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Abstract. Disambiguating person names in a set of documents (e.g. re-
search papers or Web pages) is a critical problem in many knowledge
management applications. The phenomenon of ambiguity will deteriorate
the quality of service, such as the scholar searching and expert finding.
Despite years of research, this problem remains largely unsolved, where
the unknown number of persons with the same name and the informa-
tion scarcity in documents pose many difficulties and challenges. In this
paper, we formalize name disambiguation as a collective classification
problem and solve it using a simple yet effective iterative classification
algorithm, referred as ICAND (i.e. Iterative Classification Algorithm for
Name Disambiguation). Experimental results on researcher dataset show
that the proposed approach can significantly outperform several baseline
methods.

Keywords: Name Disambiguation, Collective Classification, Digital
Library.

1 Introduction

Name ambiguity is a challenging problem in many domains, where one person
can be referenced by multiple name variations in different situations or even share
the same name with other persons. For example, in digital libraries (like DBLP
or CiteSeer), a very common Chinese name “Lei Zhang” can be shared by tens of
authors, and may be written in abbreviation like ”L. Zhang”. The phenomenon
of ambiguity will deteriorate the quality of service such as the scholar searching
or expert finding. Therefore, it is necessary to study how to solve it effectively.
Despite years of research, this problem remains largely unsolved.

Most previous approaches directly take name disambiguation as a clustering
problem [4], [7], [18]. Unfortunately, it is unclear how to determine the number
of clusters. In [1], Beckkerman and McCallum tried to address this problem by
Agglomerative/Conglomerative Double Clustering (A/CDC). However, it still
relies on some predefined threshold to control the clustering process, which is
unknown in different applications. Tang et al. [14] employed Bayesian Informa-
tion Criterion (BIC) to select the cluster number. However, their approach tends
to find a small cluster number, which may fail when the actual number of persons
is large [17].

A. Jaafar et al. (Eds.): AIRS 2014, LNCS 8870, pp. 406–417, 2014.
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To avoid the decision of the cluster number, some approaches formalize the
problem in a classification manner[4], [17]. However, these methods may suffer
from the information scarcity problem. Information scarcity refers to the com-
mon phenomenon that a single document may have very sparse attributes for
disambiguation [3], [12]. Therefore, it would be quite difficult to classify one
document or a pair of documents only relying on their intrinsic features.

To address these above problems, in this paper, we introduce a novel clas-
sification method for name disambiguation. The motivation of our approach
stems from observations on how human beings disambiguate names. When dis-
ambiguating person names in a set of documents, people would like to check
whether two documents belong to a same person. The disambiguation process
usually works in an iterative process: (1) Most obvious and confident pairs would
be settled down first; (2) All the information from the predicted results will also
help to disambiguate the remaining “difficult” data; (3) The previous decisions
may be adjusted along with the process until a stable result is obtained.

Inspired by the above observations, we formalize name disambiguation as
a collective classification problem and use an iterative approach to imitate the
above process. Specifically, for each test name, we introduce a relational pairwise
graph where each node represents a document pair sharing the same name, and
there is an edge between two nodes if they share one same document. The task is
then to predict whether each pair of documents on the graph belongs to a same
person or not. The key idea of the collective classification is that, when predicting
the label of a node, one leverages the relational (extrinsic) features from predicted
neighbors as well as the intrinsic features of that node. We propose to employ
a simple yet effective iterative classification algorithm (ICA) [13] to solve this
problem, referred as ICAND (i.e. Iterative Classification Algorithm for Name
Disambiguation). In training, a local classifier is learned based on the labeled
data. In this work, we develop a novel sampling strategy for better training the
local classifier. In testing, an iterative classification process is conducted on the
relational pairwise graph by exploiting both intrinsic and relational features.

Our approach enjoys the following merits: (1) The number of distinct persons
can be automatically determined after the classification process; (2) It is flexible
to incorporate various intrinsic and relational features to help prediction; (3)
A collective inference algorithm is employed to exploit dependencies between
documents to well address the information scarcity problem.

To verify the effectiveness of our method, we conduct empirical experiments
on an academic dataset collected from an online scholar system SocialScholar1.
The dataset contains 4,429 publications of 75 different author names2. The ex-
perimental results show that our method can reach a performance of 89.2% (by
F1-score), significantly outperforming the baseline methods.

The rest of our paper is organized as follows. Section 2 presents some re-
lated work. In section 3, we formalize name disambiguation problem in the rela-
tional pairwise graph. In section 4, we give a detailed description of our iterative

1 http://soscholar.com
2 http://static.soscholar.com/pub/dataset.html

http://soscholar.com
http://static.soscholar.com/pub/dataset.html
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approach called ICAND. In section 5, several experiments are conducted to em-
pirically prove the effectiveness of our approach. Finally, we conclude and discuss
future work in section 6.

2 Related Work

In this section, we first review techniques developed in literature on name dis-
ambiguation, and then review some related work on collective classification.

2.1 Name Disambiguation

Name disambiguation has been studied for several years, and in general previous
approaches can be categorized into two folds: clustering, and classification.

In clustering approaches, the problem of name disambiguation is directly for-
malized as partitioning documents into different clusters, where each cluster
corresponds to a distinct person. For example, in [5], Han et al. proposed an
unsupervised approach using K-way spectral clustering method in which they
took use of three citation attributes for name disambiguation. Wang et al. [16]
investigated an approach for finding atomic clusters to improve the performance
of clustering based algorithms. In [7], Huang et al. proposed a two steps frame-
work for name disambiguation. They first trained a distance function between
papers using LASVM, and then applied the distance function to DBSCAN clus-
tering process to get results.However, most clustering methods need the number
of clusters as a preliminary, which is usually not available.

To avoid the decision of the cluster number, several approaches formalize the
problem of name disambiguation in a classification manner. For example, Wang
et al. [17] tried to predict whether two documents belong to a same person based
on a pairwise factor graph, and employed active learning to improve disambigua-
tion performance. However, these methods usually classify one document or a
pair of documents only relying on their intrinsic features, which may suffer from
the information scarcity problem when documents have very sparse attributes.
Our approach falls into this classification category, and exploits relational fea-
tures as well as intrinsic features to alleviate the information scarcity problem.

2.2 Collective Classification

Collective classification is a method for jointly classifying relational data. Collec-
tive classification methods employ a collective inference algorithm that exploits
dependencies between instances, enabling them to often attain higher accuracies
than traditional methods when instances are interrelated [8], [11], [15], [13]. Even
though exact methods such as junction trees [6] or variable elimination [2], [19]
can be applied for collective inference, these methods may be prohibitively expen-
sive to use in practice. As a consequence, most research in collective classification
has been devoted to the development of approximate inference algorithms.
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There are two primary types of approximate collective inference algorithms,
i.e. local classifier-based methods and global formulation-based methods [13]. For
local classifier-based methods, the collective inference is an iterative process
where a local classifier predicts labels for each instance using both intrinsic
features and relational features (derived from the current label predictions). Two
types of most commonly used approximate inference algorithms following this
approach are the iterative classification algorithm (ICA) and gibbs sampling.

3 Problem Formalization

We consider the name disambiguation problem in digital library scenario where
the targets are author names. given an author name, we denote papers containing
the author name a as P a = {p1, p2, . . . , pn}. Suppose in these papers there are
actually K distinct authors Π = {π1, π2, . . . , πK} sharing the same name. The
task of the problem is to find the number of distinct authors K, and associate
each paper pi ∈ P to the right author πk ∈ Π .

First of all, we view the name disambiguation task in a classification way.
That is, we aim to predict whether each pair of papers (pi, pj) containing the
same name a belongs to a same author or not. If we can correctly predict all
the document pairs, we can automatically find the real author number K, and
meanwhile associate each paper to the right author.

For formal definition, we first introduce the relational pairwise graph. Given
an author name, we denote a relational pairwise graph over the paper collection
sharing the author name as G = (V,E,X, Y ), where V is a set of nodes with
vi,j ∈ V representing paper pairs (pi, pj), E is a set of undirected edges; each
node vi,j ∈ V has a feature vector xi,j ∈ X which is a concatenation of the
intrinsic feature vector xint

i,j and relational feature vector xrel
i,j , and an unknown

label yi,j ∈ Y ; there is an edge between two nodes if they share a common paper,
e.g. node vi,k is connected with node vj,k as they share the paper pk. An example
relational pairwise graph over a list of papers P = {p1, p2, p3, p4} containing a
same author name is shown in Fig. 1.

The author name disambiguation task is then formalized as the following col-
lective classification problem. Given a relational pairwise graph G=(V,E,X, Y )
for an author name, one needs to predict the label yi,j ∈ {−1,+1} for each node
vi,j ∈ V , representing whether the pair of papers (pi, pj) belong to a same author
(yi,j = +1) or not (yi,j = −1).

4 Our Approach

We propose using an iterative algorithm to solve this collective classification
problem. As aforementioned, the key idea of using such an iterative process
comes from the observation on how human beings disambiguate names.

When disambiguating author names in a set of papers, people would like to
check whether two papers belong to a same author in an iterative process. Those
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Fig. 1. Relational pairwise graph for 4 papers all sharing an identical author name a

paper pairs with strong signals (e.g. paper p1 and p2 appear on a same home-
page) would be considered as from a same author with high confidence first,
while those with weak and scarce signals (e.g. paper p3 cites p2) would be dif-
ficult to predict at first and leave for latter decision. Once a pair of papers are
taken as from a same author, one will naturally leverage one paper’s attributes
to enrich the other and help latter prediction.

We employ an iterative classification algorithm, referred as ICAND, to imitate
the above process and solve the collective classification problem. The overview
of our algorithm is as follows. In the initial step, we predict the label yi,j of each
node vi,j ∈ V using a local classifier f based on intrinsic features xint

i.j constructed
from the attributes of the paper pairs on vi,j . This step is a “bootstrap” step
since none of the nodes’ labels are known. After the bootstrap step, all labels
of the nodes are predicted. Then in the following iteration step, for each node
ICAND selects confidently predicted positive neighbors as observed labels, com-
pute the relational features xrel

i.j based on these neighbors, and then re-predict
the labels using the local classifier based on both intrinsic and relational fea-
tures. This step iterates until convergence or the iteration count exceeds some
predefined threshold. Finally, a post-aggregation step is conducted to generate
the paper clusters, each corresponding to a distinct author. The pseudo-code of
our algorithm is summarized in Algorithm 1.
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Algorithm 1. Iterative classification algorithm for Name disambiguation
Input: graph G = (V,E,X, Y ) for a given author name where Y is unknown initially, local

classifier f , max iteration steps T
Output: paper clusters, each representing a distinct author

1 step ← 0
2 for each node vi,j ∈ V do

3 y
(0)
i,j ← f (x

(0)
i,j ) \\ bootstrap step

end
4 repeat
5 for each node vi,j ∈ V do
6 sort and select confidently predicted neighbors vk,l ∈ Neighbor(vi,j) with

y
(step)
k,l = +1

7 re-compute the feature vector x
(step+1)
i,j with the selected neighbors’ labels observed

8 y
(step+1)
i,j ← f (x

(step+1)
i,j )

end
9 step ← step + 1

until Y (step+1) = Y (step) or step ≥ T ;
10 post-aggregation based on final predictions Y to get paper clusters
11 return paper clusters

4.1 Intrinsic and Relational Features

Intrinsic features are static features extracted from the node which describe how
likely two papers in that node are from a same author. The value of the feature
could either be binary or real value. In this paper, we define 10 features for our
disambiguation task, including author-based, venue-based, citation-based, and
content-based features. The specific description of each feature is listed in Table
1. As most of the features are quite intuitive, The feature CoConcept may need
more explanation. In our work, we build a concept dictionary based on all the
key words from papers in the academic dateset.

Table 1. Description of features for a paper pair (pi,pj) given the Author Name a

Name Description Type
CoAuthor paper pi and pj have at least one same author except a binary
CoOrganization the organization of author a in pi and pj are the same binary
CoOrgOccur the organization of author a in pi appears in content of pj , or vice versa binary
CoHomepage paper pi and pj appear on a same author’s homepage binary
CoVenue paper pi and pj are published on the same journal or conference binary
CoRefCite paper pi and pj cite or are cited by at least one same paper binary
Citation paper pi cites pj , or vice versa binary
TitleSim title similarity between paper pi and pj real

(cosine similarity based on tf-idf word vector)
AbstractSim abstract similarity between paper pi and pj real

(cosine similarity based on tf-idf word vector)
CoConcept paper pi and pj hit at least one same concept in title or abstract binary

Different from intrinsic features, relational features are dynamic features
derived from neighborhood and are re-calculated in each iteration step. As afore-
mentioned, relational features are constructed based on the neighbors with pos-
itive labels. Going back to the example shown in Fig. 1, if the paper pair (p1, p2)
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has already been labeled as positive confidently, we can then leverage the at-
tributes of p1 to help disambiguate (p2, p3), and extract relational features based
on papers p1 and p3. Note that the specific definition of relational features are ex-
actly the same as that of intrinsic features; in other words, there are 10 relational
features.

When there are multiple neighbors with positive labels, we need to use an
aggregation operator to generate a fixed-length relational feature vector. Past
research has used a variety of aggregation operators such as minimum, maximum,
and count [13]. The choice of the aggregation method depends on the specific
application and the definition of relational features. In our work, we define a
max operator to aggregate the relational features. The purpose of this max
operator is to obtain the strongest signals from neighborhoods. Specifically, the
l-th relational feature of node vi,j ∈ V is defined as

xrel
i.j [l] = max

vi,k,vk,j∈S+
{xint

i,k [l],x
int
k,j [l]} (1)

where S+ denotes the set of neighbors of node vi,j with positive labels in
prediction.

4.2 Local Classifier

We can use anything ranging from SVM to decision tree as the local classifier.
In our work, we choose to use SVM with linear kernel. The local classifier is
trained on the labeled ground truth. Specifically, the ground truth dataset for
author name disambiguation usually consists of a set of M author names A =
{a1, . . . , aM}, where for each name am ∈ A, the number of distinct authors are
known and a set of papers containing that name are associated to the right author
(i.e. cluster). In the training process, for each name am ∈ A, we construct the
corresponding relational pairwise graph Gam = {V am , Eam , Xam , Y am}, where
the features for each node are extracted based on the node attributes and ground
truth labels of neighbors. The local classifier is then trained based on the training
data (xam

i,j , y
am

i,j )am∈A
.

Note that when calculating the relational features for constructing the training
data, there might be multiple strategies on the usage of ground truth labels. In
previous work, the local classifier is usually trained on full-label assumption,
i.e. for each node, the labels of all the neighbors are available. However, the
classifier trained under this strategy may not work well when very few labels
can be leveraged in the early stages of the iterative process in testing. Therefore,
in this paper, we propose a novel sampling strategy on label usage, i.e. for each
node, only partial labels of neighbors are available.In our experiments, we find
that the classifier learned under this strategy can achieve better performance.

4.3 Collective Inference

The collective inference algorithm is the central part of a collective classification
approach. In our work, we employ a local classifier-based method, i.e. the iter-
ative classification algorithm, to conduct approximate collective inference. This
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algorithm has been shown to be simple yet effective as compared with other local
and global methods [13].

The iterative algorithm exploits positive label predictions to help inference in
each iteration, as shown in Algorithm 1. One major issue we need to address is
how to select confident label prediction for next inference. In our work, we take
some cautious strategies for label selection [9,10]. Specifically, in each iteration,
the predicted positive labels are ordered by confidence value (i.e. predicted score)
and only top confident labels are used for inference. The proportion of top confi-
dent positive labels in usage could be fixed (i.e. using predefined proportion like
10%) or dynamic (e.g. increasing the proportion per iteration from 0%, 10%, . . .,
up to 100%). In our experiments, we empirically compared different strategies
in label selection and show how these strategies affect the performance.

4.4 Post-aggregation Step

For the goal of the name disambiguation task, we need to find out the actual K
distinct authors (K is unknown in our case) sharing the same name and asso-
ciate each paper to the right author (i.e. dividing the papers into K clusters).
Therefore, we take a simple post-aggregation step to obtain the final K clusters,
i.e. the step 9 in Algorithm 1. The aggregation is in a agglomerative clustering
manner. At the beginning, each paper forms a cluster. If a paper pair has been
predicted with positive label and the two papers come from two different clus-
ters, then the two clusters are merged together. This process iterates until no
further merging can take place. As we can see, the final author number K can
be automatically determined after the post-aggregation step.

One thing need to mention in the post-aggregation process is the triplet vio-
lation problem. Specifically, suppose both of the pairs (p1, p2) and (p1, p3) have
already been labeled as “+1”, the label of pair (p2, p3) should be also assigned
as “+1”, otherwise it will lead to triplet violation problem.

However, since in our iterative classification process there is no constraint
to avoid this problem, it is possible that there are triplet violation in the fi-
nal classification results. Fortunately, such violation can be naturally solved in
the agglomerative clustering process described above naturally. Nevertheless, it
would be interesting to investigate how to add constraints into the collective
classification process to avoid such problem in the future work.

5 Experiments

In this section, we conduct experiments to empirically evaluate the effectiveness
and efficiency of our proposed approach.

5.1 Experimental Setting

Dataset. To evaluation our proposed method, we create an academic dataset
from SocialScholar system. SocialScholar has collected and combined papers
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from DBLP, IEEE, ACM and CiteSeer, and formed a publication dataset of
8, 014, 742 papers and 24, 303, 153 citation relationships. For evaluation, we em-
ployed three graduate student in computer science to manually labeled 4, 429
papers for 75 author names. For each author name, a paper containing that name
was labeled with a number indicating the actual author. For disagreements in
the annotation, we applied majority voting for decision.

Baselines. For evaluation, we consider both clustering and classification meth-
ods as our baselines. For the clustering methods, several existing methods for
name disambiguation, including hierarchical agglomerative clustering method
(HAC), K-Means, and SA-Cluster [20], are taken as baselines. In the first two
method, we try to take all features defined in our method. In SA-Cluster method,
we consider organization and venue of each paper as attribute features, and sim-
ply treat others features as edges. In all these clustering methods, the real number
of persons K is preliminarily provided.

For the classification methods, we take the Pairwise Classification (PC) method
as the baseline. The PC method can be viewed a simplified version of our ICAND
method, which drops the relations between nodes in our relational pairwise
graph, and conducts training and prediction only based on intrinsic feature.
A same post-aggregation process is employed to get final K Clusters. The PC
method also employs SVM with linear kernel as the base classifier.

In our experiments, for the supervised methods where a classifier need to be
trained first, we divide the dataset into five folds and conducted five-fold cross
validation for evaluation. For our method, we set the max iteration number as
10 since we found that in most cases the iterative process converges quickly.

5.2 Evaluation Measures

We employ the widely used pairwise measures [14], [16,17] to evaluate our ap-
proach and compare with baseline methods. The pairwise measures evaluate the
performance of disambiguation based on the paper pairs assigned with the same
label. For some special author names, there is only one paper corresponds to each
distinct author. Since these above measures only consider paper pairs assigned
with same label, they cannot well evaluate the results on such names. There-
fore,we employ pairwise accuracy as supplementary measure. The definitions of
these measures are shown as follows.

pairwise precison =
#PairsCorrectlyPredicted2SameAuthor

#PairsPredicted2SameAuthor

pairwise recall =
#PairsCorrectlyPredicted2SameAuthor

#TotalPairs2SameAuthor

pairwie F1 =
2 ∗ pairwise precison ∗ pairwise recall

pairwise precison + pairwise recall

pairwise accuracy =
#PairsCorrectlyPredicted

#TotalPairs

5.3 Strategy Analysis

We conduct experiments to study how different strategies used in the training
and testing process in ICAND affect the disambiguation performance.
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Training Label Selection. Here we first compare the strategy on the us-
age of ground truth labels in training process, and show how different train-
ing strategies affect the final performance. For comparison, two strategies are
taken into account. One is the conventional full-label strategy, i.e. when com-
puting relational features for each node, all the ground truth labels of neigh-
bors are available. The other is the proposed sampling strategy, i.e. when com-
puting relational features for each node, only partial ground truth labels of
neighbors are available. Specifically, for each node, we vary the proportions
of available labels in neighbors from 0% to 100% with step length 10%. For
each proportion, we sample the labels of neighbors for each node, compute
the relational features as well as intrinsic features, and obtain the correspond-
ing training data. The final training dataset is constructed by merging all the
data generated under different label proportions with the duplication removed.

Sampling Strategy Full−label Strategy
0.75

0.8

0.85

0.9

0.95

1

 

 
Precision
Recall
F1
Accuracy

Fig. 2. Performance comparison on name
disambiguation using different strategies
on training data construction

Table 2. Performance comparison on
name disambiguation using different label
selection strategies in collective inference

Type Precision Recall F1 Accuracy

fixed

10% 1 0.167 0.253 0.559
20% 1 0.293 0.425 0.631
30% 1 0.451 0.596 0.713
40% 0.997 0.573 0.703 0.781
50% 0.990 0.660 0.775 0.825
60% 0.976 0.724 0.816 0.856
70% 0.968 0.806 0.866 0.898
80% 0.944 0.852 0.881 0.911
90% 0.912 0.909 0.892 0.927
100% 0.835 0.944 0.853 0.897

dynamic
+5% 0.847 0.941 0.862 0.907
+10% 0.847 0.942 0.862 0.908

As shown in Fig. 2, the disambiguation performance under the sampling strat-
egy is better than that of full-label strategy in terms of average recall, F1 and
accuracy. The average F1 scores are 0.892 and 0.853 under sampling strategy
and full-label strategy, respectively. The major reason is that the full-label strat-
egy tends to obtain a strict local classifier with high precision. As a result, the
final performance achieve high precision but low recall. In contrast, the sampling
strategy builds a more diverse dataset, which captures different scenarios of the
classifier may face during the iterative process. Therefore, the local classifier
learned under this strategy become more robust with better balance between
recall and precision, and thus obtain better disambiguation performance.

Inference Label Selection. We further compare the label selection strategy
in the collective inference process. For the fixed proportion strategy, we vary the
predefined proportion at different levels (i.e. 10%, 20%, . . ., or 100%). For the
dynamic proportion strategy, we increase the fraction from 0% to 100% with
constant step length (i.e. 5% or 10%).

The disambiguation performance comparison among these label selection
strategies is shown in Table 2. We can see that for fixed proportion strategy,
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a low proportion leads to high precision but low recall in final performance. This
is natural since we only trust those very confident positive label predictions.
With the increase of the proportion, we obtain higher recall but lower precision
gradually. The best performance is achieved at the proportion of 90%. If one sim-
ply trust all the positive predictions, the precision become low since there might
be many incorrect positive predictions selected in the process making the error
propagate. For the dynamic proportion strategy, there is almost no difference
between the two different step lengths. However, the precision is not high for
dynamic strategy, which might be caused by the selection of incorrect positive
predictions when the confidence proportion becomes larger and larger.

In the following experiments, we use the ICAND approach with the local
classifier trained under the sampling strategy, and a fixed proportion (i.e. 90%)
label selection strategy for the collective inference process.

Table 3. Performance comparison on name disambiguation between different methods

Method Precision Recall F1 Accuracy
HAC 0.838 0.787 0.801 0.859
K-Means 0.763 0.461 0.547 0.694
SA-Cluster 0.669 0.588 0.611 0.766
PC 0.728 0.904 0.720 0.696
ICAND 0.912 0.909 0.892 0.927

5.4 Disambiguation Performance

We now compare the disambiguation performance of our approach with the
baseline methods. As shown in Table 3, on average, our method can achieve
a precision of 91.2%, recall 90.9%, F1 89.2% and accuracy 92.7%. We can see
that our approach can clearly outperform all the baseline methods in terms of
all the evaluation measures (+9.1% over HAC, +34.5% over K-Means, +28.1
% over SA-Cluster, and +17.2% over PC by F1 score). All the improvements
are statistically significant (p-value< 0.01). The results demonstrate that by
using the collective inference approach which exploits various intrinsic as well as
relational features, we can better address the name disambiguation problem.

6 Conclusion

In this paper, we address name disambiguation by formalizing it as a collective
classification problem. We then employ an iterative algorithm to solve this collec-
tive classification problem, referred as ICAND. Our approach can automatically
determine the number of distinct persons for a given name after the classification
process. Moreover, the collective inference algorithm employed in our approach
exploits relational features based on label prediction, which can well address
the information scarcity problem. We conducted extensive experiments on an
academic dataset to demonstrate the effectiveness of our approach.
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