
Listwise Approach for Rank Aggregation in Crowdsourcing

Shuzi Niu†, Yanyan Lan‡, Jiafeng Guo‡, Xueqi Cheng‡, Lei Yu† and Guoping Long†
†Institute of Software, Chinese Academy of Sciences, Beijing, P. R. China

‡Institute of Computing Technology, Chinese Academy of Sciences, Beijing, P. R. China
{shuzi,yulei,guoping}@iscas.ac.cn, {lanyanyan,guojiafeng,cxq}@ict.ac.cn

ABSTRACT
Inferring a gold-standard ranking over a set of objects, such
as documents or images, is a key task to build test collections
for various applications like Web search and recommender
systems. Crowdsourcing services provide an efficient and in-
expensive way to collect judgments via labeling by sets of
annotators. We thus study the problem of finding a con-
sensus ranking from crowdsourced judgments. In contrast
to conventional rank aggregation methods which minimize
the distance between predicted ranking and input judgments
from either pointwise or pairwise perspective, we argue that
it is critical to consider the distance in a listwise way to
emphasize the position importance in ranking. Therefore,
we introduce a new listwise approach in this paper, where
ranking measure based objective functions are utilized for
optimization. In addition, we also incorporate the annota-
tor quality into our model since the reliability of annotators
can vary significantly in crowdsourcing. For optimization,
we transform the optimization problem to the Linear Sum
Assignment Problem, and then solve it by a very efficient
algorithm named CrowdAgg guaranteeing the optimal so-
lution. Experimental results on two benchmark data sets
from different crowdsourcing tasks show that our algorithm
is much more effective, efficient and robust than traditional
methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Relevance
Feedback

General Terms
Algorithms

Keywords
Crowdsourced Labeling; Rank Aggregation; Evaluation Mea-
sures

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WSDM’15, February 2–6, 2015, Shanghai, China.
Copyright 2015 ACM 978-1-4503-3317-7/15/02 ...$15.00.
http://dx.doi.org/10.1145/2684822.2685308 .

1. INTRODUCTION
Inferring ranking over a set of objects is a critical task

for building gold-standard test collections in many ranking-
based real applications, such as information retrieval and
recommender systems. Recently, crowdsourcing services have
attracted much attention since it provides an inexpensive
and efficient means to obtain judgments over the objects.
Typically, there are two kinds of judgments widely adopted
in crowdsourcing, i.e. ratings and preferences. For example
in a query-document relevance labeling task, annotators are
asked to present the rating for each document such as bi-
nary or graded relevance judgments with absolute labeling
strategy [13], while they are asked to present preferences for
each document pair with relative labeling strategy [3].

In literature, many rank aggregation methods have been
proposed to find a consensus ranking over these judgments.
They all fall into the framework of minimizing a distance be-
tween predicted ranking and input judgments. According to
different distances used for optimization, they can be mainly
divided into three categories: pointwise, pairwise and list-
wise approaches. Pointwise rank aggregation methods like
MedianRank [7] utilize Footrule Distance as the objective
function, which aims to well predict the rank of each ob-
ject from annotators’ judgments on that object. Pairwise
methods such as Bradley-Terry [23], MPM [26] and Crowd-
BT[4] measure the distances in a pairwise way, and pairs
are viewed as independent. We can see that both pointwise
and pairwise approach define the distance from a local per-
spective. Therefore, they all ignore the position importance
in ranking, which is nevertheless critical for rank aggrega-
tion. Traditional listwise rank aggregation methods such as
Cranking [16] and Plackett-Luce [10] are infeasible for most
crowdsourced labeling tasks, such as crowdsourced pairwise
labeling task.

Therefore we propose a novel listwise approach to tackle
this problem. The key idea is that in order to take position
importance into account, it is better to define the distance
in a listwise way. Inspired by the fact that IR measures such
as NDCG and RBP are designed for this purpose, and usu-
ally used for evaluation in rank aggregation, we propose to
directly utilize these measures for distance definition. How-
ever, the characteristics of crowdsourcing poses two chal-
lenges to this approach: (1) Annotators usually provide rat-
ings or preferences over a subset of objects in crowdsourcing,
which make the computation of ranking measures impossible
since the ranking information cannot be induced from the
incomplete input information; (2) Annotator quality should

253

be considered in the objective function since the reliability
of annotators can vary significantly in crowdsourcing.

To address these challenges, we propose to map the judg-
ments (ratings or preferences) to input ranking, and incor-
porate annotator quality in this process. Specifically, the
rank of an object is viewed as a random variable and de-
fined in the form of pairwise contests. The distribution of
the random variable is then derived iteratively based on the
pairwise probability, which can be estimated through pair-
wise preference relationships conveyed in judgments. Mean-
while, annotator quality is modeled as the probability that
one agrees with the (unknown) true pairwise preference re-
lationships, which is estimated in an iterative way based on
the intermediate aggregation results. By incorporating an-
notator quality into the definition of the pairwise probability,
we obtain the final form of rank distribution of each object.
Based on this listwise mapping, we define the new objec-
tive functions for rank aggregation as the expectation of IR
measures (i.e. NDCG and RBP) over the rank distribution,
called expected measures. Note that the ground-truth label
of an object in the expected measure is derived from its rank
using a mapping function as in [19].

Due to the property of ranking measures [15], we find
that expected ranking measures have a general formulation
as a sum of utility functions on ranks in both the induced
ranking inputs and the output permutations. Therefore, the
goal of the optimization approach is to find a ground-truth
permutation which maximize the sum of utility functions.
As a sequence, it is natural to transform the rank aggrega-
tion problem to the Linear Sum Assignment Problem (LSAP
for short), where the profit for each assignment is defined
by taking the sum of utility functions over all the induced
ranking inputs. As the utility functions are represented as
a product of two functions, the optimal solution of the opti-
mization problem can be directly obtained through sorting
as shown by Rearrangement Inequality. We refer this opti-
mization algorithm as CrowdAgg.

Finally we conduct extensive experiments on two bench-
mark data sets from different crowdsourcing tasks, i.e. query-
document relevance labeling and music similarity labeling.
One is collected based on graded judgments, and the other
is based on pairwise preferences. Experimental results show
that CrowdAgg is much more effective, efficient and robust
than traditional rank aggregation methods in both data sets.

In summary, the main contributions of our proposed ap-
proach are listed as follows:

• we introduce expected measures as the new objective
functions for rank aggregation to consider position im-
portance, by utilizing rating and preference judgments
in a listwise way;

• We incorporate annotator quality into the expected
measures to well cope with the reliability of annotators
in crowdsourcing;

• We propose an efficient algorithm by formalizing the
aggregation problem as LSAP and obtaining an opti-
mal solution with Rearrangement Inequality.

2. BACKGROUNDS
In this section, we first give a problem formalization of

rank aggregation in crowdsourcing. We then review some

related works of traditional pointwise and pairwise rank ag-
gregation methods. Finally, we give a brief introduction to
some major evaluation measures used in rank aggregation.

2.1 Rank Aggregation in CrowdSourcing
Assume that we are given a set of n objects denoted as

D = {x1, x2, . . . , xn} and a set of m annotators in a crowd-
sourcing task. Each annotator i provides a set of labels τi
over these objects, which are often unreliable and incom-
plete. Typically, each τi can be represented in two forms:
ratings or preferences.

(1) With absolute labeling strategy, annotators are asked
to present the relevance rating of each object. Usually, the
ratings are incomplete, which means that annotators may
only rate a subset of all the objects. We denote this sub-
set labeled by annotator i as Di. In this case, τi can be
represented as (τi(x1), · · · , τi(xn)), where

τi(xj) =

{
z
(i)
j ∈ {0, 1, · · · , C − 1}, if xj ∈ Di;

Null, if xj /∈ Di.

(2) With relative labeling strategy, annotator are asked
to present the relative relevance between any two objects.
Usually, the preferences are also incomplete, which means
that annotators may only provide preferences over a subset
of all the possible object pairs. We denote this subset labeled
by annotator i as Pi. In this case, τi can be represented as
(τi(x1, x2), · · · , τi(xn−1, xn)), where τi(xs, xt) is defined as

follows, and z
(i)
j = 1 means xs is more relevant than xt in

terms of annotator i; otherwise z
(i)
j = 0.

τi(xs, xt) =

{
z
(i)
j ∈ {0, 1}, if (xs, xt) ∈ Pi;

Null, if (xs, xt) /∈ Pi.

The goal of rank aggregation in crowdsourcing is then to
find a consensus ranking π over these n objects which best
represents the ranking relations conveyed in multiple sets
of labels {τ1, . . . , τm} in the form of ratings or preferences,
where π is a permutation and π(xi) stands for the position of
object xi in the final consensus ranking π. To this end, most
aggregation algorithms try to optimize a distance measure
M between the inputs τ1, · · · , τm and the final ranking π,
which can be formulated as follows.

max
π∈Π

m∑
i=1

M(π, τi). (1)

2.2 Rank Aggregation Methods
Here we briefly review some of the traditional rank ag-

gregation methods in unsupervised scenario. According to
different kinds of distance measures used for optimization,
they can be mainly divided into three categories: pointwise,
pairwise and listwise methods.

2.2.1 Pointwise Rank Aggregation Methods
Pointwise rank aggregation methods utilize the label in-

formation per object from all the inputs to define the rank-
ing function or objective function. The distance measure
between the consensus ranking and the input ranking for
Borda Count [1] and Median Rank [7] is decomposed into
position difference per object. Borda Count [1] minimizes
the average Spearman Rank Coefficient and obtains the op-
timal ranking by the mean position of each object. Median

254

Rank [7] optimizes the average Spearman Footrule Distance
between the consensus ranking and each ranking input, and
obtains the optimal solution by sorting objects according to
their median rank in ascending order.

2.2.2 Pairwise Rank Aggregation Methods
Pairwise rank aggregation methods organize their ranking

inputs in a pairwise way whether for ranking functions or
optimization objective functions.

Graph based Method. Condorcet Fuse [18] constructs
the Condorcet Graph with n items and its arc represent-
ing the pairwise comparison results between two items by
majority voting, and a Hamiltonian path is obtained from
this graph by QuickSort. With all the aggregated pairwise
preferences summarized in a tournament, GreedyOrder [5]
minimizes the pairwise disagreement cost in this tournament
to obtain the consensus ranking.

Pairwise Preference Matrix Based Methods. With
all the inputs summarized in a pairwise preference matrix,
SVP (Singular Vector Projection) [9] minimized nuclear norm
of this pairwise preference matrix by rank-2 factorization.

Pairwise Probabilistic Approach. Probabilistic ap-
proaches define the generative probability of pairwise pref-
erences and optimize the likelihood function by a gradient
based approach [23, 26, 4]. Bradley-Terry [23] defines the
pairwise probability based on the Bradley-Terry model [22].
In crowdsourcing, annotator accuracy should be incorpo-
rated. MPM (Multinomial Preference Model) [26] models
both the power of rank difference and the deviation from
the consensus ranking per annotator in the pairwise gener-
ative probability. Crowd-BT [4] extends the Bradley-Terry
model by explicitly incorporating the labeling qualities of
different annotators. The key preprocess in EloRating [2,
27] is to estimate pairwise probabilities and annotator qual-
ities through EM algorithm, then obtain the relevance score
from the remaining preferences with the estimated informa-
tion through Elo-Rating system.

2.2.3 Listwise Rank Aggregation Methods
Listwise rank aggregation methods take the position im-

portance into consideration and treat ranking inputs in a
listwise way whether for ranking functions or optimization
objective functions. Plackett-Luce [10] and Cranking [16]
define the similarity measure to be the generative probabil-
ity of each ranking list with Plackett-Luce model [22] and
Mallow’s model [22] respectively, and optimize this similar-
ity function by a maximum likelihood procedure. Although
the annotator quality can be incorporated into the optimiza-
tion objective function, these listwise methods do not work
when these inputs are in the form of pairwise preferences.
St.Agg [20], one of state-of-the-art methods in traditional
rank aggregation tasks like metasearch, can solve this prob-
lem by deriving one item’s rank position from its pairwise
preferences with other items, but it is not fit for the crowd-
sourced setting. So these listwise approaches are not used
as baselines in our experiments.

2.3 Evaluation Measure
Given a set of objects D = {x1, · · · , xn}, and the ground-

truth labels Y = (y1, · · · , yn), which are usually based on
multi-grade ratings. Let π be the consensus ranking list over
D by some rank aggregation method. Evaluation measures
such as NDCG [12], Precision [6] and RBP [17] defined as

follows are often employed to evaluate the performance of
this aggregation method.

NDCG@k(π, Y) =

∑n
j=1 g(yj)D(rπj)I(r

π
j ≤ k)

DCGmax(n)
, (2)

where rπj stands for the rank of xj in the ranking list π,
g(yj) is the gain function with g(yj) = 2yj −1, D(rπj) is the
discount function with D(rπj)=

1
log(1+rπj)

, I(·) is an indicator

function with I(A)=1 if A is true and I(A)=0 otherwise.

Precision@k(π, Y) =
n∑

j=1

yj

k
I(rπj ≤ k), (3)

RBP(π, Y) = (1− p)
n∑

j=1

yjp
rπj −1 (4)

where p ∈ [0, 1] is a constant value. yj in Eq.(3) and Eq.(4)
takes a binary value from 0 and 1, which can be transformed
from multi-level ratings like LETOR1.

3. MOTIVATION
For the aggregation task in crowdsourcing, pointwise and

pairwise rank aggregation methods will be unsuitable, be-
cause both the position importance and annotator quality,
which are two main characteristics of crowdsourced data,
are not incorporated in these aggregation methods.

First, both the traditional pointwise and pairwise meth-
ods define the distance from a local perspective. For exam-
ple, the Spearman Rank Correlation used in Borda Count [1]
treats each object equal, and measures the distance between
two ranking lists π and τ as

∑n
j=1(π(xj) − τ (xj))

2, where

π(xj) and τ (xj) means the position of xj in the ranking list π
and τ respectively. The distances used in pairwise methods
treat each object pair as equal, and do not distinguish the
different impact of pairs from different positions. Therefore,
both pointwise and pairwise methods ignore the position im-
portance in ranking, which is nevertheless critical for rank
aggregation. Specifically, one usually cares more about ob-
jects ranked high in the output ranking list, and thus objects
with different positions as well as pairs constructed from dif-
ferent positions should have different impact on the distance
measure.

Second, the reliability of judgments obtained at low cost
from crowdsourcing services varies significantly, which is the
major difference from traditional aggregation task. Exper-
imental results in [26] shows that the aggregation methods
taking annotator quality into consideration, such as MPM [26]
always achieve better performances than those without an-
notator quality factor, such as Borda Count [1] minimizing∑m

i=1

∑n
j=1(π(xj) − τi(xj))

2. So it is reasonable to satisfy
the majority for some cases while put emphasis on a small
subset for the other cases, which can be adjusted by weight-
ing judgments from various sources differently.

To tackle these challenges, we propose to define the dis-
tance in a listwise way which taking both position impor-
tance and annotator quality into consideration, namely list-
wise rank aggregation approach.

4. LISTWISE RANK AGGREGATION
Inspired by the fact that position importance is consid-

ered in IR evaluation measure such as NDCG and RBP, we

1
http://research.microsoft.com/en-us/um/beijing/projects/letor/

255

propose to directly utilize these measures as the distance to
optimize. Specifically, the output ranking list is viewed as
(unknown) ground-truth, and the input judgments from an-
notator i can be viewed as some observations of the ground-
truth waiting for evaluation. When defining the specific dis-
tance based on these evaluation measures, however, we find
the characteristics of crowdsourcing pose great challenges to
this approach.

Firstly, the incompleteness and labeling form (ratings or
preferences) make the computation of these measures impos-
sible. As we described above, the annotators usually only
select a subset of data for labeling, thus the labeled data are
incomplete. Furthermore, labels from annotators either in
ratings or preferences, are quite different from the required
full-order ranking input in the computation of evaluation
measures. Therefore, the direct computation of evaluation
measures based on these kinds of data is not available.

Secondly, the annotator quality is not included in these
evaluation measures. As we know, the reliability of anno-
tators can vary significantly in crowdsourcing, which make
annotator quality an important factor to consider in rank
aggregation. However, it is not easy to include this factor in
the computation of these evaluation measures.

To address these challenges, we propose to map the judg-
ments (ratings or preferences) to input ranking, and incorpo-
rate annotator quality during this process. In the following
subsection, we will introduce how we conduct the mapping
and incorporation process.

4.1 Listwise Mapping
We cannot induce a ranking list directly by sorting based

on ratings or pairwise comparisons mainly due to their in-
completeness. In order to make the computation of evalu-
ation measures possible with the input judgments (ratings
or preferences), we propose a mapping function from the
judgments to input rankings. By analyzing these evalua-
tion measures, we find that the rank of an object is actually
needed in the computation. Therefore, we turn to the prob-
lem how to map the judgments to obtain the rank of each
object. However, since the provided judgments are often in-
complete, we incorporate uncertainty into the mapping pro-
cess. Specifically, we view the pairwise contest as a random
variable, then the rank of each object can be defined based
on all the results of pairwise contests. Furthermore, the an-
notator quality can be incorporated in the derivation of the
rank distribution.

4.1.1 Randomized Pairwise Comparisons
A pairwise contest between xs and xt refers to deciding

which one is ranked higher in terms of annotator i. We view
each pairwise contest as a Bernoulli trial, so that the result
that xs wins the contest denoted as Xst follows the Bernoulli
distribution, Xτi

st ∼ Binomial(1, P (xs ≺τi xt)), where pair-
wise probability P (Xτi

st = 1) = P (xs ≺τi xt) means the
probability that xs is ranked higher than xt, denoted as pτist.

To estimate the pairwise probability pτist when the input
judgments are ratings, we first transform the rating data to
preference data so that we can treat both types of judge-
ments in a unified way.

τi(xs, xt) =

⎧⎨
⎩

1, if τi(xs) > τi(xt),
0, if τi(xs) < τi(xt),
Null, otherwise.

(5)

According to previous studies [8, 20], the pairwise proba-
bility that one document xs is more relevant than xt is de-
pendent on the relative rank position difference between two
documents. The basic idea is to estimate this probability by
leveraging all pairwise preference relationships conveyed in
judgments from an annotator. On the basis of the prefer-
ence data (either directly provided in preference judgments
or generated from ratings as above), we give the estimation
of the pairwise probability pτist as shown in Eq.(6).

pτist=

⎧⎪⎨
⎪⎩

Ni(xs)−Ni(xt)
n

, Ni(xs)>Ni(xt),

1−Ni(xt)−Ni(xs)
n

, Ni(xs)<Ni(xt),
0.5, Ni(xs)=Ni(xt) or τi(xs, xt)=Null,

(6)

where Ni(xj) denotes the number of pairwise contests that
xj wins in τi, which is determined by the known pairwise
preferences in Eq.(7),

Ni(xj) =
n∑

l=1,l �=j,τi(xj ,xl) �=Null

τi(xj , xl). (7)

4.1.2 Incorporating Annotator Quality
To incorporate annotator quality into the distance, we

propose to introduce a parameter ηi to stand for the quality
of annotator i. It is natural that we define the parameter
as the degree the judgments by annotator i agrees with the
(unknown) ground-truth. Since we have turned both types
of input judgements into preference data above, we define
the degree based on preferences in a unified way. That is
the ratio of the number of preference pairs appear in both
the judgments of annotator i and ground-truth against the
number of all the preference pairs in ground-truth. The
formal definition of the quality of annotator i is represented
as follows.

ηi =

∑
s,t I(τ

∗(xs, xt) = 1&&τi(xs, xt) = 1)∑
s,t I(τi(xs, xt) = 1)

, (8)

where τ∗ denotes the ground-truth and I(·) is the indi-
cator function. We can see that when annotator i is per-
fect, we have ηi ≈ 1; if he/she is a random spammer, we
have ηi ≈ 0.5; if he/she is a malicious (i.e. poorly informed)
spammer, we have ηi ≈ 0. Note that in estimation of the
annotator quality, the ground-truth τ∗ is actually unknown.
Instead, we estimate the annotator quality in an iterative
way by taking the aggregated ranking in previous step as
the approximation of the ground-truth. Please refer to sec-
tion 5.3 for detailed machinery to parameter estimation.

With the annotator quality defined above, we modify the
pairwise probability pτist by incorporating this quality factor
as follows

ηip
τi
st + (1 − ηi)(1 − pτist). (9)

4.1.3 From Pairwise Contests to Rank Distribution
We now derive the rank of an object. When the results of

pairwise contests are deterministic and the data is complete,
the rank of an object xj provided by annotator i is deter-
mined by the number of objects being beaten in Eq.(11).

r
τi
j =

n∑
l=1,l �=j

I(xj ≺τi xl) (11)

256

Algorithm 1 Iterative Procedure for Rank Distribution of
xj in τi.

Input: (1)An item set D with n items; (2)Pairwise preferences from
input τi with Eq.(5); (3)Annotator quality ηi;

Output: A rank distribution of item xj on n positions.

1: Compute {pτi
jl }n

l=1,l �=j using Eq.(9);

2: initialize the distribution:[P (0)(r
τi
j = 0), P (0)(r

τi
j = 1)] = [1, 0];

3: t = 1;
4: for each xl ∈ D − xj do

[P (t)(r
τi
j = 0), . . . , P (t)(r

τi
j = t + 1)]

= [P (t−1)(r
τi
j = 0), . . . , P (t−1)(r

τi
j = t)] ∗ [p

τi
jl , 1 − p

τi
jl];

t + +;

(10)

5: end for
6: return [P (n−1)(rτj = 0), . . . , P (n−1)(rτj = n − 1)].

Algorithm 2 Divide-and-Conquer Algorithm for Rank Dis-
tribution of xj in τi.

Input: (1)An item set D with n items; (2)Pairwise preferences from
input τi with Eq.(5); (3)Annotator quality ηi;

Output: A rank distribution of item xj on n positions [P (r
τi
j =

0), . . . , P (r
τi
j = n − 1)].

1: Compute {pτi
jl }n

l=1,l �=j using Eq.(9) and pjj = 1;

2: return DC-RankDistribution({pτi
jl}n

l=1,1,n).

3:
4: DC-RankDistribution({psl}n

l=1,a,b):
5: if a + 1 == b then,
6: return [psa, 1 − psa] ∗ [psb, 1 − psb];
7: else if a == b then,
8: return [psa, 1 − psa];
9: end if
10: mid=(a+b)/2;
11: return DC-RankDistribution({psl}n

l=1,a,mid)*DC-
RankDistribution({psl}n

l=1,mid + 1,b);

When the pairwise contests are random experiments like
Bernoulli trials, the rank of object xj provided by annotator
i is a random variable, which means the number of successes
of the n− 1 independent Bernoulli trials defined in Eq.(12).

r
τi
j =

n∑
l=1,l �=j

X
τi
jl (12)

The distribution of rτij is the convolution of the individual
probability density distributions [21]. This yields an itera-
tive computation of the rank distribution with complexity
O(n2), as shown in Alg. 1. The operator ∗ in Alg. 1 stands
for the convolution operation. Specifically, the distribution
of rτij is initialized (t = 0) by the indicator function with
the probability at the top position is 1 and 0 otherwise.
When a new object xl comes, the rank distribution of xj

is updated by the convolution between its current rank dis-
tribution and the pairwise contest distribution denoted as
[pτijl , 1− pτijl] estimated by annotator τi. For the iteration t,
the running time of this convolution computation between
the rank distribution (a sequence with length t + 2) and
pairwise contest distribution (a sequence with length 2) is
O(2t). The final distribution (t = n−1) of rτij involves such
n − 1 convolutions, so the time complexity for computing
rank distribution of xj is

∑n−1
t=0 2t = O(n2).

The time complexity of the Alg. 1 can be improved with
divide-and-conquer strategy. The main idea comes from the
fact that the required rank distribution can be divided into
convolutions of two parts: the first part is convolutions of
the first n

2
objects, and the second part is convolution of the

rest n
2
objects. For each convolution, the divide-and-conquer

process continues. Therefore, we can change the original
sequential computation process to the following divide-and-
conquer process as shown in Alg. 2. Suppose the distribution
of pairwise contest between xj and xj is denoted as [1, 0],
then the rank distribution of xj by annotator τi can be com-
puted as the convolution of n sequences with each sequence
represented as a pairwise contest distribution [pτijl , 1 − pτijl].
For the first iteration (T = 1), there are n

2
convolution com-

putations between any two sequences with length 2, thus n
2

sequences with length 3 will be obtained; for the T -th itera-
tion, there are n

2T
convolutions between any two sequences

with length 2T−1 + 1, and thus n
2T

sequences with length

2T+1 will be obtained by FFT (Fast Fourier Transform). Fi-
nally, the rank distribution of xj will be derived after log2 n
iterations, and the time complexity for this efficient algo-

rithm is
∑log2 n

T=1
n
2T

(2T + 1) log2(2
T + 1) = O(n log22 n).

4.2 Expected Ranking Measures
Through listwise mapping described above, all the judg-

ments (ratings or preferences) provided by each annotator
can be transformed to the listwise information, described as
ranks of all the objects in D with estimated rank distribu-
tions. Therefore, the input data has become the form of
ranking lists.

Recall that we view the output consensus ranking as the
ground-truth, and the input ranking lists from each annota-
tor as observations waiting for evaluation. In this sense, the
computation of traditional evaluation measures is still infea-
sible in application, since the ground-truth is in the form of a
ranking list. Inspired by using extended evaluation measures
such as κ-NDCG and κ-RBP for ranking based ground-truth

as in [19], where a mapping function κ : κ(rπj) =
n−rπj

n
is uti-

lized to map the rank rπj to ground-truth label, we propose
to define the listwise distance on the basis of these measures
as follows.

κ-NDCG(π, τi) =
n∑

j=1

g(κ(rπj))D(rτij)

DCGmax(n)
,

κ-RBP(π, τi) =
n∑

j=1

κ(rπj)p
r
τi
j −1

.

Obviously they can be represented as the following general
form Ev(π, τi) =

∑n
j=1 v(r

π
j , r

τi
j), where Ev stands for any

evaluation measures.
The above measures represent a distance between the out-

put consensus ranking π and the input ranking with respect
to τi. Since the input ranking with respect to τi is stochastic
according to section 4.1.3, we propose to use expectation as
the distance. As a consequence, the expectation over the
rank distribution is conducted, and we obtain the expected
measures defined as follows as the final listwise distance.

Evs(π, τi) =
n∑

j=1

n−1∑
r=0

v(rπj , r
τi
j)P (r

τi
j = r) (13)

5. OPTIMIZATION ALGORITHMS
In this section, we investigate optimization algorithms to

solve the problem maximizing these expected measures, such
as κ-NDCGs and κ-RBPs. Firstly, we find that these ex-
pected measures can be represented as a summation of the

257

utility function for each item at a certain position, and ob-
tain the final objective function L(η, π) parameterized by
annotator quality η = (η1, · · · , ηm) and the aggregated rank-
ing π. Then given the annotator quality η, the optimization
problem can be easily interpreted as the assignment problem
with a cost function in the form of linear sum, called the Lin-
ear Sum Assignment Problem (LSAP for short). Therefore
we can transform the optimization problem to the LSAP.
With each utility function expressed as a special product
form in expected measures, the optimal ranking can be di-
rectly obtained by Rearrangement Inequality. After the op-
timal ranking is obtained, we update the annotator quality
η with its definition formula, and repeat the above optimiza-
tion process until the obtained ranking list keeps unchanged.
In this way, we obtain an alternating approach to optimize
L(η, π), referred to as CrowdAgg.

5.1 General Form of Expected Measures
As shown in Eq. (13), these expected ranking measures

can be formulated into a general form as the sum of utility
functions. Each utility function measures the utility that an
object with ranking information encoded in its rank distribu-
tions, is placed at some position in the output permutation,
denoted as us in this paper. As a consequence, the original
expected measures can be rewritten as follows:

Evs(π, τi) =
n∑

j=1

us(r
π
j),where us(r

π
j) =

n−1∑
r=0

v(rπj , r)P (rτj = r).

The optimization objective is to find a permutation which
maximizes the sum of utility functions in Eq. (14).

max
π∈Π,η∈[0,1]m

L(η, π) =
m∑
i=1

Evs(π, τi)=
n∑

j=1

m∑
i=1

us(r
π
j) (14)

5.2 Optimization with fixed Parameter η

Through the representation as the sum of utility functions
in the above section, we can easily interpret this optimiza-
tion problem with fixed annotator quality η as to find the
optimal assignment of positions for each object according
to inputs (τ1, · · · , τm). Moreover, each utility function is
a function on an individual object and its output position.
Therefore, the optimization problem in our listwise rank ag-
gregation is intrinsically a Linear Sum Assignment Problem
(LSAP), which is formalized as follows.

The object set is denoted as D = {x1, . . . , xn} and the
possible position set is represented as R = {1, . . . , n}. For
any object xj , the permutation π can be viewed as the as-
signment of object xj , j = 1, . . . , n to the position rπj , which
brings about the utility denoted by w(rπj , j) =

∑m
i=1 us(r

π
j) =∑m

i=1

∑n−1
r=0 v(rπj , r)P (rτij = r).

To find the optimal permutation, we need to optimize the
following function in Eq. (15).

max
π∈Π

n∑
j=1

w(rπj , j) (15)

Many classical algorithms such as Hungarian method [14]
have been proposed to solve this LSAP. For a LSAP with size
n, the running time of Hungarian algorithm is O(n4). The
high time complexity motivates us to further probe the opti-
mization problem. In light of the factorization in v(·, ·) [15],

Table 1: Factorizations of Expected Ranking Measures

measures f(·) h(·)

κ-NDCGs
1

DCGmax(n)

∑n−1
r=0

P(r
τi
j

=r)

log(1+r)
g(κ(rπj))

κ-RBPs (1 − p)
∑n−1

r=0 pr−1P (r
τi
j = r) κ(rπj)

we find that the utility function us(·, ·) for most expected
measures can be factorized as a product of two functions.
One is on positions in output permutation denoted as h(·),
and the other is the function of position per object in the
estimated ranking input denoted as f(·). The mathematical
form is shown as below.

us(r
π
j , r

τi
j) = h(rπj)f(r

τi
j) (16)

For example, κ-NDCGs and κ-RBPs can both be repre-
sented in this way. Specifically, two different kinds of defini-
tion of f(·) and h(·) with regard to these expected measures
are listed in Table 1.

According to the definition of w(rπj , j) and the factor-
ization of utility function us(·, ·) in Eq. (16), w(rπj , j) =∑m

i=1 h(r
π
j)f(r

τi
j) = h(rπj)(

∑m
i=1 f(r

τi
j)).

Let uj = h(rπj) and vj =
∑m

i=1 f(r
τi
j), the infimum and

supremum of the objective function in Eq. (14) will be di-
rectly obtained by the Rearrangement Inequality [11] as
shown in Lemma 1.

Lemma 1. Let 0 ≤ u1 ≤ . . . ≤ un and 0 ≤ v1 ≤ . . . ≤ vn.
Then for any permutation φ

n∑
i=1

uivn+1−i ≤
n∑

i=1

uivφ(i) ≤
n∑

i=1

uivi.

Specifically, we can see that uj = h(rπj) and vj =
∑m

i=1 f(r
τi
j)

satisfies the non-negative conditions since f(·) and h(·) are
both positive. Sorting x1, . . . , xn according to vj in descend-
ing order, we obtain the optimal permutation πG with the
supremum of the objective function based on Lemma 1. As
a consequence, we obtain a simple algorithm which can effi-
ciently find the optimal solution for the optimization prob-
lem with fixed η by sorting based on vj . The details of
algorithm are shown in Alg. 3.

Algorithm 3 Maximize L(η, π) with fixed η

Input: An item set D and a collection of ranking inputs {τ1, . . . , τm}
over D;

Output: An aggregated ranking π.
1: Compute F (xj) =

∑m
i=1f(r

τi
j), where f is defined for different

measures in Table 1;
2: Obtain the permutation π by sorting F (xj) in descending order;
3: return π.

5.3 Estimating Parameter η with Fixed π

Recall that η is defined as the degree the judgments by
annotator i agrees with the unknown ground-truth. We
propose an iterative way to estimate η by taking the cur-
rently aggregated ranking list π as the approximation of the
ground-truth. Therefore, η can be estimated, where each ηi
is calculated as the pairwise agreement between π and the
input τi.

ηi =

∑
s,t I(π(xs, xt) = 1&&τi(xs, xt) = 1)∑

s,t I(τi(xs, xt) = 1)
(17)

258

5.4 CrowdAgg
As described above, a natural optimization strategy to

maximize the objective L(η, π) is the alternating approach:
(1) initialize η = 1; (2) fix η and optimize over π by LSAP as
described in Alg. 3; (3) fix π and estimate the η as described
in Eq. (17); (4) repeat step (2) and (3) until the obtained
permutations keep stable. This alternating approach for op-
timizing L(η, π) is referred to as CrowdAgg.

6. EXPERIMENTS
In this section we present our experimental results. Firstly,

we introduce the experimental setting, including data sets,
baseline methods and evaluation measures. Then we present
ranking performance comparison between our proposed CrowdAgg
and the baseline methods. In addition, we empirically study
the annotator accuracy and the robustness of these rank ag-
gregation methods with respect to two kinds of noisy anno-
tators, such as spammers and malicious annotators [4]. Fi-
nally, we compare the running time of the proposed CrowdAgg
with the state-of-the-art rank aggregation algorithms.

6.1 Experimental Setting
Here we implement our listwise rank aggregation methods

CrowdAgg where Alg. 2 is used to compute rank distribu-
tions. We denote the algorithm optimizing expected mea-
sures κ-NDCG and κ-RBP as CrowdAggNDCG and CrowdAggRBP,
respectively.

Data Sets. To evaluate the performance of our pro-
posed method, we use two data sets from two different kinds
of crowdsourcing tasks as described below. Conventional
rank aggregation data sets like Million Query data sets from
meta-search application may not simulate the crowdsourced
setting well, so we utilize such two benchmark data sets di-
rectly from crowdsourced labeling tasks.

(1) Graded Judgment Data from Crowdsourced Relevance
Labeling Task. CS-TREC2011 data set is a collection of
topic-document pairs labeled as relevant or non-relevant by
Mechanical Turks. Therefore, the judgments are provided
in the form of ratings. There are 100 topics with 190 doc-
uments per topic, and the number of annotators is varied
with topics, about 43 on average. Each annotator rates less
than 10 documents on average.

(2) Preference Judgment Data from Crowdsourced Simi-
larity Labeling Task. MIREX2005 data set is a collection of
music form Symbolic Melodic Similarity task in Music In-
formation Retrieval Evaluation eXchange (MIREX) in 2005.
This task aims to find a ranking list of musical pieces accord-
ing to the similarity to certain piece of music, which acts as
a query in information retrieval. There are 11 pieces of mu-
sic as queries. Pairwise preference labels are collected from
Mechanical Turks in [25]. The ground-truth is in the form
of 5-grade judgements [24].

Baseline Methods. Since pointwise methods and list-
wise methods can only be applied to graded judgment data2,
we use pairwise rank aggregation methods as our baselines
to obtain a comprehensive comparison on both data sets.
According to whether annotator quality is considered in the
model, traditional pairwise rank aggregation methods fall
into two categories: (1) Methods without annotator quality,
such as CondorcetFuse [18], GreedyOrder [5], BradleyTerry [23];
(2) Methods with annotator quality, such as MPM [26],

2
St.Agg [20] does not incorporate the annotator quality.

Crowd-BT [4] and EMEloRating [2, 27]. Here we describe
some parameter settings in these methods: the learning rates
used in gradient methods for BradleyTerry (0.1 for both data
sets), MPM (0.1 for MusicCrowd and 0.0001 for TREC2011)
and Crowd-BT (0.01 for both data sets) were chosen accord-
ing to the best performance in terms of NDCG@10, and the
parameter setting in EMEloRating is the same as in [2].

Evaluation Methods. There are several routines to
evaluate these unsupervised rank aggregation methods. One
of the leading methods is to use traditional IR evaluation
measures with ground-truth labels given for evaluation. In
this paper we use NDCG@{3, 5, 7, 9, 10}, RBP, Precision@{3,
5, 7, 9, 10} and MAP for evaluation. Routinely the constant
value p in RBP is 0.95. In MIREX2005, the transformation
of five-grade relevance labels to binary values is mentioned
in the background for RBP.

6.2 Ranking Accuracy Analysis
The ranking performance comparison results on both CS-

TREC2011 and MIREX2005 are shown in Table 2. It is
clear that our proposed methods CrowdAgg outperform the
baseline methods on both data sets in most cases.

In terms of NDCG@10, CrowdAggNDCG achieves 1.5%
improvement with respect to the best pairwise rank ag-
gregation method, i.e. GreedyOrder on CS-TREC2011, and
6.2% improvement with respect to the best pairwise method,
i.e. MPM on MIREX2005. In terms of RBP, the improve-
ment of CrowdAggRBP is 5.6% with respect to the best pair-
wise method, i.e. GreedyOrder on CS-TREC2011, and 5.4%
with respect to the best pairwise method.

The improvements can be explained as follows: (1) Com-
pared with the first kind of pairwise rank aggregation meth-
ods (without annotator quality), CrowdAgg are superior by
distinguishing the reliability of preference judgments by the
annotator quality; (2) Compared with the second kind of
pairwise rank aggregation methods, CrowdAgg obtain bet-
ter ranking performance by treating the judgments per an-
notator in a listwise way and taking into consideration of
position importance in optimization. Besides, more precise
estimation of annotator quality η can be obtained from bet-
ter aggregated ranking and enhance each other in an alter-
nating way in CrowdAgg.

6.3 Annotator Quality Analysis
In this section, we empirically study the influence of anno-

tator quality. Firstly, we validate the hypothesis that anno-
tator quality will impact much to the results and thus should
be taken into consideration in the rank aggregation method.
Secondly, we compare the quality distribution among differ-
ent methods as conducted in [4].

6.3.1 Impact of Annotator Quality
To validate the hypothesis that annotator quality is im-

portant for rank aggregation, we propose to verify whether
the aggregation methods with annotator quality will perform
better than that without annotator quality. Therefore, we
consider the methods with annotator quality, such as MPM,
Crowd-BT, EMEloRating and our proposed CrowdAggNDCG.
These methods can be easily reduced to the version with-
out annotator quality by treating each annotator equally.
Specifically, we set these annotator quality parameters η = 1
as in MPM, Crowd-BT and CrowdAggNDCG, and denote
the new corresponding version as MPM-eq, Crowd-BT-eq,

259

Table 2: Ranking Performance Comparison of Preference Aggregation Methods on two data sets (CS-TREC2011 and
MIREX2005). For each specific metric, the result with bold type is significantly better than the other corresponding re-
sults through one-tailed and paired t-tests (p-value< 0.05).

(a) CS-TREC2011

Methods P@3 P@5 P@7 P@9 P@10 MAP N@3 N@5 N@7 N@9 N@10 RBP
CondorcetFuse 0.597 0.604 0.621 0.626 0.621 0.560 0.591 0.597 0.609 0.613 0.611 0.564
GreedyOrder 0.710 0.698 0.674 0.661 0.657 0.604 0.713 0.704 0.688 0.679 0.676 0.621
BradleyTerry 0.373 0.370 0.386 0.378 0.377 0.326 0.377 0.375 0.384 0.379 0.379 0.345
MPM 0.690 0.690 0.671 0.663 0.657 0.570 0.687 0.687 0.676 0.671 0.667 0.580
Crowd-BT 0.403 0.416 0.416 0.422 0.417 0.534 0.404 0.412 0.413 0.417 0.414 0.473
EMEloRating 0.690 0.666 0.673 0.654 0.649 0.588 0.691 0.676 0.679 0.667 0.663 0.602
CrowdAggNDCG 0.713 0.694 0.680 0.673 0.673 0.635 0.715 0.702 0.692 0.687 0.686 0.657
CrowdAggRBP 0.680 0.684 0.686 0.679 0.674 0.636 0.683 0.686 0.686 0.682 0.679 0.658

(b) MIREX2005

Methods P@3 P@5 P@7 P@9 P@10 MAP N@3 N@5 N@7 N@9 N@10 RBP
CondorcetFuse 0.364 0.455 0.468 0.434 0.418 0.472 0.523 0.596 0.514 0.478 0.414 0.170
GreedyOrder 0.273 0.418 0.455 0.424 0.409 0.459 0.444 0.525 0.490 0.462 0.399 0.171
BradleyTerry 0.242 0.400 0.429 0.424 0.499 0.441 0.412 0.496 0.460 0.447 0.385 0.170
MPM 0.485 0.509 0.494 0.475 0.446 0.516 0.695 0.693 0.612 0.576 0.501 0.179
Crowd-BT 0.576 0.564 0.507 0.465 0.446 0.608 0.814 0.801 0.640 0.578 0.496 0.200
EMEloRating 0.364 0.436 0.455 0.424 0.409 0.495 0.606 0.629 0.568 0.511 0.436 0.203
CrowdAggNDCG 0.697 0.600 0.546 0.485 0.455 0.712 0.955 0.880 0.703 0.621 0.532 0.214
CrowdAggRBP 0.697 0.600 0.546 0.485 0.455 0.713 0.955 0.879 0.702 0.620 0.531 0.215

CrowdAggNDCG-eq. While for EMEloRating, we simply
take all the pairwise preferences as output to the Elo rat-
ing system without filtering by annotator quality, denoted
as EMEloRating-eq.

P@10 MAP N@10 RBP
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

MPM−eq
MPM

(a)
P@10 MAP N@10 RBP

0.15

0.25

0.35

0.45

0.55

0.65
0.7

Crowd−BT−eq
Crowd−BT

(b)

P@10 MAP N@10 RBP
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

EMEloRating−eq
EMEloRating

(c)
P@10 MAP N@10 RBP

0.15

0.25

0.35

0.45

0.55

0.65

0.75
0.8

CrowdAgg
NDCG

−eq

CrowdAgg
NDCG

(d)
Figure 1: Ranking Performance Comparison between mod-
els without and with annotator quality on MIREX2005 (The
comparison results are significant through paired t-tests with
p-value< 0.05.)

We conduct experiments on MIREX2005 with the two
groups of aggregation methods, as mentioned above. The
ranking performances are compared between the original one
and the corresponding reduced version in terms of P@10,
MAP, NDCG@10 and RBP. The comparison results are shown
in Fig. 1. Obviously the method with annotator quality can
significantly outperform the corresponding method without
annotator quality. For example, the improvement of Crowd-
BT is 10.3% with the consideration of annotator quality in
terms of NDCG@10. The largest performance difference be-
tween CrowdAggNDCG and CrowdAggNDCG-eq is 56% with
respect to MAP, while the smallest performance difference
is 11.1% in terms of P@10. Note that the performance dif-
ference between EMEloRating and EMEloRating-eq is rela-
tively small. Through our analysis, we find the major rea-
son lies in the EM process of the EMEloRating-eq method,

which also takes the annotator quality into consideration
in essence. In other words, EMEloRating-eq is not a true
reduced version without annotator quality.

6.3.2 Accuracy for Different Distributions of Anno-
tator Quality

Here we study the difference between the estimated anno-
tator quality distribution and the ground-truth quality dis-
tribution. We say the estimated annotator quality is more
accurate if the difference is small. There are various defini-
tion of annotator quality for different aggregation methods,
such as adherence parameter in MPM [26], pairwise prefer-
ence accuracy ACC in Crowd-BT [4] (known as the accu-
racy based on Wilcoxon-Mann-Whitney statistics employed
in [26]), and confusion matrix C in EMEloRating. In this
paper, we conduct a similar empirical study as in [4], and
thus employ pairwise preference accuracy ACC to compute
the annotator quality.

ACC =

∑
s,t I(ys > yt)I(π(xs, xt))∑

s,t I(ys > yt)
, (18)

where ys is the ground-truth label for each item xs ∈ D.
Specifically, we conduct experiments on MIREX2005 with

11 topics to evaluate the quality distribution of annotators
for each topic. We calculate the KL-divergence between the
estimated quality distribution and the ground-truth distri-
bution. The average divergence score is for CrowdAggNDCG,
Crowd-BT, EMEloRating and MPM is 1.43, 2.86, 2.14,1.93,
respectively. Obviously, CrowdAggNDCG achieves the small-
est divergence. It indicates that our proposed CrowdAgg
can make better estimation on the annotator quality than
the baseline methods. We randomly selected 9 topics from
MIREX2005 and plot the quality distributions of different
methods and groud-truth in Fig. 2 for illustration. Each sub
figure is corresponding to one topic. From Fig. 2 we can also
find that the distribution estimated from CrowdAggNDCG

(i.e. blue curve) in each sub figure is more similar to the real
distribution (i.e. black histogram) than other methods.

6.4 Robustness Analysis
In this section we investigate the robustness of aggrega-

tion algorithms to spammers. Similar to [4], we mainly care

260

0 0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

Ratio of Added Random Spammers

P
@

10

GreedyOrder
CondorcetFuse
BradleyTerry
MPM
CrowdBT
EMEloRating
CrowdAgg

NDCG

(a)

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Ratio of Added Random Spammers

M
A

P

(b)

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

Ratio of Added Random Spammers

N
D

C
G

@
10

(c)

0 0.2 0.4 0.6 0.8 1
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Ratio of Added Random Spammers

R
B

P

(d)
Figure 3: Ranking Performance Variation along with Ratio of Added Random Spammers on MIREX2005 (Performance
variation results for various aggregation methods are significantly different through paired t-tests with p-value< 0.05.)

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

Annotator Quality

%
 o

f A
nn

ot
at

or
s

Real Distribution CrowdAgg CrowdBT EMEloRating MPM

Figure 2: Quality Distribution of Annotators computed from
the ground-truth labels (Real Distribution) and Estimated
in aggregation methods on randomly sampled 9 topics of
MIREX2005

about two kinds of spammers, random spammers and mali-
cious (i.e. poorly informed) spammers. The random spam-
mers assign the label randomly, while the malicious spam-
mers assign the wrong label most of time. We investigate
the robustness of all these aggregation methods to two kinds
of spammers respectively, and the experimental results are
shown only on MIREX2005 for space limitation. Similar
results can be also obtained on CS-TREC2011.

6.4.1 Random Spammers
To simulate the labeling behavior of spammers, we define

the decision function on the labels of the pairwise objects be-
tween xi and xj . For random spammer, the decision function
τRandSpam as follows is proposed, where y(xi, xj) is the pref-
erence label inferred from the ground-truth relevance labels
in MIREX2005.

τRandSpam(xi, xj) =

{
1− y(xi, xj) with probability 0.5
y(xi, xj) with probability 0.5

Here we consider the robustness of aggregation methods
with the addition of random spammers. Since the number of
annotators m is different for different topics, we consider the
number of random spammers to be added is in proportion
to m, and refer the proportion as Ratio of Added Random
Spammers. We vary the ratio from 0 to 1 with a step of 0.05,
and obtain 20 different data sets for each given ratio. The
performance is then averaged over the 20 data sets for each

ratio. The ranking performance comparisons over different
algorithms in terms of P@10, MAP, NDCG@10 and RBP
are shown in Fig. 3.

To quantitatively compare the robustness of different meth-
ods, we use the coefficient of variation of performance3,
which is a widely used measure for variance comparison.
From the results, we find that our proposed CrowdAggNDCG

achieve the best coefficient of variation in terms of RBP
among methods from top to bottom in the legend (0.0227,
0.0245, 0.0436, 0.0330, 0.0312, 0.0191, 0.0185), and is the
third best in terms of NDCG@10 among methods from top
to bottom in the legend (0.0147, 0.0174, 0.3347, 0.0228,
0.0406, 0.3238, 0.0216). Furthermore, we can see that with
the increase of the ratio of added random spammers, CrowdAggNDCG

can almost always outperform all the other methods. There-
fore, we conclude that our proposed CrowdAgg is robust to
random spammers.

6.4.2 Malicious Spammers
To simulate the labeling behavior of malicious spammers,

we define the decision function τMaliSpam = 1 − y(xi, xj),
where y(xi, xj) is the preference label inferred from the ground-
truth relevance labels in MIREX2005.

Here we consider the robustness of aggregation algorithms
with the addition of malicious spammers. We introduce Ra-
tio of Added Malicious Spammers and conduct experiments
with different ratios as in the above section. The perfor-
mance comparison results are depicted in Fig. 4.

Similarly, we also compare the robustness of different meth-
ods in terms of coefficient of variation of performance. From
the results, we find that our proposed CrowdAggNDCG achieve
the best coefficient of variation in terms of both NDCG@10
and RBP among methods from top to bottom in the legend
(NDCG@10:0.0100, 0.0122, 0.0112, 0.0186, 0.0498, 0.0175,
0.0099; RBP:0.0118, 0.0174, 0.0218, 0.0407, 0.0382, 0.0275,
0.0116). Meanwhile, we can also see that with the increase
of the ratio of added malicious spammers, CrowdAggNDCG

can almost always outperform all the other methods. There-
fore, CrowdAgg is also robust to malicious spammers on
MIREX2005.

In summary, our proposed CrowdAgg is robust to both
random spammers and malicious spammers. Each random
spammer always provides half useful information to derive
the ground truth ranking, so there is no reason for the per-
formance decline in Fig. 3. Each malicious spammer always
provides harmful information to derive the ground truth

3
Coefficient of variation is defined as the the ratio of the standard

deviation to the mean

261

0 0.2 0.4 0.6 0.8 1
0.4

0.42

0.44

0.46

0.48

0.5

Ratio of Added Malicious Spammers

P
@

10

GreedyOrder
CondorcetFuse
BradleyTerry
MPM
CrowdBT
EMEloRating
CrowdAgg

NDCG

(a)

0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Ratio of Added Malicious Spammers

M
A

P

(b)

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

Ratio of Added Malicious Spammers

N
D

C
G

@
10

(c)

0 0.2 0.4 0.6 0.8 1
0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Ratio of Added Malicious Spammers

R
B

P

(d)
Figure 4: Ranking Performance Variation along with Ratio of Added Malicious Spammers on MIREX2005 (Performance
variation results for various aggregation methods are significantly different through paired t-tests with p-value< 0.05.)

ranking, so the performance decline in Fig. 4 is deemed to
appear when the ratio achieves some threshold. In terms of
different spammers, CrowdAgg is more robust to the mali-
cious spammers than the random spammer, which is promis-
ing in real application.

7. CONCLUSION
In this paper, we propose a listwise rank aggregation method

in crowdsourcing. The main idea is to adopt IR measures as
objective function to take position importance into consid-
eration, as compared with traditional pointwise or pairwise
rank aggregation methods. To solve the challenges intro-
duced by the characteristics of crowdsourcing, we propose to
map the judgments (ratings or preferences) to input ranking
and incorporate annotator quality in this process. So we de-
fine the new expected measures, and use them as objective
functions. For optimization, we propose a novel alternative
optimization algorithm named CrowdAgg based on LSAP
and the iterative estimation of annotator quality. Finally,
our experimental results on benchmark data sets shows the
effectiveness and robustness of our proposed CrowdAgg.

For future work, we will investigate how to adapt our list-
wise rank aggregation method to an active learning setting,
which is suitable to be blended to crowdsourcing.

Acknowledgments
This research work was funded by the 973 Program of China
under Grants No. 2012CB316303, No. 2014CB340401, the
863 Program of China under Grants No. 2012AA011003,
the National Natural Science of China under Grant No.
61472401, No. 61203298, No. 61100072, and the National
Key Technology R&D Program of China under Grants No.
2012BAH39B02, No. 2012BAH46B04.

8. REFERENCES[1] J. A. Aslam and M. Montague. Models for metasearch.
SIGIR2001, pages 276–284.

[2] M. Bashir, J. Anderton, J. Wu, P. B. Golbus, V. Pavlu, and
J. A. Aslam. A document rating system for preference
judgements. SIGIR ’13, pages 909–912.

[3] B. Carterette, P. N. Bennett, D. M. Chickering, and S. T.
Dumais. Here or there: Preference judgments for relevance.
ECIR’08, pages 16–27, 2008.

[4] X. Chen, P. N. Bennett, K. Collins-Thompson, and E. Horvitz.
Pairwise ranking aggregation in a crowdsourced setting. WSDM
’13, pages 193–202.

[5] W. W. Cohen, R. E. Schapire, and Y. Singer. Learning to order
things. JAIR1999, 10(1):243–270, May.

[6] C. D. Manning, P. Raghavan, and H. Sch́lźtze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[7] R. Fagin, R. Kumar, and D. Sivakumar. Efficient similarity
search and classification via rank aggregation. pages 301–312.

[8] M. Farah and D. Vanderpooten. An outranking approach for
rank aggregation in information retrieval. SIGIR2007, pages
591–598.

[9] D. F. Gleich and L.-h. Lim. Rank aggregation via nuclear norm
minimization. KDD2011, pages 60–68.

[10] J. Guiver and E. Snelson. Bayesian inference for plackett-luce
ranking models. ICML2009, pages 377–384.

[11] G. H. Hardy, J. E. Littlewood, and G. Pĺőlya. Inequalities.
Cambridge University Press, 1952.

[12] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM TOIS2002, 20(4):422–446.

[13] J. Kekäläinen. Binary and graded relevance in ir
evaluations-comparison of the effects on ranking of ir systems.
IPM, 41(5):1019–1033, Sept. 2005.

[14] H. W. Kuhn. The hungarian method for the assignment
problem. Naval Research Logistics, 2(1-2):83–97, 1955.

[15] Q. Le and A. Smola. Direct optimization of ranking measures.
arXiv Preprint arXiv: 0704.3359, 2007.

[16] G. Lebanon and J. D. Lafferty. Cranking: Combining rankings
using conditional probability models on permutations.
ICML2002, pages 363–370.

[17] A. Moffat and J. Zobel. Rank-biased precision for measurement
of retrieval effectiveness. ACM TOIS2008, 27(1):2:1–2:27, Dec.

[18] M. Montague and J. A. Aslam. Condorcet fusion for improved
retrieval. pages 538–548.

[19] S. Niu, J. Guo, Y. Lan, and X. Cheng. Top-k learning to rank:
labeling, ranking and evaluation. SIGIR ’12, pages 751–760.

[20] S. Niu, Y. Lan, J. Guo, and X. Cheng. Stochastic rank
aggregation. UAI2013, pages 478–487.

[21] A. Papoulis. Random Variables and Stochastic Processes.
McGraw-Hill, 1991.

[22] P. R.L. The analysis of permutations. Applied Statistics,
24(2):193–202, 1974.

[23] L. L. Thurstone. The method of paired comparisons for social
values. The Journal of Abnormal and Social Psychology,
21(4):384, 1927.

[24] R. Typke, M. den Hoed, J. de Nooijer, F. Wiering, and R. C.
Veltkamp. A ground truth for half a million musical incipits.
JDIM, 3(1):34–38, 2005.

[25] J. Urbano, J. Morato, M. Marrero, and D. Mart́ın.
Crowdsourcing preference judgments for evaluation of music
similarity tasks. In SIGIR CSE, pages 9–16.

[26] M. N. Volkovs and R. S. Zemel. A flexible generative model for
preference aggregation. WWW2012, pages 479–488.

[27] J. Wu. Applying em to compute document relevance from
crowdsourced pair preferences. Master’s thesis, Northeastern
University, 2013.

262

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

