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ABSTRACT
Ranking SVM, which formalizes the problem of learning a
ranking model as that of learning a binary SVM on prefer-
ence pairs of documents, is a state-of-the-art ranking model
in information retrieval. The dual form solution of Ranking
SVM model can be written as a linear combination of the
preference pairs, i.e., w =

∑
(i,j) αij(xi − xj), where αij

denotes the Lagrange parameters associated with each pair
(i, j). It is obvious that there exist significant interactions
over the document pairs because two preference pairs could
share a same document as their items. Thus it is natural to
ask if there also exist interactions over the model parame-
ters αij , which we may leverage to propose better ranking
model. This paper aims to answer the question. Firstly,
we found that there exists a low-rank structure over the
Ranking SVM model parameters αij , which indicates that
the interactions do exist. Then, based on the discovery, we
made a modification on the original Ranking SVM model
by explicitly applying a low-rank constraint to the param-
eters. Specifically, each parameter αij is decomposed as a
product of two low-dimensional vectors, i.e., αij = 〈vi,vj〉,
where vectors vi and vj correspond to document i and j, re-
spectively. The learning process, thus, becomes to optimize
the modified dual form objective function with respect to
the low-dimensional vectors. Experimental results on three
LETOR datasets show that our method, referred to as Fac-
torized Ranking SVM, can outperform state-of-the-art base-
lines including the conventional Ranking SVM.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Systems Applications]: Information Search and Re-
trieval – Retrieval Models

Keywords: Parameter interaction; Ranking SVM
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1. INTRODUCTION
Learning to rank has been widely used in information

retrieval and recommender systems. Among the learning
to rank models, Ranking SVM is a representative pairwise
ranking model, evolving from the popular support vector
machines (SVM) [1] for classification problems. In training,
Ranking SVM first constructs the preference pairs of the
documents based on their relevance labels (or click-through
data [7]). Then, a binary SVM model is learned based on
the preference pairs to capture the differences between docu-
ments with different relevance labels. In ranking, each doc-
ument is assigned a relevance score based on the learned
ranking model. Usually, the ranking model can be writ-
ten in its dual form, the solution is a linear combination of
the training preference pairs, i.e., w =

∑
(i,j) αij(xi − xj),

where xi and xj are the first and second document in the
pair (i, j), and αij is the corresponding Lagrange multiplier.

It is obvious that the constructed preference pairs have
significant interactions, since two preference pairs could share
a same document as their items. In the dual form solution of
Ranking SVM, each preference pair is associated with a La-
grange multiplier α. Therefore, it is natural to ask whether
there also exist interactions among these Lagrange multipli-
ers. If the answer is yes, how to utilize the interactions to
improve Ranking SVM?

This paper tries to answer the above questions by analyz-
ing the Lagrange multipliers of the trained Ranking SVM
models. Specifically, we made an arrangement of the La-
grange multipliers and constructed a block diagonal matrix
A, where A(i, j) = αij if αij appears in the Ranking SVM
model and zero otherwise. Then, we performed singular
value decomposition (SVD) on each block of A and sorted
the eigenvalues in descending order. We found that for all
the queries, we just need 40% dimensions to capture 90%
energy, but if we want to capture 100% energy, almost all
the queries need at least 80% dimensions, it means there
exists a low-rank structure in the matrix, which indicates
strong interactions among the Lagrange multipliers.

Based on the discovery, we propose to improve the original
Ranking SVM through explicitly modeling the parameter
interactions in the training process. Specifically, we apply a
low rank constraint over the Lagrange multipliers in the dual
form solution of Ranking SVM. Each Lagrange multiplier
αij in the dual form objective function is factorized as the
dot product of two K-dimensional latent vectors, i.e., αij =
〈vi,vj〉, where vi and vj correspond to the first and second
document in the preference pair, respectively. In this way,



the rank of the matrix A would not be larger than K. The
learning of the ranking model, then, becomes optimizing
the factorized dual form objective function with respect to
the latent vectors. An effective algorithm based on gradient
descent is proposed to conduct the optimization.

The proposed algorithm, referred to as Factorized Rank-
ing SVM, offers several advantages: 1) The interactions
among model parameters are explicitly captured when train-
ing the ranking model; 2) Compared with original Ranking
SVM, the space complexity is dramatically reduced. Exper-
imental results indicate that Factorized Ranking SVM can
outperform several state-of-the-art baseline methods includ-
ing Ranking SVM, on three LETOR benchmark datasets.

2. RANKING SVM
Ranking SVM formalizes the problem of learning a rank-

ing model as the problem of learning a binary classification
over preference document pairs. Suppose we are given a
set of training label-query-document tuples {(yi, qi,xi)}Ni=1,
where N is the number of training tuples, yi ∈ {r1, · · · , r`} is
the relevance label for the i-th query-document pair, qi ∈ Q
is the query, and xi ∈ Rn is the feature vector encoding
the i-th query-document pair. There exists a total order
between the relevance labels r` � r`−1, · · · ,� r1, where
‘�’ denotes a preference relationship. The set of preference
pairs is defined as P ≡ {(i, j)|qi = qj , yi � yj} and the linear
Ranking SVM minimizes the loss function

min
w∈Rn

1

2
||w||2 + C

∑
(i,j)∈P

[1− 〈w,xi − xj〉]+ , (1)

where C > 0 is a parameter and [x]+ = max(0, x). It is
common to solve the dual problem of (1):

min
α

1

2
αTMα− eTα,

s.t. 0 ≤ αij ≤ C,∀(i, j) ∈ P
(2)

where α ∈ R|P | is a vector of Lagrange multipliers in-
dexed by pairs in P , e ∈ R|P | is the vector of ones, and
M(i,j),(u,v) = 〈xi − xj ,xu − xv〉,∀(i, j), (u, v) ∈ P is a
|P | × |P | matrix.

In ranking, the learned ranking model f(x) = 〈w,x〉 as-
signs a relevance score for any test document x. From the
prime-dual relationship, optimal w and α satisfy

w =
∑

(i,j)∈P

αij(xi − xj). (3)

In machine learning, it is assumed that all of the train-
ing instances are independently identically distributed. In
Ranking SVM, however, it is obvious that the preference
pairs have significant interactions because two pairs (e.g.,(i,j)
and (i,k))could share a document(e.g.,document i). Since
the model parameters α are associated with each preference
pair, it is natural to ask whether these parameters also have
interactions each other.

3. ANALYSIS OF PARAMETER INTERAC-
TIONS

In this paper, we propose to analyze the interactions be-
tween model parameters based on singular value decompo-
sition (SVD). Specifically, given a learned Ranking SVM
model, we rearrange the model parameters α as a matrix

(a) Capturing 90% energy

(b) Capturing 100% energy

Figure 1: Distribution of queries over percentage
ranges when capturing 90% and 100% of the energy.

A ∈ RN×N and defined as A(i, j) = αij if (i, j) ∈ P and 0
otherwise. Note that A is a block diagonal matrix, which
consists of sub-matrices Ai(i = 1, · · · , |Q|), and each block
Ai corresponds to a training query. This is because the pref-
erence pairs are constructed within the documents retrieved
by one query.

We performed SVD on each submatrix Ai (corresponds
to a query) and sorted the eigenvalues in descending order1.
Figure 1(a) shows the statistics on the percentages of di-
mensions needed per query for capturing 90% of the energy.
The statistics are based on a Ranking SVM model trained
on one fold of OHSUMED dataset. The queries are grouped
into different categories based on the ranges of the percent-
ages. For example, all the queries in the category 0% ∼ 10%
should need 0% ∼ 10% of the dimensions for capturing the
90% energy. We can see that all of the queries fall into the
ranges less than 40%. Figure 1(b) shows the statistics for
capturing 100% of the energy on the same data with the
same Ranking SVM model,We can see that if we want to
capture 100% of the energy, almost all of the queries fall in
the ranges of 80% ∼ 90% and 90% ∼ 100%, which indicates
that A is a nearly full rank matrix.

We also conducted the analysis on the Ranking SVM mod-
els trained on the datasets of MQ2007 and MQ2008. Similar
phenomenons were observed. The results indicate there ex-
ist significant interactions between the Ranking SVM model
parameters. The interactions can be characterized with a
low-rank structure.

4. FACTORIZED RANKING SVM
Based on the analysis above, we propose a new learning to

rank model for capturing the parameter interactions. The
model, referred to as Factorized Ranking SVM, is based on

1SVD can be performed on each submatrix independently
because A is block diagonal.



original Ranking SVM and explicitly applies a low-rank con-
straint over the model parameters. Specifically, each param-
eter αij is assumed to be a product of two K-dimensional
vectors vi and vj , i.e., αij = 〈vi,vj〉, where K is the size of
latent dimension.

The ranking model in Equation (3), therefore, becomes

w =
∑

(i,j)∈P
〈vi,vj〉(xi − xj). (4)

Therefore, the loss function (1) can be written as

min
v1,··· ,vN

1

2

∥∥∥∥∥∥
∑

(i,j)∈P

〈vi,vj〉(xi − xj)

∥∥∥∥∥∥
2

+

C
∑

(k,l)∈P

1−

〈 ∑
(i,j)∈P

〈vi,vj〉(xi − xj),xk − xl

〉
+

.

(5)

Since the size of preference pairs is large, to conduct effi-
cient optimization, we adopt a similar method used in [10,
12] in which the prime form of linear Ranking SVM is opti-
mized. Specifically, It can be shown that the loss function
in (5) can be written as

L(v1, · · · ,vN ) =
1

2
‖w‖2 +

C

(
pw −

〈
w,

l∑
i=1

(
l+i (w)− l−i (w)

)
xi

〉)
,

(6)

where w is defined in Equation (4), pw, l
+
i (w), and l−i (w)

are defined as follows:

SV (w)≡ {(i, j) ∈ P,1−wT(xi − xj) > 0},pw= |SV (w)|,

SV +
i (w) ≡ {j|(j, i) ∈ SV (w)}, l+i (w) = |SV +

i (w)|,

SV −i (w) ≡ {j|(i, j) ∈ SV (w)}, l−i (w) = |SV −i (w)|.

(7)

Please refer to [9] for the derivation details. The gradient
of L(v1, · · · ,vN ) in Equation (6) , then, can be written as(

∂L
∂v1

, · · · , ∂L
∂vN

)
, where

∂L

∂vk
=

∑
j:(k,j)∈P

vj
∑

(i′,j′)∈P

〈vi′ ,vj′〉〈φi′j′ ,φkj〉

+
∑

j:(j,k)∈P

vj
∑

(i′,j′)∈P

〈vi′ ,vj′〉〈φi′j′ ,φjk〉

−C

 ∑
j:(k,j)∈P )

vj · 〈φkj ,u〉+
∑

j:(j,k)∈P

vj〈φjk,u〉

 ,

(8)

for k = 1, · · · , N . Here u =
∑N

i=1

(
l+i (w)− l−i (w)

)
xi and

φij = xi − xj . Thus, the updating criteria for gradient

descent is v
(t)
k ← v

(t−1)
k − η ∂L

∂vk
, where t is the iteration

number and η is the learning rate. Algorithm 1 shows the
pseudo code of the optimization algorithm.

The space complexity of Factorized Ranking SVM isO(N×
n+N ×K+N + N

|Q| ), where n is the number of features,|Q|
is the number of queries in training data, N × n is used for
storing the original training data, N × K is used for stor-
ing v1, · · · ,vN , N is used for storing l+(w) and l−(w), and
N
|Q| is used for dynamically constructing the order-statistic

tree [9]. Compared with the original Ranking SVM whose

Algorithm 1 Factorized Ranking SVM

Input: training data {yi, qi,xi}Ni=1, learning rate η > 0,
number of hidden dimensions K, and parameter C

Output: model parameters v1, · · · ,vN
1: (v1, · · · ,vN )← random values
2: repeat
3: w =

∑
(i,j)∈P 〈vi,vj〉(xi−xj), where P = {(i, j)|qi =

qj , yi � yj}
4: Calculate pw, l

+
i (w), and l−i (w) {Equation (7)}

5: for k = 1 to N do
6: vk ← vk − η ∂L

∂vk
{Equation (8)}

7: end for
8: until convergence
9: return v1, · · · ,vN

Table 1: Statistics on OHSUMED,MQ2007,and MQ2008.
Data Set #labeled docs #queries #preference pairs

OHSUMED 16,140 106 582,588
MQ2007 42,158 1017 246,051
MQ2008 9,360 471 52,325

space complexity is O(N × n+N2) [9], Factorized Ranking
SVM needs much less memory because K � N .

The time complexity of Factorized Ranking SVM is O(T×
(N2 +N × (logK + logN + n) + N2

|Q| × n)), where T is the

number of iterations. N2 is for computing w, N × (logK +
logN + n) is for computing pw, l

+(w), l−(w),u with the

trick of order-statistic tree (see [9] for details). N2

|Q| × n is

for calculating the gradient ∂L
∂vk

for k = 1, · · · , N .

5. EXPERIMENT
5.1 Experiment settings

We conducted experiments to test the performances of
our approach using three LETOR benchmark datasets[14]:
OHSUMED, Million Query track of TREC 2007 (MQ2007),
and Million Query track of TREC 2008 (MQ2008). Each
dataset consists of queries, corresponding retrieved docu-
ments, and human judged labels. The possible relevance la-
bels are relevant, partially relevant, and not relevant. Statis-
tics on the datasets are given in Table 1. The number of
preference pairs for each dataset is also shown in the table.

Following the LETOR configuration, We conducted 5-fold
cross-validation experiments on the three datasets. The re-
sults reported were the average over the five folds. In all of
the experiments, LETOR standard features were used.

As for evaluation measures, MAP (mean average preci-
sion) and NDCG (normalized discounted cumulative gain)[5]
at position of 1, 3, and 5 were used in our experiments. We
compared the proposed Factorized Ranking SVM (denoted
as “Fac-RSVM” in the experiments) with several state-of-
the-art baseline methods, including the conventional Rank-
ing SVM model (denoted as “RSVM”), and two represen-
tative learning to ranking models of RankNet [2] and List-
Net [4]. As for Ranking SVM, we used the implementation
released in [6]2 in all of the experiments. For RankNet and
ListNet, we used the implementations in RankLib3.

Factorized Ranking SVM has some parameters to tune.
The learning rate parameter η, number of latent dimensions
K, and parameter C were tuned based on the validation set

2http://svmlight.joachims.org
3http://pepple.cs.umass.edu/∼vdang/ranklib.html



Table 2: Ranking accuracies on dataset OHSUMED.
Method MAP NDCG@1 NDCG@3 NDCG@5

RSVM 0.4427 0.5289 0.4553 0.4392
RankNet 0.404 0.4007 0.3616 0.3388
ListNet 0.4443 0.5134 0.4664 0.4530
Fac-RSVM 0.4463 0.5507 0.4798 0.4546

Table 3: Ranking accuracies on dataset MQ2007.
Method MAP NDCG@1 NDCG@3 NDCG@5

RSVM 0.4442 0.3821 0.3796 0.3890
RankNet 0.4184 0.3527 0.3599 0.3660
ListNet 0.4466 0.3897 0.3897 0.3956
Fac-RSVM 0.4483 0.3824 0.3900 0.3940

during each experiment. For all of the baselines, we also
tuned their parameters based on the validation set.

5.2 Experimental results
The experimental results on OHSUMED, MQ2007, and

MQ2008 are reported in Table 2, Table 3, and Table 4,
respectively. Boldface indicates the highest score among
all runs. From the results, we can see that Fac-RSVM
outperformed RSVM on all of the three datasets in terms
of all of the evaluation measures (except on MQ2008 in
terms of NDCG@1). The results indicate that Fac-RSVM
effectively captures the parameter interactions and thus im-
proved ranking performances. The results also showed that
Fac-RSVM can outperform pair-wise and list-wise learning
to rank methods of RankNet and ListNet (except for ListNet
on MQ2007 in terms of NDCG@1 and NDCG@5), which fur-
ther proved that Fac-RSVM is effective in relevance ranking.

In the experiments, Fac-RSVM underperformed RSVM
in terms of NDCG@1 on MQ2008. MQ2008 has the most
sparse labeled documents and preference pairs (see Table
1), which may make the parameter interactions weak. Note
that the performances of Fac-RSVM degrade as the num-
ber of preference pairs gets smaller. We will analyze the
phenomenon in our future work.

6. RELATED WORK
Learning to rank has become one of the most active re-

search topics in IR [11]. State-of-the-art learning to rank
models can be categorized into pointwise methods, pair-
wise methods, and listwise methods. Ranking SVM [7] is
a representative pairwise learning to rank method. To make
the algorithm more suitable to real-world IR applications,
Joachims et al. [7] proposed to train Ranking SVM with
users’ click-through data from search engines. Cao et al. [3]
adapted Ranking SVM to document retrieval by modifying
the loss function so that the training can focus on the top
ranked documents. Qiang et al. proposed Ranking FM to
rank tweets in microblog retrieval [13]. In Ranking FM, the
interactions between features are modeled with factoriza-
tion machine [15]. In this paper, we also propose to improve
Ranking SVM by explicitly capturing the parameter inter-
actions in training.

Improving the scalability of Ranking SVM is another im-
portant research direction. Kuo et al. [8] proposed an ef-
ficient algorithm for optimizing large scale kernel ranking
SVM. Lee and Lin [9] proposed to directly optimize the
prime form of linear Ranking SVM and significantly im-
proved the scalability. In this paper, we adopted the method
proposed in [9] for conducting the optimization.

Table 4: Ranking accuracies on dataset MQ2008.
Method MAP NDCG@1 NDCG@3 NDCG@5

RSVM 0.4713 0.3686 0.4277 0.4730
RankNet 0.4522 0.3410 0.3991 0.4500
ListNet 0.4415 0.3244 0.3916 0.4396
Fac-RSVM 0.4714 0.3660 0.4289 0.4731

7. CONCLUSIONS
In this paper we investigated the parameter interactions

in Ranking SVM. We empirically found that there exists a
low-rank structure among the Lagrange multipliers of Rank-
ing SVM model. Based on the discovery, we proposed a new
ranking model in which the low-rank constraint is explic-
itly applied to the Lagrange multipliers, called Factorized
Ranking SVM. In training, Factorized Ranking SVM de-
composes each Lagrange multiplier as a dot product of two
low-dimensional vectors. An efficient algorithm was devel-
oped to conduct the optimization. Advantages of factor-
ized Ranking SVM include explicitly modeling parameter
interactions in pairwise ranking and dramatically reduced
space complexity of the ranking model. Experimental re-
sults based on three LETOR benchmark datasets show that
Factorized Ranking SVM outperforms the state-of-the-art
methods including Ranking SVM, RankNet, and ListNet.
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