
j=1

α(j)

n∑
l=j+1

I{f(x
y
(2)
j

)−f(x
y
(1)
j

)<0}

=
k∑

j=1

α(j)
n∑

l=j+1

I{f(x
y
(2)
j

)−f(x
y
(2)
j

)<0}.

Combining the above results, we can obtain that:

Lα(f ;x, Yk) = min
y∈Yk

k∑
j=1

α(j)

n∑
l=j+1

I{f(xyj
)−f(xyl

)<0}

=
k∑

j=1

α(j)
n∑

l=j+1

I{f(xyi
)−f(xyj

)<0}.

Therefore, we have proven the results in the lemma.

5.2.2 WKT: Upper Bound of Measure Based Error
First, we study the relationship between Weighted K-

endall’s Tau and (1−NDCG). It can be proven that WKT is
an upper bound of (1−NDCG@k), as shown in the following
theorem.

Theorem 1. For any set of items x, given the full order-
ing ground-truth y and the top-k ground-truth Yk, for any
ranking function f , the following inequality holds,

1−NDCG@k(f ;x,y) ≤ 1

Nk
Lα(f ;x, Yk), (14)
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where α(j) = G(l(yj))D(j).

Proof. First, we formulate NDCG as follows,

NDCG@k(f ;x,y) =
1

Nk

n∑
j=1

G(l(yj))D(rj).

According to the definition of Nk, we have,

Nk =

k∑
j=1

G(l(yj))D(j).

Therefore, we have,

1−NDCG@k(f ;x,y)

=
1

Nk

k∑
j=1

G(l(yj))(D(j)−D(rj)). (15)

Second, we consider the Weighted Kendall’s Tau case by
case. Let α(j) = G(l(yj))D(j), note that

Lα(f ;x, Yk)=

k∑
j=1

G(l(yj))D(j)

n∑
l=j+1

I{f(xyj
)−f(xyl

)<0}.

1. If
∑n

l=j+1 I{f(xyj
)−f(xyl

)<0} = 0, we have

I{f(xyj
)−f(xyl

)<0} = 0, ∀l∈ [j + 1, n].

That is, ∀l ∈ [j + 1, n], f(xyj )> f(xyl). Immediately,
we have rj ≤ j. Since D(·) is a decreasing function,
we have D(j) ≤ D(rj). We immediately obtain that,

D(j)
n∑

l=j+1

I{f(xyj
)−f(xyl

)<0}≥D(j)−D(rj).

2. Otherwise, at least ∃l0 ∈ [j + 1, n], such that

I{f(xyj
)−f(xyl

)<0} = 1,

Therefore we can obtain that,

D(j)

n∑
l=j+1

I{f(xyj
)−f(xyl

)<0}≥D(j)−D(rj).

Combining the above results, we can obtain that,

D(j)

n∑
l=j+1

I{f(xyj
)−f(xyl

)<0}≥D(j)−D(rj).

Further considering Eq.(15), we have

1−NDCG@k(f ;x,y) ≤ 1

Nk
Lα(f ;x,y). (16)

Considering the result of Lemma 1, we have proven that the
inequality in the theorem holds.

5.2.3 WKT: Lower Bound of Loss Functions
Here we study the relationship between Weighted Kendal-

l’s Tau and loss functions of ranking algorithms in top-k set-
ting. It can be proven that WKT is a lower bound of loss
functions of four ranking algorithms, including pairwise loss
in Ranking SVM, RankBoost and RankNet, and a listwise
loss in ListMLE, as shown in the following theorem.

Theorem 2. For any set of items x, given the top-k ground-
truth Yk, for any ranking function f ,

(1) Weighted Kendall’s Tau Lα is the lower bound of the
pairwise loss function Lp(f ;x, Yk), as shown in the following
inequality:

Lα(f ;x, Yk) ≤ ( max
1≤i≤k

α(i))Lp(f ;x, Yk); (17)

(2) Weighted Kendall’s Tau Lα is the lower bound of the
listwise loss function Ll(f ;x, Yk), as shown in the following
inequality:

Lα(f ;x, Yk) ≤
1

ln 2
( max
1≤i≤k

α(i))Ll(f ;x, Yk); (18)

Proof. We first prove Eq.(17).
From the definition of hinge loss, exponential loss and

logistic loss in Eq.(2), Eq.(3) and Eq.(4), the pairwise loss
function can all be represented as a function ϕ(·) with ϕ(0) =
1, as shown below.

Lp(f ;xyj , xyl) = ϕ(f(xyj )− f(xyl)).

Therefore, the following equation holds.

I{f(xyj
)−f(xyl

)<0} ≤ ϕ(f(xyj )− f(xyl)).

Therefore, it is obvious that Eq.(17) holds.
Now we prove Eq.(18). Note that

Ll(f ;x, Yk) =

k∑
i=1

(−f(xyj ) + ln(

n∑
j=i

(exp (f(xyl))))).

1. If
∑n

l=j+1 I{f(xyj
)−f(xyl

)<0} = 0, we have

Lα(f ;x, Yk) ≤ ( max
1≤j≤k

α(j))Ll(f ;x, Yk)

≤ 1

ln 2
( max
1≤j≤k

α(j))Ll(f ;x, Yk).

2. Otherwise, at least ∃l0 ∈ [j + 1, n], such that

I{f(xyj
)−f(xyl

)<0} = 1,

that is, f(xyj ) < f(xyl). Then it is obvious that,

n∑
l=i

exp (f(xy(l))) ≥ 2 exp (f(xy(j))),

then the following inequality holds:

−f(xy(j)) + ln(

n∑
l=j

(exp (f(xyl)))) ≥ ln 2.

Therefore,

Lα(f ;x, Yk) ≤
1

ln 2
( max
1≤j≤k

α(j))Ll(f ;x, Yk).

Combining the above results, we can obtain that,

Lα(f ;x, Yk) ≤
1

ln 2
( max
1≤j≤k

α(j))Ll(f ;x, Yk).

Therefore, we have proven that Eq.(18) holds.
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5.3 Results Analysis
Based on the above theorems, the theoretical results can

be summarized as follows:
(1) Weighted Kendall’s Tau is an upper bound of (1−

NDCG@k), as described below with α(j) = G(l(yj))D(j).

1−NDCG@k(f ;x,y) ≤ 1

Nk
Lα(f ;x, Yk),

(2) Weighted Kendall’s Tau is a lower bound of loss func-
tions in top-k setting, as described below.

Lα(f ;x, Yk) ≤ ( max
1≤i≤k

α(i))Lp(f ;x, Yk);

Lα(f ;x, Yk) ≤
1

ln 2
( max
1≤i≤k

α(i))Ll(f ;x, Yk);

Based on these results, we immediately obtain that loss
functions in top-k setting are upper bounds of (1−NDCG@k),
described as below with α(j) = G(l(yj))D(j).

1−NDCG@k(f ;x,y) ≤ 1

Nk
( max
1≤i≤k

α(i))Lp(f ;x, Yk),

1−NDCG@k(f ;x,y) ≤ 1

Nk

1

ln 2
( max
1≤i≤k

α(i))Ll(f ;x, Yk),

Further considering the relationship between loss func-
tions in top-k setting and that in full-order setting, we can
obtain the relationships of the three: loss functions in top-k
setting are tighter lower bounds of (1−NDCG@k), as com-
pared with loss functions in full-order setting.
From this theoretical result, we can see that, if a rank-

ing algorithm such as Ranking SVM, RankBoost, RankNet
and ListMLE in full-order setting performs good, then the
same ranking algorithm in top-k setting will definitely per-
form better. Therefore, we have proven theoretically that
top-k ground-truth is sufficient for ranking. This is also in
accordance with our experimental finding that the test per-
formances of algorithms in top-k setting (when k reaches
certain value) are better than that in full-order setting.

6. CONCLUSION
This paper addresses the problem of whether the under-

lying assumption of top-k learning to rank holds from both
empirical and theoretical aspects.
(1) Empirically, we propose to check the variance of test

performance curves of ranking algorithms with respect to
k in top-k ground-truth to study the problem. For this
purpose, we conduct extensive experiments on benchmark
datasets LETOR4.0 with pairwise ranking algorithms Rank-
ing SVM, RankBoost and RankNet, and a listwise ranking
algorithm ListMLE. The results show that the test perfor-
mances of all the four algorithms quickly increase to a sta-
ble value with the growth of k. As a consequence, we have
proven empirically that top-k ground-truth is sufficient for
ranking.
(2) Theoretically, we formulate the problem as the study

of the relationships among loss functions in full-order set-
ting, loss functions in top-k setting and IR evaluation mea-
sures such as NDCG. Firstly, it is obvious that loss functions
in top-k setting are lower bound of that in full-order set-
ting. Secondly, through a newly defined loss function named
Weighted Kendall’s Tau, we prove that (1−NDCG@k) is

a lower bound of losses in top-k setting. Therefore, loss
functions in top-k settings are tighter lower bounds of (1−
NDCG@k), as compared to that in full-order setting. In oth-
er words, we have proven theoretically that top-k ground-
truth is sufficient for ranking.

In summary, our analysis have proven the correctness of
the assumption of the top-k learning to rank and lay a foun-
dation for the new learning to rank framework.

There are still many issues need further investigation. For
example, in this paper, we conduct theoretical analysis based
on the relationship between different objectives. It would
also makes sense to conduct statistical consistency analysis
between algorithms in top-k setting and that in full-order
setting.
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