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Local Linear Matrix Factorization
for Document Modeling

Lu Bai, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng

Institute of Computing Technology, Chinese Academy of Sciences, BeiJing, China
bailu@software.ict.ac.cn, {guojiafeng,lanyanyan,cxq}@ict.ac.cn

Abstract. Mining low dimensional semantic representations of docu-
ment is a key problem in many document analysis and information re-
trieval tasks. Previous studies show better representation mining results
by incorporating geometric relationships among documents. However,
existing methods model the geometric relationships between a document
and its neighbors as independent pairwise relationship; while the pair-
wise relationship relies on some heuristic similarity/dissimilarity mea-
sures and predefined threshold. To address these problems, we propose a
Local Linear Matrix Factorization (LLMF), for low dimensional represen-
tation learning. Specifically, LLMF exploits the geometric relationships
between a document and its neighbors based on local linear combination
assumption, which encodes richer geometric information among the doc-
uments. Moreover, the linear combination relationships can be learned
from the data without any heuristic parameter definition. We present
an iterative model fitting algorithm based on quasi-Newton method for
the optimization of LLMF. In the experiments, we compare LLMF with
the state-of-the-art semantic mining methods on two text data sets. The
experimental results show that LLMF can produce better document rep-
resentations and higher accuracy in document classification task.

Keywords: document modeling, local linear combination, matrix
factorization.

1 Introduction

Extracting low dimensional semantic representations of documents has shown
great success in wide applications[4][22]. Typically, by representing the corpus
as a document-word matrix, matrix factorization can be applied to identify the
semantic co-occurrence patterns of words (known as topics), and meanwhile
extract low dimensional document representations over the topics [15][6]. Com-
pared to the original document-word matrix, the low dimensional representations
exhibit better semantics and achieve higher computation and storage efliciency.

Recent studies suggest that the documents are usually sampled from a non-
linear low dimensional subspace which is embedded in the high dimensional
ambient space [7][8][14]. Thus, the local geometric structure is essential to reveal
the hidden semantics in the corpora, and should be preserved when learning the
low dimensional semantic representations. Based on this idea, some works (such
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as LapPLSA[7], LTM[8], DTM[14] and GNMF [6]) model the geometric relation-
ship in a manifold way, which requires that the low dimensional representations
of two documents to be close if they are neighbors in the original space. The
empirical experiments demonstrated these methods can produce better results
than the traditional factorization methods.

However, there are two clear drawbacks on only modeling the pairwise geo-
metric relationship between documents. Firstly, the pairwise relationship usually
relies on some heuristic similarity /dissimilarity measures, and the local neigh-
borhood structure selected with predefined threshold as well. Unfortunately, it
is unclear which measure can well capture the closeness of document pairs and
the threshold is often hard to define in practice. Secondly, the pairwise geo-
metric relationships between a document and its neighbors are assumed to be
independent, making the rich geometric information among the local pairs lost.
Moreover, these models may easily be affected by biased distribution of docu-
ment pairs (especially when many redundant but less similar document pairs are
included in the local neighborhood).

In this work, we propose Local Linear Matrix Factorization (LLMF), a novel
low dimensional representation learning method by better exploiting the geo-
metric relationship among documents. Specifically, inspired by the Local Linear
Embedding (LLE [17]) method, we capture the geometric relationships among
documents through representing a document by a linear combination of its neigh-
bor documents. The linear combination coefficients demonstrate not only the
geometric relationships between the document and its neighbors, but also the
relationships among the neighbors. Unlike the LLE method, the linear combina-
tion coeflicients are obtained by solving a regression problem with [; constraints
[20], which simultaneously build the nearest neighborhood structure of the docu-
ments. Therefore, we do not resort to choosing any similarity/dissimilarity mea-
sure or predefining a threshold to select neighbors. With the learned combina-
tion coefficients, LLMF produces the low dimensional semantic representations
by factorizing the document-word matrix with the local linear constraint. The
learning process is straight forward, and can be summarized as an iterative pro-
cess to fit the model in a quasi-Newton way.

We conduct empirical experiments on two benchmark text data sets. The
results demonstrate that LLMF can produce better document representations
and achieve higher accuracy in document classification task compared to several
state-of-the-art semantic representation learning methods.

2 Preliminary Studies

In this section, we briefly introduce some previous studies on matrix factorization
and the incorporation of geometric information.

2.1 A Brief View of Matrix Factorization

Matrix factorization or matrix decomposition is a technique that factorizes a
source matrix into the production of several matrices based on the discipline of
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linear algebra. Given a data matrix W71 = [Wy, Wy, ..., Wx|T € RV*M where
Wi, i € [1,n] denotes a M-dimension data vector. A simple factorization of W7
is to produce two related matrices U € RV*K |V € REXM that approximate
WT with the production of U and V:

wh=uv (1)

The dimension K is usually set as a small value, e.g. K < M, thus U is a low
dimensional and compact representation of W7 with the new basis depicted by
V. In some domains, such as document modeling and image processing, U or V/
are required to be non-negative. Components thus are additive-only to construct
data that makes the factorization more interpretable and favorable in practice.

Square Euclidean distance between W7 and UV is a typical objective function
for matrix factorization (e.g. in NMF).

min » (W = Up.V;)? (2)
4,

The problem in (2) is bi-convex, which means the problem is convex on U (V)
when V(U) is fixed. We can apply an iterative algorithm for optimization. As
suggested in [2], it is convenient to optimize U or V as a linear regression problem
alternatively, then stop the iteration when the loss is small enough.

Alternatively, KL-divergence is also a popular measure for the approxima-
tion of W7 with U and V, especially when U and V fall into the probabilistic
perspective (e.g. PLSA). Usually, the statistic inference methods, e.g. EM or
MCMC, are employed to solve the optimization problem.

2.2 Document Modeling with Geometric Constraints

Matrix factorization has been applied in document modeling to find compact rep-
resentations by minimizing the reconstruction error. Recent studies show that
by incorporating geometric information among documents, one can learn better
low dimensional representations. A variety of document modeling methods em-
ploy the idea of Laplacian Eigenmap(LE) to enhance the geometric properties
of learned topics, such as GNMF [6], LapPLSA [7] and LTM [8]. Specifically, a
document manifold is first constructed by selecting the neighbors of each docu-
ment with some similarity measure and threshold. The geometric constraints of
LE can then be formulated as the following optimization problem.

min Y Sij || @i — 2 |3 (3)

¥

where S;; denotes the similarity between ¢ and j. Intuitively, the optimization of
(3) is equivalent to make the low dimensional representation z;, x; close when ¢
and j are close in the original space.

Obviously, the existing document modeling methods based on LE preserve
the geometric information among documents by only modeling the geometric
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relationships between independent document pairs. Thus, the rich geometric
information among the neighbor pairs are lost in this case. Moreover, the pairwise
relationship relies on some heuristic similarity measure as well as the predefined
threshold for selecting the neighbors. However, it is unclear which measure can
well capture the closeness of document pairs and the threshold is often hard to
define in practice.

3 Local Linear Matrix Factorization

In this section, we introduce a novel low dimensional representation learning
method better exploiting the geometric information among documents, namely
Local Linear Matrix Factorization(LLMF). We also provide an effective algo-
rithm for optimization. In addition, we give some detailed discussions about the
differences between LLMF and other document modeling methods.

3.1 Model Formalization

Suppose we have N documents over the vocabulary of size M. Let DT =
[Dy,Ds, ..., Dy]T € RfXM denote a document-word matrix, where Dl-Tj is the
occurrence number of word j in document i. 6 € Rf *K is the low dimensional
representation of DT with K < N. 3 € RfXM is the corresponding basis of the
latent semantic space. From the perspective of matrix factorization, D7 can be

expressed as
DT =68 (4)

By using the square error to measure the approximation in formula (4), we obtain
the following non-negative matrix factorization problem for document modeling

Lo=M SN (DL —0:.85)%+ X 1013 +2 || 813 (5)
st. 6>0,8>0

where A\g and Ag are the weights of /5 regularizers used to reduce the over-fitting,
and the non-negative constraints over § and S make the learned components
interpretable.

Inspired by LLE [17], we consider that local geometric information can be
captured by local linear combination relationship (i.e. document can be recon-
structed by linear combination of its neighbors), rather than independent pair-
wise relationships. Specifically, document d can be approximate as

DY = ¢J DT (6)

where ¢4 denotes the combination weight vector for document d, and DT denotes

~ T
the normalized document-word matrix obtained by D;fg = %’? , where L; is the

length of document i. We use normalized document-word matrix in local linear
combination to avoid the bias of long documents. Note that for the combination
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weight vector of document d, documents not belonging to the neighbors of d
have the value 0 at the corresponding entries of ¢4.

The local linear combination constraints can then be expressed by the follow-
ing objective function

N
Ly=Y (DL = DEP+ 11l +rs ¢ 13 (7)
i,
where v and Ay denotes the weights for /; and Iy norm over ¢, respectively. Here
we put the [; norm over ¢ due to the assumption that the number of neighbors
of each document is small. It is worth noting that minimizing the formula (7)
actually conducts neighbor selection and combination weight learning simultane-
ously. In this way, we can avoid using heuristic similarity measures and threshold
to select neighbors as previous methods.

Unlike previous document modeling methods with geometric constraints
(e.g. GNMF, LapPLSA and LTM), it is not straightforward to combine the
local linear constraints £4 with the matrix factorization objective Lg, since the
f and ¢ is not shared by both optimizations. However, we can bridge 6 and ¢
by the normalized basis D. Based on formula (4), we have that

DT = [DT, ... DY =[0:8,...,088] = ([él,...,éN]>5_é5 (8)

where the entries of §; can be derived as 6;;, = ng, ke [l,---,K]. In this way,
formula (6) can be rewritten as

DI = ¢,DT = ¢408 9)

Compared formula (9) with formula (4), we obtain that

edggbd[él?"'?e]\’] (10)

Then we can integrate the local linear constraints into the matrix factoriza-
tion, and the objective function can be expressed as

N M K N K K M
L0,8) =3 0B —Di)* + X D> 05+ X > > B
i=1 j=1 k=1 i=1 k=1 k=1 j=1
N K N 1
i=1 k=1 n=1""

where the coefficient 1 controls the trade-off between the matrix factorization
objective and the local linear constraints.

3.2 Model Fitting

In this section we would show how to infer the latent factor ¢, 6 and 3 respec-
tively. The inference process can be divided into two optimization problems.
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¢ can be firstly evaluated by optimizing the objective function (7) as a re-
gression problem. Since the basis DT can be pre-computed by normalizing the
words count for every documents, the optimization leaves ¢ unknown. It is easy
to prove that minimizing the objective function (7) is a convex problem, where
the global optimal solution can be found. However, the [; regularizer makes the
optimization problem in formular (7) not differentiable when some dimension
of ¢ is 0. To address this problem, we adopt the OWL-QN [3] algorithm for
optimization.

OWL-QN algorithm is based on the famous Quasi-Newton algorithm that
leverages the second order information to accelerate the optimization. The algo-
rithm would check the state for each iteration step and revise the value if some
dimension cross the orthant boundary. The OWL-QN algorithm requires to cal-
culate the gradient of the function without the {; norm part, which is shown as
follows

8¢in —~ —~ m=nw 1w nw ¢ Pin

The iteration stops when the change of objective function (7) is small enough.
After evaluating ¢, § and 8 can be obtained by objective function (5). Since
both 6 and 8 are unknown, the optimization problem is bi-convex and we can
use the alternative strategy for optimization. Here we solve the problem with
gradient method. The gradient of # and S can be calculate as following:

Algorithm 1. Learning Procedure of LLMF

Require: DT, K € Zy,e> 0,X9, A, A5, 7

f < the function to calculate the loss of ¢ as function 7
g + the function to calculate the gradient of ¢ as function 12
initialize ¢ € R} *" randomly
Learn ¢ «+ OWL-QN(DT, ¢, n,¢, f, )
initialize 0(© e RY** randomly
initialize B e RE*M randomly
f < the function to calculate the loss of ¢ as function 5
go < the function to calculate the gradient of ¢ as function 14
g < the function to calculate the gradient of 8 as function 13
lold —0
fort=1:T do

Learn 0 < OWL-QN(DT,0%"Y,0,¢, f, go)

Learn 8 «+ OWL-QN(DT,ﬂ(t71)70,€7 fr98)

l < calculate loss function value as function 5

if || 1 —1°"Y||< € then

break

end if

lold — ]
end for
return 0, 3, ¢
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N
0Ly
e Z (Z OarBrw — Difyy) Ok + A B (13)
d=1 k=1
0L M K NON 1
s wz::l (godkﬂkw — D) Brw + NeBar + nbz:; (nz::l L_n¢bn9nk - gbk)(L_b¢bd)
AN
—n( Z L—¢dn9nk — Oax) (14)
= n

The algorithm to infer ¢, 8 and 8 are described in the algorithm 1.

3.3 Discussion

In this section, we further provide some discussions on the differences between
the proposed LLMF method and existing state-of-the-art document modeling
methods.

Compared to NMF, PLSA and LDA, LLMF smoothed the low dimensional
representations of documents with its neighbors. The weights for each neigh-
bors are evaluated by solving a least square regression problem that captures
the geometric information among documents. Both LDA and NMF smooth the
latent representations with a unimodal prior distribution (Dirichlet distribution
for LDA and Gaussian distribution for NMF), but the posterior distribution
would prefer to fit the most intensive areas globally. In all the three methods
(i.e. NMF, PLSA and LDA), the local geometric information among documents
is not considered.

When compared with document modeling methods with geometric constraints,
like LapPLSA and LTM, the way of capturing the geometric information in these

Fig. 1. Biased latent representations when data distribution is unbalanced
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methods is quite different from that of our proposed LLMF. Previous methods
smooth the latent representations with their neighbors in a pairwise way. It is
illustrated in [5] that in these methods the similarity measure and neighbor-
hood threshold should be carefully defined when constructing the local manifold
patch, otherwise the improper neighborhood would dramatically bias the latent
representations and affect the performance. We explain this phenomenon here
and show the advantage of local linear constraints over pairwise constraints. As
shown in Fig. 1, one aims to learn the latent representation of red circle point,
where the green snow point (x) and yellow plus point (4) are more close than the
blue cross points (x). When the blue points are included as neighbors of the tar-
get red point, the learned representation of the red circle point would be biased
to the blue points due to the pairwise smoothing regularization and unbalanced
data distribution. This problem would become more severe when more neighbors
are used for pairwise smoothing. However, in our LLMF | the local geometric
information is preserved by linear combination of its neighbors, and thus the
neighbors are competitive in representing the data. Therefore, the importance
of the green and red points in representing the red point would not be affected
much even when the blue points are involved, and the weight of each blue point
would be reduced due to the redundancy. As a result, LLMF can better preserve
the rich geometric relationships among data and learn better low dimensional
representations.

4 Experiments

In this section, we demonstrate the results in the task of document classifica-
tion, with experiments conducted on two widely used benchmark text corpora,
i.e. 20newsgroup and lal. Firstly, we introduce the experimental settings. Then
we qualitatively evaluate the latent topics learned by LLMF. At last, we evaluate
the effectiveness of the proposed LLMF in document classification by comparing
with the state-of-the-art semantic learning methods.

4.1 Data Sets and Baseline Methods

Our empirical studies on text semantics learning were conducted on two real-
word text corpora, i.e. 20newsgroup dataset and lal data set.

— The 20newsgroup' is a benchmark text collection for topic modeling, which
contains almost 18,744 postings to Usenet newsgroups in 20 different cate-
gories almost evenly. The vocabulary is pruned by stemming each term to
its root and removing the stop words for noise concern.

— lal is a public dataset in Weka? containing 2,850 documents in 5 categories.
The vocabulary consists of 13,195 unique words, and is also preprocessed by

! http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.cs.waikato.ac.nz/ml/weka/
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stemming and stop words removing. Unlike 20newsgroup, lal is an unbal-
anced dataset where different categories contain quite different number of
documents.

To evaluate the performance of LLMF, we provide comparisons of our meth-
ods against several state-of-the-art topic learning methods, including PLSA [13],
LDA [4], NMF [15] and LapPLSA [13]. Here we briefly introduce the experimen-
tal settings about these methods beside our LLMF.

— PLSA: Probabilistic Latent Semantic Analysis(PLSA) is introduced by
Hoffman[13] as a probabilistic version of LST [9]. We use the code from Peter’s
homepage® for experiment.

— LDA: Latent Dirichlet Allocation(LDA) is a full Bayes version of PLSA. We
user the code from the author’s homepage of LDA*, which is implemented
in c-language by Blei.

— NMF: Non-negative Matrix Factorization(NMF) is a traditional dimen-
sion reduction methods. We adopt the alternating constrained least squares
(ACLS) [2] to factorize the document-word matrix. To avoid over-fitting, lo
norm is added as a constraint over the factorized matrices.

— LapPLSA: LapPLSA smooths the topic representations of nearby docu-
ment pairs. In our experiments, we applied different number of neighbors
and weights of the geometric regularizer, and select the best performance to
report.

— LLMF: In our proposed LLMF, we set the parameters Mg, Ag, Ay as0.01,0.1, 1,
respectively. The {1 norm in the model is weighted by v € {0.001,0.01,0.1, 1}.

All the above methods are conducted on both dataset several times with ran-
dom initialization by setting the dimension K € {30,50,70,100}. We compare
the best results of different methods and demonstrate the results in the following
sections.

4.2 Topic Learning

In this section, we qualitatively evaluate the learned semantic information by
LLMF. To illustrate the meaning of the inferred semantic factors, we randomly
select several column from the matrix 3, and re-range the words according to
the corresponding weights in that column in descending order.

In Table 1, we list the top 10 important words from the randomly selected 5
learned components over the two datasets, respectively. For better understand-
ing, we manually label each topic according to the meaning of the selected words.
It is interesting to see that the selected words are closely related, and show sim-
ilar semantic meanings expressed by the labels. Therefore, the results show that
our LLMF can effectively learn the latent semantic information from the corpus.

3 http://people.kyb.tuebingen.mpg.de/pgehler/code/index . html
4 http://www.cs.princeton.edu/blei/lda-c
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Table 1. Topics Learned by LLMF over the Two Datasets

20news | lal
image hardware hockey ibm motor-race| sports financial national market computer
jpeg tape team ibm motorcyc game fund west bank stor
gif driver hockei hardwar ride plai stock soviet compani disk
compress adaptec leag ram rec team market  chemic million electron
viewer sys nhl machin bmw season price plant loan comput
jfif backup season memori bike player invest weapon amp data
convert  memori game card club coach trad german card ibm
format run player monitor time basketbal  bond govern sav machin
quantis cdrom championship dos rider goal investor libya credit softwar
imag fHoppi wing cpu moto time exchang israel billion pc
displai  hardwar vs bus biker win trade american market user
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Fig. 2. Classification performance on 20newsgroups

4.3 Document Classification

In this section, we quantitatively evaluate the effectiveness of the learned low
dimensional representations. Since the learned low dimensional representation is
usually taken as feature engineering in real application tasks such as classification
and clustering, we propose to evaluate the representations by comparing the
performances of different methods in these tasks.

Here we conduct the task of document classification on the two data sets
mentioned above, and compare the classification accuracies of different models.
Specifically, we use all the documents of each data set to learn the parameters
of different models. Then we randomly select 60% documents with their inferred
representations as features to build the multi-class SVM classifier, and the rest
40% documents for test. We adopted the LIBSVM toolbox® as our implementa-
tion for SVM. Cross validation is conducted to select the parameter C' in SVM.

The classification results on the two data sets are reported in Figure 2 and 3.
We can see that LLMF consistently achieves better accuracy than all the base-
line methods in both data sets. The results indicate that we can learn better

5 http://www.csie.ntu.edu.tw/ cjlin/libsvm/
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Fig. 3. Classification performance on lal
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Fig. 4. Classification performance on lal with the variation of the parameter ~y

semantic representation by LLMF. It demonstrates that it is valuable to pre-
serve more detailed local geometric information using local linear combination
for learning semantic representation. Moreover, we can see that the difference
between between LLMF and LapPLSA in Figure 3 is even larger than that in
Figure 2. The reason may lie in the imbalance of lal, since the pairwise relation
will be highly biased by imbalanced data, as shown in our discussion.

We also study the robustness of our methods under different sizes of neigh-
borhood. In our proposed LLMF, different s represent different sparseness of
neighbors. Intuitively, the bigger « is, the fewer neighbors wil be used in the
linear combination, and vise versa. Therefore, we show the variation of classifi-
cation accuracy on the unbalanced dataset lal as the weight v changes in LLMF
in Figure 4. Since LLMF is essentially a generalized non-negative matrix factor-
ization method, we take NMF as the baseline for comparison. From the results
we can clearly see that with different s, LLMF are consistently better than the
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basic NMF method in terms of document classification accuracy. It demonstrates
the robustness of our proposed LLMF method.

5 Related Work

Learning an effective semantic representation of data can greatly improve the
effectiveness and efficiency of many real applications, such as information re-
trieval [22], network analysis [1], recommend systems [21] and so on.

For document modeling, matrix factorization is a typical way to learn the low
dimensional representations of documents, such as LSI [9] and NMF [15]. These
methods directly factorize the document-word matrix into low rank matrices
according to different criteria. As an alternative, topic models, such as PLSA [13]
and LDA [4], provide a probabilistic view on document modeling. Specifically,
each document is taken as a distribution over topics, where each topic is a
distribution over words. Through the posterior optimization, [18] provides a
probabilistic generative view in interpreting the matrix factorization. [12] and
[10] demonstrate the close connections between PLSA and NMF.

Integrating the geometric relationship among documents into the document
modeling methods has been proved reasonable and effective. Some studies
[11][19][16] leverage the explicit relationship, such as links and citations, in topic
learning. Alternatively, several researches employ the geometric relationship, e.g.
manifold assumption, to improve the document modeling. For example, Lap-
PLSA [7] increases the proximity between the topics of document pairs in neigh-
borhood using Laplacian eigenmap constraints based on PLSA. LTM [8] takes
the same assumption as LapPLSA, but leverages the KL-divergence to evaluate
the difference of topics instead. GNMF [6] and GraphSC [23] leverage the graph
embedding to regularize the latent factor learning. DTM [14] not only enhances
the topical proximity between nearby document pairs, but also increases the
topical separability between the unfavorable pairs. As far as we known, all these
above methods need firstly select the documents’ neighbors with heuristic simi-
larity measure and thresholds, and then preserve the geometric relationship by
enhancing the pairwise proximity.

6 Conclusions

In this paper, we present a novel method for learning low dimensional rep-
resentations of document, namely Local Linear Matrix Factorization(LLMF).
LLMF exploits the geometric relationships between a document and its neigh-
bors based on local linear combination assumption in document modeling. In
this way, LLMF can better capture the rich geometric information among docu-
ments than those based on independent pairwise relationships. The experimental
results on document classification show LLMF can learn better low dimensional
semantic representations than the state-of-the-art baseline methods.

In the future, we would like to extend LLMF to the paralleled and distributed
settings for computation efficiency. Moreover, it would also be interesting to



410 L. Bai et al.

apply LLMF to other scenarios, e.g. recommender systems, where dimension
reduction has shown benefits for the application.
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