
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/287206567

Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity

Evaluation Measures

Conference Paper · July 2015

DOI: 10.1145/2766462.2767710

CITATIONS

44
READS

565

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Non-factoid Question Answering View project

Cubrik View project

Long Xia

Chinese Academy of Sciences

9 PUBLICATIONS   230 CITATIONS   

SEE PROFILE

Yanyan Lan

Chinese Academy of Sciences

152 PUBLICATIONS   3,737 CITATIONS   

SEE PROFILE

Jiafeng Guo

Chinese Academy of Sciences

211 PUBLICATIONS   5,913 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Long Xia on 29 December 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/287206567_Learning_Maximal_Marginal_Relevance_Model_via_Directly_Optimizing_Diversity_Evaluation_Measures?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/287206567_Learning_Maximal_Marginal_Relevance_Model_via_Directly_Optimizing_Diversity_Evaluation_Measures?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Non-factoid-Question-Answering?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cubrik-2?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Long-Xia?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Long-Xia?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Long-Xia?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanyan-Lan?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanyan-Lan?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanyan-Lan?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiafeng-Guo?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiafeng-Guo?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Chinese_Academy_of_Sciences?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiafeng-Guo?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Long-Xia?enrichId=rgreq-7324352a95d272c3cf67ac0be621089a-XXX&enrichSource=Y292ZXJQYWdlOzI4NzIwNjU2NztBUzozMTE4Mjg4MjYwMDE0MDhAMTQ1MTM1NzE5Mzk0OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Learning Maximal Marginal Relevance Model via Directly
Optimizing Diversity Evaluation Measures

Long Xia Jun Xu Yanyan Lan Jiafeng Guo Xueqi Cheng

CAS Key Lab of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences

xialong@software.ict.ac.cn, {junxu, lanyanyan, guojiafeng, cxq}@ict.ac.cn

ABSTRACT
In this paper we address the issue of learning a ranking
model for search result diversification. In the task, a model
concerns with both query-document relevance and document
diversity is automatically created with training data. Ide-
ally a diverse ranking model would be designed to meet the
criterion of maximal marginal relevance, for selecting doc-
uments that have the least similarity to previously selected
documents. Also, an ideal learning algorithm for diverse
ranking would train a ranking model that could directly
optimize the diversity evaluation measures with respect to
the training data. Existing methods, however, either fail to
model the marginal relevance, or train ranking models by
minimizing loss functions that loosely related to the eval-
uation measures. To deal with the problem, we propose a
novel learning algorithm under the framework of Perceptron,
which adopts the ranking model that maximizes marginal

relevance at ranking and can optimize any diversity evalu-

ation measure in training. The algorithm, referred to as
PAMM (Perceptron Algorithm using Measures as Margins),
first constructs positive and negative diverse rankings for
each training query, and then repeatedly adjusts the model
parameters so that the margins between the positive and
negative rankings are maximized. Experimental results on
three benchmark datasets show that PAMM significantly
outperforms the state-of-the-art baseline methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval – Retrieval Models

General Terms
Algorithms

Keywords
search result diversification; maximal marginal relevance; di-
rectly optimizing evaluation measures
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1. INTRODUCTION
It has been widely observed that users’ information needs,

described by keyword based queries, are often ambiguous or
multi-faceted. It is important for commercial search engines
to provide search results which balance query-document rel-
evance and document diversity, called search result diver-
sification [1, 30]. One of the key problems in search result
diversification is ranking, specifically, how to develop a rank-
ing model that can sort documents based on their relevance
to the given query as well as the novelty of the information
in the documents.

Methods for search result diversification can be catego-
rized into heuristic approaches and learning approaches. The
heuristic approaches construct diverse rankings with hand-
crafted ranking rules. As a representative method in the
category, Carbonell and Goldstein [2] propose the maximal
marginal relevance (MMR) criterion for guiding the con-
struction ranking models. In MMR, constructing of a diverse
ranking is formulated as a process of sequential document
selection. At each iteration, the document with the highest
marginal relevance is selected. The marginal relevance can
be defined as, for example, a linear combination of the query-
document relevance and the maximum distance of the docu-
ment to the selected document set. A number of approaches
have been proposed [8, 23, 24, 25] on the basis of the crite-
rion and promising results have been achieved. User studies
also shows that the user browsing behavior matches very
well with the maximal marginal relevance criterion: usually
users browse the web search results in a top-down manner,
and perceive diverse information from each individual doc-
ument based on what they have obtained in the preceding
results [5]. Therefore, in a certain sense, we can say that
maximal marginal relevance has been widely accepted as
a criterion for guiding the construction of diverse ranking
models.

Recently, machine learning approaches have been proposed
for the task of search result diversification [14, 20, 22, 29, 31],
especially the methods that can directly optimize evaluation
measures on training data [16, 28]. Yue and Joachims [28]
propose SVM-DIV which formulates the task as a problem
of structured output prediction. In the model, the measure
of subtopic diversity is directly optimized under the struc-
tural SVM framework. Liang et al. [16] propose to conduct
personalized search result diversification via directly opti-
mizing the measure of ↵-NDCG, also under the structural
SVM framework. All of these methods try to resolve the mis-
match between the objective function used in training and
the final evaluation measure used in testing. Experimen-

113



tal results also showed that directly optimizing the diversity
evaluation measures can indeed improve the diverse ranking
performances [16, 28]. One problem with the direct opti-
mization approaches is that it is hard, if not impossible, to
define a ranking model that can meet the maximal marginal
relevance criterion under the direct optimization framework.

In this paper, we aim to develop a new learning algorithm
that utilizes the maximal marginal relevance model for rank-
ing as well as can directly optimize any diversity evaluation
measure in training. Inspired by the work of R-LTR [31] and
Perceptron variations [7, 15], we propose a new algorithm for
search result diversification, referred to as PAMM (Percep-
tron Algorithm using Measures as Margins). PAMM utilizes
a sequential document selection process as its ranking model.
In learning, it first generates positive rankings (ground truth
rankings) and negative rankings for the training queries. It
then repeats the process of estimating the probabilities for
the rankings, calculating the margins between the positive
rankings and negative rankings in terms of the ranking prob-
abilities, and updating the model parameters so that the
margins are maximized. We show that PAMM algorithm
minimizes an upper bound of the loss function that directly
defined over the diversity evaluation measures.

PAMM o↵ers several advantages: 1) adopting the ranking
model that meets the maximal marginal relevance criterion;
2) ability to directly optimize any diversity evaluation mea-
sure in training; 3) ability to use both positive rankings and
negative rankings in training.

To evaluate the e↵ectiveness of PAMM, we conducted
extensive experiments on three public TREC benchmark
datasets. The experimental results showed that our methods
significantly outperform the state-of-the-art diverse ranking
approaches including MMR, SVM-DIV, and R-LTR. We an-
alyzed the results and showed that PAMM makes a good
balance between the relevance and diversity via maximizing
marginal relevance in ranking. We also showed that by di-
rectly optimizing a measure in training, PAMM can indeed
enhance the ranking performances in terms of the measure.

The rest of the paper is organized as follows. After a sum-
mary of related work in Section 2, we describe the general
framework of learning maximal marginal relevance model in
Section 3. In Section 4 we discuss the proposed PAMM al-
gorithm. Experimental results and discussions are given in
Section 5. Section 6 concludes this paper and gives future
work.

2. RELATED WORK
Methods of search result diversification can be categorized

into heuristic approaches and learning approaches.

2.1 Heuristic approaches
It is a common practice to use heuristic rules to construct

a diverse ranking list in search. Usually, the rules are cre-
ated based on the observation that in diverse ranking a doc-
ument’s novelty depends on not only the document itself but
also the documents ranked in previous positions. Carbonell
and Goldstein [2] propose the maximal marginal relevance
criterion to guide the design of diverse ranking models. The
criterion is implemented with a process of iteratively select-
ing the documents from the candidate document set. At
each iteration, the document with the highest marginal rel-
evance score is selected, where the score is a linear combi-
nation of the query-document relevance and the maximum

distance of the document to the documents in current re-
sult set. The marginal relevance score is then updated in
the next iteration as the number of documents in the result
set increases by one. More methods have been developed
under the criterion. PM-2 [8] treats the problem of finding
a diverse search result as finding a proportional representa-
tion for the document ranking. xQuAD [25] directly models
di↵erent aspects underlying the original query in the form
of sub-queries, and estimates the relevance of the retrieved
documents to each identified sub-query. See also [3, 9, 10,
11, 21]

Heuristic approaches rely on the utility functions that can
only use a limited number of ranking signals. Also, the
parameter tuning cost is high, especially in complex search
settings. In this paper, we propose a learning approach to
construct diverse ranking models that can meet the maximal
marginal relevance criterion.

2.2 Learning approaches
Methods of machine learning have been applied to search

result diversification. In the approaches, rich features can
be utilized and the parameters are automatically estimated
from the training data. Some promising results have been
obtained. For example, Zhu et al. [31] proposed the rela-
tional learning to rank model (R-LTR) in which the diverse
ranking is constructed with a process of sequential document
selection. The training of R-LTR amounts to optimizing the
likelihood of ground truth rankings. More work please refer
to [14, 20, 22, 29]. All these methods, however, formulate
the learning problem as optimizing loss function that loosely
related to diversity evaluation measures.

Recently methods that can directly optimize evaluation
measures have been proposed and applied to search result
diversification. Yue and Joachims [28] formulate the task
of constructing a diverse ranking as a problem of predict-
ing diverse subsets. Structural SVM framework is adopted
to perform the training. Liang et al. [16] propose to con-
duct personalized search result diversification, also under
the structural SVM framework. In the model, the loss func-
tion is defined based on the diversity evaluation measure
of ↵-NDCG. Thus, the algorithm can be considered as di-
rectly optimizing ↵-NDCG in training. One issue with the
approach is that it is hard to learn a maximal marginal rel-
evance model under the structural SVM framework.

In this paper, we propose a Perceptron algorithm that can
learn a maximal marginal relevance model, at the same time
directly optimizing diversity evaluation measures.

3. LEARNING MAXIMAL MARGINAL REL-
EVANCE MODEL

We first describe the general framework of learning max-
imal marginal relevance model for search result diversifica-
tion.

3.1 Maximal marginal relevance model
Suppose that we are given a query q, which is associated

with a set of retrieved documents X = {x1, · · · ,xM}, where
each document xi is represented as a D-dimensional rele-
vance feature vector. Let R = RM⇥M⇥K denotes a 3-way
tensor representing relationship among the M documents,
where Rijk stands for the k-th relationship feature of docu-
ment xi and document xj .
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Algorithm 1 Ranking via maximizing marginal relevance

Input: documents X, document relation R, and ranking
model parameters !r and !d

Output: ranking y
1: S0  �

2: for r = 1, · · · ,M do
3: y(r) argmaxj:xj2X\Sr�1

fSr�1(xj , Rj)
4: Sr  Sr�1 [ {xy(r)}
5: end for
6: return y

The maximal marginal relevance model creates a diverse
ranking over X with a process of sequential document selec-
tion. At each step, the document with the highest marginal
relevance is selected and added to the tail of the list [31].
Specifically, let S ✓ X be the set of documents have been
selected for query q at one of the document selection step.
Given S, the marginal relevance score of each document
xi 2 X\S at current step is defined as a linear combina-
tion of the query-document relevance and diversity of the
document to the documents in S:

fS(xi, Ri) = !

T
r xi + !

T
d hS(Ri), (1)

where xi denotes the relevance feature vector of the docu-
ment, Ri 2 RM⇥K is the matrix representation of the re-
lationship between document xi and the other documents
(note that Rij 2 RK denotes the relationship feature vector
of document pair (xi,xj)), and !r and !d are the weights for
the relevance features and diversity features, respectively.
The first term in Equation (1) represents the relevance of
document xi to the query and the second term represents
the diversity of xi w.r.t. documents in S. Following the
practice in [31], the relational function hS(Ri) is defined as
the minimal distance:

hS(Ri) =

✓
min
xj2S

Rij1, · · · , min
xj2S

RijK

◆
.

According to the maximal marginal relevance criterion,
sequential document selection process can be used to create
a diverse ranking, as shown in Algorithm 1. Specifically,
given a query q, the retrieved documents X, and document
relationship R, the algorithm initializes S0 as an empty set.
It then iteratively selects the documents from the candi-
date set. At iteration r (r = 1, · · · ,M), the document with
the maximal marginal relevance score fSr�1 is selected and
ranked at position r. At the same time, the selected docu-
ment is inserted to Sr�1.

3.2 Learning the ranking model
Machine learning approaches can be used to learn the

maximal marginal relevance model. Suppose we are given N

labeled training queries {(X(n)
, R

(n)
, J

(n))}Nn=1, where J

(n)

denotes the human labels on the documents, in the form of a
binary matrix. J

(n)(i, s) = 1 if document x
(n)
i contains the

s-th subtopic of qn and 0 otherwise1. The learning process,
thus, amounts to minimize the loss over all of the training
queries:

min
!r,!d

NX

n=1

L

⇣
ŷ(n)

, J

(n)
⌘
, (2)

1Some datasets also use graded judgements. In this paper,
we assume that all labels are binary.

Table 1: Summary of notations.
Notations Explanations

q query
X = {x1, · · · ,xM} list of documents for q
xi 2 RD document relevant feature vector
R 2 RM⇥M⇥K relationship tensor among M documents
Y set of rankings over documents
y 2 Y the ranking of documents
y(t) 2 {1, · · · ,M} index of the document ranked at t
Sr ✓ X selected documents before iteration r
fS(xi, Ri) the scoring function at each step
hS(Ri) the relational function on Ri
!d weights for relevance features
!r weights for diversity features
J human labels on document subtopics
E(X,y, J) 2 [0, 1] diversity evaluation measure

where ŷ(n) is the ranking constructed by the maximal marginal
relevance model (Algorithm 1) for documents X

(n), and
L(ŷ(n)

, J

(n)) is the function for judging the ‘loss’ of the pre-
dicted ranking y(n) compared with the human labels J(n).

3.3 Diversity evaluation measures
In search result diversification, query level evaluation mea-

sures are used to evaluate the ‘goodness’ of a ranking model.
These measures include ↵-NDCG [5], ERR-IA [4], and NRBP [6]
etc. We utilize a general function E(X,y, J) 2 [0, 1] to rep-
resent the evaluation measures. The first argument of E is
the set of candidate documents, the second argument is a
ranking y over documents in X, and the third argument is
the human judgements. E measures the agreement between
y and J .

As an example of diversity evaluation measures, ↵-NDCG [5]
is a variation of NDCG [13] in which the newly found subtopics
are rewarded and redundant subtopics are penalized. The
↵-NDCG score at rank k can be defined by replacing the
raw gain values in standard NDCG@k with novelty-baised
gains:

↵-NDCG@k =

Pk
r=1 NG(r)/ log(r + 1)

Pk
r=1 NG

⇤(r)/ log(r + 1)
, (3)

where NG(r) =
P

s J(y(r), s)(1 � ↵)Cs(r�1) is the novelty-
biased gain at rank r in ranking y, Cs(r�1) = Pr�1

k=1 J(y(k), s)
denotes the number of documents observed within top r� 1
that contain the s-th subtopic, NG

⇤(r) is the novelty-biased
gain at rank r in a positive ranking, and y(k) denotes the
index of the document ranked at k. Usually the parameter
↵ is set to 0.5.

ERR-IA [4] is another popular used diversity evaluation
measure. Given a query with several di↵erent subtopics
s, the probability of each intent Pr(s|q) can be estimated,
where

P
s Pr(s|q) = 1. The intent-aware ERR at rank k can

be computed as:

ERR-IA@k =
X

s

Pr(s|q)ERR@k(s), (4)

where ERR@k(s) is the expected reciprocal rank score at k
in terms of subtopic s.

Table 1 gives a summary of the notations described above.
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4. OUR APPROACH: PAMM

4.1 Evaluation measure as loss function
We aim to maximize the diverse ranking accuracy in terms

of a diversity evaluation measure on the training data. Thus,
the loss function in Equation (2) becomes

NX

n=1

⇣
1� E(X(n)

, ŷ(n)
, J

(n))
⌘
. (5)

It is di�cult to directly optimize the loss as E is a non-
convex function.

We resort to optimize the upper bound of the loss func-
tion under the framework of structured output prediction.
According to Theorem (2) in [27], we know that the loss
function defined in Equation (5) can be upper bounded by
the function defined over the ranking pairs:

NX

n=1

max
y+2Y+(n);

y�2Y�(n)

⇣
E(X(n)

,y+
,J

(n))�E(X(n)
,y�

,J

(n))
⌘
·

r
F (y+

, X

(n)
, R

(n))  F (y�
, X

(n)
, R

(n))
z
, (6)

where Y+(n) is the set of all possible ‘positive’ rankings
(rankings whose ↵-NDCG/ERR-IA equals to one) for the
n-th query, Y�(n) is the set of all possible ‘negative’ rank-
ings (rankings whose ↵-NDCG/ERR-IA is less than one) for
the n-the query, J·K is one if the condition is satisfied other-
wise zero, and F (X,R,y) is the query level ranking model.
F takes the document set X, document relationship R, and
ranking over the document y as inputs. The output of F is
the confidence score of the ranking y. The predicted ŷ(n)

in Equation (5) can be considered as the ranking that max-
imizes F :

ŷ(n) = arg max
y2Y(n)

F (X(n)
, R

(n)
,y), (7)

where Y(n) is the set of all possible rankings over X(n). Here
F is defined as the probability of generating the ranking
list y with a process of iteratively selecting the top ranked
documents from the remaining documents, and using the
marginal relevance function fS in Equation (1) as the selec-
tion criterion:

F (X,R,y) =Pr(y|X,R)

=Pr(xy(1) · · ·xy(M)|X,R)

=
M�1Y

r=1

Pr(xy(r)|X,Sr�1, R)

=
M�1Y

r=1

exp{fSr�1(xi, Ry(r))}PM
k=r exp{fSr�1(xi, Ry(k))}

(8)

where y(r) denotes the index of the document ranked at
the r-th position in y, Sr�1 = {xy(k)}r�1

k=1 is the documents
ranked at the top r � 1 positions in y, fSr�1(xi, Ri) is the
marginal relevance score of document xi w.r.t. the selected
documents in Sr�1, and S0 = � is an empty set. With
the definition of F , it is obvious that the maximal marginal
relevance process of Algorithm 1 actually greedily searches
the solution for optimizing the problem of Equation (7).

To conduct the optimization under the Perceptron frame-
work, the upper bound of Equation (6) is further relaxed,
by replacing the max with sum and moving the term

(E(X(n)
,y+

, J

(n)) � E(X(n)
,y�

, J

(n))) into J·K as margin.
The upper bound of Equation (6) becomes:

NX

n=1

X

y

+;y�

r
F (X(n)

, R

(n)
,y+)� F (X(n)

, R

(n)
,y�) 

E(X(n)
,y+

,J

(n))�E(X(n)
,y�

,J

(n))
z
. (9)

This is because
P

i xi � maxi xi if xi � 0 holds for all
i, and Jx � y  zK � z · Jx  yK holds if z 2 [0, 1].
Please note that we assume E(X,y+

, J) 2 [0, 1] and thus
we have (E(X(n)

,y+
, J

(n))�E(X(n)
,y�

, J

(n))) 2 [0, 1] be-
cause E(X(n)

,y+
, J

(n)) > E(X(n)
,y�

, J

(n)).

4.2 Direct optimization with Perceptron
The loss function in Equation (9) can be optimized un-

der the framework of Perceptron. In this paper, inspired by
the work of structured Perceptron [7] and Perceptron algo-
rithm with uneven margins [15], we have developed a novel
learning algorithm to optimize the loss function in Equation
(9). The algorithm is referred to as PAMM and is shown in
Algorithm 2.

PAMM takes a training set {(X(n)
, R

(n)
, J

(n))}Nn=1 as in-
put and takes the diversity evaluation measure E, learn-
ing rate ⌘, number of positive rankings per query ⌧

+, and
number of negative rankings per query ⌧

� as parameters.
For each query qn, PAMM first generates ⌧+ positive rank-
ings PR

(n) and ⌧

� negative rankings NR

(n) (line (2) and
line (3)). PR

(n) and NR

(n) play as the random samples of
Y+(n) and Y�(n), respectively. PAMM then optimizes the
model parameters !r and !d iteratively in a stochastic man-
ner over the ranking pairs: at each round, for each pair be-
tween a positive ranking and a negative ranking (y+

,y�),
the gap of these two rankings in terms of the query level
ranking model �F = F (X,R,y+) � F (X,R,y�) is calcu-
lated based on current parameters !r and !d (line (9)). If
�F is smaller than the margin in terms of evaluation mea-
sure �E = E(X,y+

, J)�E(X,y�
, J) (line (10)), the model

parameters will be updated so that�F will be enlarged (line
(11) and line (12)). The iteration continues until conver-
gence. Finally, PAMM outputs the optimized model param-
eters (!r,!d).

Next, we will explain the key steps of PAMM in detail.

4.2.1 Generating positive and negative rankings

In PAMM, it is hard to directly conduct the optimization
over the sets of positive rankings Y+(n) and negative rank-
ings Y�(n), because in total these two sets have M ! rankings
if the candidate set contains M documents. Thus, PAMM
samples the rankings to reduce the training time.

For each training query, PAMM first samples a set of posi-
tive rankings. Algorithm 3 illustrates the procedure. Similar
to the online ranking algorithm shown in Algorithm 1, the
positive rankings are generated with a sequential document
selection process and the selection criteria is the diversity
evaluation measure E. After generating the first positive
ranking y(1), the algorithm constructs other positive rank-
ings based on y(1), by randomly swapping the positions of
two documents whose subtopic coverage are identical.

For each training query, PAMM also samples a set of neg-
ative rankings. Algorithm 4 shows the procedure. The algo-
rithm simply generates random rankings iteratively. If the
generated ranking is not a positive ranking and satisfies the
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Algorithm 2 The PAMM Algorithm

Input: training data {(X(n)
, R

(n)
, J

(n))}Nn=1, learning rate
⌘, diversity evaluation measure E, number of positive
rankings per query ⌧

+, number of negative rankings per
query ⌧

�.
Output: model parameters (!r,!d)
1: for n = 1 to N do
2: PR

(n)  PositiveRankings(X(n)
, J

(n)
, E, ⌧

+) {Algo-
rithm 3}

3: NR

(n)  NegativeRankings(X(n)
, J

(n)
, E, ⌧

�) {Algo-
rithm 4}

4: end for
5: initialize {!r,!d} random values in [0, 1]
6: repeat
7: for n = 1 to N do
8: for all {y+

,y�} 2 PR

(n) ⇥NR

(n) do

9: �F  F (X(n)
, R

(n)
,y+)� F (X(n)

, R

(n)
,y�)

{F (X,R,y) is defined in Equation (8)}
10: if �F  E(X(n)

,y+
, J

(n)) � E(X(n)
,y�

, J

(n))
then

11: calculate r!(n)
r and r!(n)

d {Equation (10)
and Equation (11)}

12: (!r,!d) (!r,!d) + ⌘ ⇥ (r!(n)
r ,r!(n)

d )
13: end if
14: end for
15: end for
16: until convergence
17: return (!r,!d)

user predefined constraints (e.g, ↵-NDCG@20  0.8), the
ranking will be added into the ranking set NR.

Please note that in some extreme cases Algorithm 3 and
Algorithm 4 cannot create enough rankings. In our imple-
mentations, the algorithms are forced to return after running
enough iterations.

4.2.2 Updating !r and !d

Given a ranking pair (y+
,y�) 2 PR

(n) ⇥NR

(n), PAMM
updates !r and !d as

!r  !r + ⌘ ⇥r!r and !d  !d + ⌘ ⇥r!d,

if F (X,R,y+)�F (X,R,y�)  E(X,y+
, J)�E(X,y�

, J).
The goal of the update is to enlarge the margin between y+

and y� in terms of query level model: �F = F (X,R,y+)�
F (X,R,y�). For convenience of calculation, we resort to
the problem of

max
!r,!d

log
F (X,R,y+)
F (X,R,y�)

,

because F (X,R,y) > 0 and log(·) is a monotonous increas-
ing function. Thus, r!r can be calculated as the gradient:

r!r =
@ log F (X,R,y+)

F (X,R,y�)

@!r

=
@ logF (X,R,y+)

@!r
� @ logF (X,R,y�)

@!r
,

(10)

Algorithm 3 PositiveRankings

Input: documents X, diversity labels J , evaluation mea-
sure E, and the number of positive rankings ⌧+

Output: positive rankings PR

1: for r = 1 to |X| do
2: y

(1)(r) argmaxj:xj2X\Sr�1

E

⇣
Sr�1 [ {xj},

⇣
y

(1)(1), · · · , y(1)(r � 1), j
⌘
, J

⌘

3: Sr  Sr�1 [ {xy(1)(r)}
4: end for
5: PR {y(1)}
6: while |PR| < ⌧

+ do

7: y y(1)

8: (k, l)  randomly choose two documents whose hu-
man labels are identical, i.e., J(y(k)) = J(y(1)(l))

9: y(k)$ y(l) {swap documents at rank k and l}
10: if y /2 PR then
11: PR PR [ {y}
12: end if
13: end while
14: return PR

Algorithm 4 NegativeRankings

Input: documents X, diversity labels J , evaluation mea-
sure E, and number of negative rankings ⌧�

Output: NR

1: NR = �

2: while |NR| < ⌧

� do
3: y random shu✏e (1, · · · , |X|)
4: if y /2 NR and E(X,y, J) is as expected then
5: NR NR [ {y}
6: end if
7: end while
8: return NR

where

@ logF (X,R,y)
@!r

=
@

P|X|�1
j=1 log Pr(xy(j)|X\Sj�1, R)

@!r

=

|X|�1X

j=1

(
xy(j) �

P|X|
k=j xy(k) exp{fSj�1(xy(k), Ry(k))}
P|X|

k=j exp{fSj�1(xy(k), Ry(k))}

)
.

Similarly, r!d can be calculated as

r!d =
@ logF (X,R,y+)

@!d
� @ logF (X,R,y�)

@!d
,

(11)

where

@ logF (X,R,y)
@!d

=

|X|�1X

j=1

(
hSj�1(Ry(j))�

P|X|
k=j hSj�1(Ry(k)) exp{fSj�1(xy(k), Ry(k))}

P|X|
k=j exp{fSj�1(xy(k), Ry(k))}

)
.

Intuitively, the gradients r!r and r!d are calculated so
that the line 12 of Algorithm 2 will increase F (X,R,y+)
and decrease F (X,R,y�).

4.3 Analysis
We analyzed time complexity of PAMM. The learning pro-

cess of PAMM (Algorithm 2) is of order O(T ·N · ⌧+ · ⌧� ·
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Table 2: Statistics on WT2009, WT2010 and
WT2011.
Dataset #queries #labeled docs #subtopics per query

WT2009 50 5149 3 ⇠ 8
WT2010 48 6554 3 ⇠ 7
WT2011 50 5000 2 ⇠ 6

M

2 · (D + K)), where T denotes the number of iterations,
N the number of queries in training data, ⌧+ the number
of positive rankings per query, ⌧� the number of negative
rankings per query, M the maximum number of documents
for queries in training data, D the number of relevance fea-
tures, and K the number of diversity features. The time
complexity of online ranking prediction (Algorithm 1) is of
order O(M2(D +K)).

PAMM is a simple yet powerful learning algorithm for
search result diversification. It has several advantages com-
pared with the existing learning methods such as R-LTR [31],
SVM-DIV [28], and structural SVM [26].

First, PAMM employs a more reasonable ranking model.
The model follows the maximal marginal relevance criterion
and can be implemented with a process of sequential docu-
ment selection. In contrast, structural SVM approaches [26]
calculate all of the ranking scores within a single step, as that
of in relevance ranking. The marginal relevance of each doc-
ument cannot be taken into consideration at ranking time.

Second, PAMM can incorporate any diversity evaluation
measure in training, which makes the algorithm focus on the
specified measure when updating the model parameters. In
contrast, R-LTR only minimizes loss function that is loosely
related to diversity evaluation measures and SVM-DIV is
trained to optimize the subtopic coverage.

Third, PAMM utilizes the pairs between the positive rank-
ings and the negative rankings in training, which makes it
possible to leverage more information in training. Specif-
ically, it enables PAMM algorithm to enlarge the margins
between the positive rankings and negative rankings when
updating the parameters. In contrast, R-LTR only uses
the information in the positive rankings and the training
is aimed to maximizing the likelihood.

5. EXPERIMENTAL RESULTS

5.1 Experiment setting
We conducted experiments to test the performances of

PAMM using three TREC benchmark datasets for diversity
tasks: TREC 2009 Web Track (WT2009), TREC 2010 Web
Track (WT2010), and TREC 2011 Web Track (WT2011).
Each dataset consists of queries, corresponding retrieved
documents, and human judged labels. Each query includes
several subtopics identified by TREC assessors. The docu-
ment relevance labels were made at the subtopic level and
the labels are binary2. Statistics on the datasets are given
in Table 2.

All the experiments were carried out on the ClueWeb09
Category B data collection3, which comprises of 50 million
English web documents. Porter stemming, tokenization, and
stop-words removal (using the INQUERY list) were applied

2WT2011 has graded judgements. In this paper we treat
them as binary.
3http://boston.lti.cs.cmu.edu/data/clueweb09

to the documents as preprocessing. We conducted 5-fold
cross-validation experiments on the three datasets. For each
dataset, we randomly split the queries into five even subsets.
At each fold three subsets were used for training, one was
used for validation, and one was used for testing. The results
reported were the average over the five trials.

As for evaluation measures, ↵-NDCG@k (Equation (3))
with ↵ = 0.5 and k = 20 is used. We also used ERR-IA@k

(Equation (4)) with k = 20 to evaluate the performances.
We compared PAMM with several types of baselines. The

baselines include the conventional relevance ranking models
in which document diversity is not taken into consideration.
Query likelihood (QL) [18] language models for informa-

tion retrieval.
ListMLE [17] a representative learning-to-rank model for

information retrieval.
We also compared PAMM with three heuristic approaches

to search result diversification in the experiments.
MMR [2] a heuristic approach to search result diversifica-

tion in which the document ranking is constructed via
iteratively selecting the document with the maximal
marginal relevance.

xQuAD [25] a representative heuristic approach to search
result diversification.

PM-2 [8] another widely used heuristic approach to search
result diversification.

Please note that these three baselines require a prior rele-
vance function to implement their diversification steps. In
our experiments, ListMLE was chosen as the relevance func-
tion.

Learning approaches to search result diversification are
also used as baselines in the experiments.
SVM-DIV [28] a representative learning approach to search

result diversification. It utilizes structural SVMs to
optimize the subtopic coverage. SVM-DIV does not
consider relevance. For fair performance comparison,
in the baseline, we first apply ListMLE to capture rele-
vance, and then apply SVM-DIV to re-rank the top-K
retrieved documents.

Structural SVM [26] Structural SVM can be configured
to directly optimize diversity evaluation measures, as
shown in [16]. In the paper, we used structural SVM
to optimize ↵-NDCG@20 and ERR-IA@20, denoted as
StructSVM(↵-NDCG) and StructSVM(ERR-IA), re-
spectively.

R-LTR [31] a state-of-the-art learning approach to search
result diversification. The ranking function is a linear
combination of the relevance score and diversity score
between the current document and those previously
selected. Following the practice in [31], in our experi-
ments we used the results of R-LTRmin which defines
the relation function hS(R) as the minimal distance.

5.2 Features
As for features, we adopted the features used in the work

of R-LTR [31]. There are two types of features: the rele-
vance features which capture the relevance information of a
query with respect to a document, and the diversity features
which represent the relation information among documents.
Table 3 and Table 4 list the relevance features and diversity
features used in the experiments, respectively.

4http://www.dmoz.org
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Table 3: Relevance features used in the experiments.
The first 4 lines are query-document matching fea-
tures, each applied to the fields of body, anchor,
title, URL, and the whole documents. The latter 3
lines are document quality features. [31]

Name Description # Features

TF-IDF The tf-idf model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5

MRF[19] MRF with ordered/unordered phrase 10
PageRank PageRank score 1
#inlinks number of inlinks 1
#outlinks number of outlinks 1

Table 4: The seven diversity features used in the ex-
periments. Each feature is extracted over two doc-
uments. [31]
Name Description

Subtopic Diversity Euclidean distance based on PLSA[12]
Text Diversity Cosine-based distance on term vectors
Title Diversity Text diversity on title
Anchor Text Diversity Text diversity on anchor
ODP-Based Diversity ODP4 taxonomy-based distance
Link-Based Diversity Link similarity of document pair
URL-Based Diversity URL similarity of document pair

5.3 Experiments with TREC datasets
In the experiments, we made use of the benchmark datasets

of WT2009, WT2010, and WT2011 from the TREC Web
Track, to test the performances of PAMM.

PAMM has to tune some parameters. The learning rate
parameter ⌘ was tuned based on the validation set during
each experiment. In all of the experiments in this sub-
section, we set the number of positive rankings per query
⌧

+ = 5, and number of negative rankings per query ⌧

� =
20. As for the parameter E of PAMM, ↵-NDCG@20 and
ERR-IA@20 were utilized. The results for PAMM using
↵-NDCG@20 in training are denoted as PAMM(↵-NDCG).
The PAMM results using ERR-IA@20 as measures are de-
noted as PAMM(ERR-IA).

The experimental results onWT2009, WT2010, andWT2011
are reported in Table 5, Table 6, and Table 7, respectively.
Numbers in parentheses are the relative improvements com-
pared with the baseline method of query likelihood (QL).
Boldface indicates the highest score among all runs. From
the results, we can see that PAMM(↵-NDCG) and PAMM(ERR-
IA) outperform all of the baselines on all of the three datasets
in terms of both ↵-NDCG@20 and ERR-IA@20. We con-
ducted significant testing (t-test) on the improvements of
PAMM(↵-NDCG) over the baselines in terms of ↵-NDCG@20
and ERR-IA@20. The results indicate that all of the im-
provements are statistically significant (p-value < 0.05). We
also conducted t-test on the improvements of PAMM(ERR-
IA) over the baselines in terms of ↵-NDCG@20 and ERR-
IA@20. The improvements are also statistically significant.
All of the results show that PAMM is e↵ective for the task
of search result diversification.

We observed that on all of the three datasets, PAMM(↵-
NDCG) trained with ↵-NDCG@20 performed best in terms
of ↵-NDCG@20 while PAMM(ERR-IA) trained with ERR-
IA@20 performed best in terms of ERR-IA@20. The results
indicate that PAMM can enhance diverse ranking perfor-

mances in terms of a measure by using the measure in train-
ing. We will further discuss the phenomenon in next section.

Table 5: Performance comparison of all methods in
o�cial TREC diversity measures for WT2009.

Method ERR-IA@20 ↵-NDCG@20

QL 0.164 0.269
ListMLE 0.191(+16.46%) 0.307(+14.13%)
MMR 0.202(+23.17%) 0.308(+14.50%)
xQuAD 0.232(+41.46%) 0.344(+27.88%)
PM-2 0.229(+39.63%) 0.337(+25.28%)

SVM-DIV 0.241(+46.95%) 0.353(+31.23%)
StructSVM(↵-NDCG) 0.260(+58.54%) 0.377(+40.15%)
StructSVM(ERR-IA) 0.261(+59.15%) 0.373(+38.66%)

R-LTR 0.271(+65.24%) 0.396(+47.21%)
PAMM(↵-NDCG) 0.284(+73.17%) 0.427(+58.74%)
PAMM(ERR-IA) 0.294(+79.26%) 0.422(+56.88%)

Table 6: Performance comparison of all methods in
o�cial TREC diversity measures for WT2010.

Method ERR-IA@20 ↵-NDCG@20

QL 0.198 0.302
ListMLE 0.244(+23.23%) 0.376(+24.50%)
MMR 0.274(+38.38%) 0.404(+33.77%)
xQuAD 0.328(+65.66%) 0.445(+47.35%)
PM-2 0.330(+66.67%) 0.448(+48.34%)

SVM-DIV 0.333(+68.18%) 0.459(+51.99%)
StructSVM(↵-NDCG) 0.352(+77.78%) 0.476(+57.62%)
StructSVM(ERR-IA) 0.355(+79.29%) 0.472(+56.29%)

R-LTR 0.365(+84.34%) 0.492(+62.91%)
PAMM(↵-NDCG) 0.380(+91.92%) 0.524(+73.51%)
PAMM(ERR-IA) 0.387(+95.45%) 0.511(+69.21%)

Table 7: Performance comparison of all methods in
o�cial TREC diversity measures for WT2011.

Method ERR-IA@20 ↵-NDCG@20

QL 0.352 0.453
ListMLE 0.417(+18.47%) 0.517(+14.13%)
MMR 0.428(+21.59%) 0.530(+17.00%)
xQuAD 0.475(+34.94%) 0.565(+24.72%)
PM-2 0.487(+38.35%) 0.579(+27.81%)

SVM-DIV 0.490(+39.20%) 0.591(+30.46%)
StructSVM(↵-NDCG) 0.512(+45.45%) 0.617(+36.20%)
StructSVM(ERR-IA) 0.513(+45.74%) 0.613(+35.32%)

R-LTR 0.539(+53.13%) 0.630(+39.07%)
PAMM(↵-NDCG) 0.541(+53.70%) 0.643(+41.94%)
PAMM(ERR-IA) 0.548(+55.68%) 0.637(+40.62%)

5.4 Discussions
We conducted experiments to show the reasons that PAMM

outperforms the baselines, using the results of the WT2009
dataset as examples.

5.4.1 Effect of maximizing marginal relevance

We found that PAMM makes a good tradeo↵ between the
query-document relevance and document diversity via max-
imizing marginal relevance. Here we use the result with
regard to query number 24 (“diversity” which contains 4
subtopics), to illustrate why our method is superior to the
baseline method of Structural SVM trained with ↵-NDCG@20
(denoted as StructSVM(↵-NDCG)). Note that structural
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Figure 1: Example rankings from WT2009. Each
shaded block represents a document and the num-
ber(s) in the block represent the subtopic(s) covered
by the document.

SVM cannot leverage the marginal relevance in its ranking
model. Figure 1 shows the top five ranked documents by
StructSVM(↵-NDCG), as well as four intermediate rankings
generated by PAMM(↵-NDCG) (denoted as fS0 , fS1 , fS2 ,
and fS3). The ranking denoted as fSr is generated as: first
sequentially selecting the documents for ranking positions of
1, 2, · · · , r� 1 with models fS0 , fS1 , · · · , fSr�2 , respectively;
then ranking the remaining documents with fSr�1 . For ex-
ample, the intermediate ranking denoted as fS2 is generated
as: selecting one document with fS0 and setting it to rank
1, then selecting one document with fS1 and set it to rank 2,
and finally ranking the remaining documents with fS2 and
putting them to the tail of the list. Each of the shaded block
indicates a document and the number(s) in the block indi-
cates the subtopic(s) assigned to the document by the hu-
man annotators. The performances in terms of ↵-NDCG@5
are also shown in the last column. Here we used ↵-NDCG@5
because only the top 5 documents are shown.

The results in Figure 1 indicate the e↵ectiveness of the
maximal marginal relevance criterion. We can see that the
↵-NDCG@5 increases steadily with the increasing rounds
of document selection iterations. In the first iteration, fS0

selects the most relevant document and puts it to the first
position, without considering the diversity. Thus, the ↵-
NDCG@5 of the ranking generated by fS0 is lower than that
of by StructSVM(↵-NDCG). In the second iteration, the
ranking function fS1 selects the document associated with
subtopics 1 and 3 and ranks it to the second position, ac-
cording to the maximal marginal relevance criterion. From
the view point of diverse ranking, this is obviously a better
choice than StructSVM(↵-NDCG) made, which selects the
document with subtopics 1 and 4. (Note that both Struc-
tural SVM and PAMM select the document with subtopics 2
and 4 for the first position.) In the following steps, fS2 and
fS3 select documents for ranking positions of 3 and 4, also
following the maximal marginal relevance criterion. As a re-
sult, fS1 , fS2 , and fS3 outperforms StructSVM(↵-NDCG).

5.4.2 Ability to improve the evaluation measures

We conducted experiments to see whether PAMM has the
ability to improve the diverse ranking quality in terms of
a measure by using the measure in training. Specifically,
we trained models using ↵-NDCG@20 and ERR-IA@20 and

fold1 fold2 fold3 fold4 fold5
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Figure 2: Performance in terms of ↵-NDCG@20
when model is trained with ↵-NDCG@20 or ERR-
IA@20.
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Figure 3: Performance in terms of ERR-IA@20
when model is trained with ↵-NDCG@20 or ERR-
IA@20.

evaluated their accuracies on the test dataset in terms of
both ↵-NDCG@20 and ERR-IA@20. The experiments were
conducted for each fold of the cross validation and perfor-
mances on each fold are reported. Figure 2 and Figure 3
show the results in terms of ↵-NDCG@20 and ERR-IA@20,
respectively. From Figure 2, we can see that on all of the
5 folds (except fold 1), PAMM(↵-NDCG) trained with ↵-
NDCG@20 performs better in terms of ↵-NDCG@20. Sim-
ilarly, from Figure 3, we can see that on all of the 5 folds
(except fold 4), PAMM(ERR-IA) trained with ERR-IA@20
performs better in terms of ERR-IA@20. Similar results
have also been observed in experiments on other datasets
(see the results in Table 5, Table 6, and Table 7). All of the
results indicate that PAMM can indeed enhance the diverse
ranking quality in terms of a measure by using the measure
in training.

5.4.3 Effects of positive and negative rankings

We examined the e↵ects of the number of positive rank-
ings generated per query (parameter ⌧

+). Specifically, we
compared the performances of PAMM(↵-NDCG) w.r.t. dif-
ferent ⌧

+ values. Figure 4 shows the performance curve in
terms of ↵-NDCG@20. The performance of R-LTR base-
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Figure 4: Ranking accuracies and training time
w.r.t. ⌧
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Figure 5: Ranking accuracies and training time w.r.t
⌧

�
.

line is also shown for reference. From the result, we can see
that the curve does not change much with di↵erent ⌧+ val-
ues, which indicates the robustness of PAMM. Figure 4 also
shows training time (in hours) w.r.t. di↵erent ⌧

+ values.
The training time increased dramatically with large ⌧

+, be-
cause more ranking pairs are generated for training. In our
experiments ⌧+ was set to 5.

We further examined the e↵ect of the number of nega-
tive rankings per query (parameter ⌧

�). Specifically, we
compared the performances of PAMM(↵-NDCG) w.r.t. dif-
ferent ⌧

� and the results are shown in Figure 5. From the
results, we can see that the performance of PAMM increas-
ing steadily with the increasing ⌧

� values until ⌧� = 20,
which indicates that PAMM can achieve better ranking per-
formance with more information from the negative rankings.
As the cost, the training time increased dramatically, be-
cause more training instances are involved in training. In
our experiments, ⌧� was set to 20.

We also conducted experiments to show the e↵ect of sam-
pling the negative rankings with di↵erent ↵-NDCG values.
Specifically, in each of the experiment, we configured the Al-
gorithm 4 to choose the negative rankings whose ↵-NDCG@20
values are 0.5, 0.6, 0.7, 0.8, and 0.9, respectively. Figure 6
shows the performances of PAMM(↵-NDCG) w.r.t. di↵erent
↵-NDCG@20 values of the sampled negative rankings. From
the results, we can see that PAMM performs best when the
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Figure 6: Ranking accuracies w.r.t. di↵erent ↵-
NDCG@20 values of the negative rankings.
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Figure 7: Learning curve of PAMM(↵-NDCG).

↵-NDCG@20 of the sampled negative rankings ranges from
0.6 to 0.9. The results also indicate that PAMM is robust
and not very sensitive to di↵erent methods of sampling the
negative rankings.

5.4.4 Convergence

Finally we conducted experiments to show whether PAMM
can converge in terms of the diversity evaluation measures.
Specifically, we showed the learning curve of PAMM(↵-NDCG)
in terms of ↵-NDCG@20 and ERR-IA@20 during the train-
ing phase. At each training iteration the model parame-
ters are outputted and evaluated on the test data. Figure 7
shows the performance curves w.r.t. the number of train-
ing iterations. From the results, we can see that the rank-
ing accuracy of that PAMM(↵-NDCG) steadily improves in
terms of both ↵-NDCG@20 and ERR-IA@20, as the training
goes on. PAMM converges and returns after running about
60 iterations. We also observed that in all of our experi-
ments, PAMM usually converges and returns after running
50⇠100 iterations. Similar phenomenon was also observed
from the learning curve of PAMM(ERR-IA). The results in-
dicates that PAMM converges fast and conducts the training
e�ciently.

121



6. CONCLUSION AND FUTURE WORK
In this paper we have proposed a novel algorithm for learn-

ing ranking models in search result diversification, referred
to as PAMM. PAMM makes use of the maximal marginal
relevance model for constructing the diverse rankings. In
training, PAMM directly optimizes the diversity evaluation
measures on training queries under the framework of Percep-
tron. PAMM o↵ers several advantages: employs a ranking
model that follows the maximal marginal relevance crite-
rion, ability to directly optimize any diversity evaluation
measure, and ability to utilize both positive rankings and
negative rankings in training. Experimental results based
on three benchmark datasets show that PAMM significantly
outperforms the state-of-the-art baseline methods including
SVM-DIV, structural SVM, and R-LTR.

Future work includes theoretical analysis on the conver-
gence, generalization error, and other properties of the PAMM
algorithm, and improving the e�ciency of PAMM in both
o✏ine training and online prediction.
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