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ABSTRACT
Search result diversification has attracted considerable at-
tention as a means to tackle the ambiguous or multi-faceted
information needs of users. One of the key problems in
search result diversification is novelty, that is, how to mea-
sure the novelty of a candidate document with respect to
other documents. In the heuristic approaches, the prede-
fined document similarity functions are directly utilized for
defining the novelty. In the learning approaches, the nov-
elty is characterized based on a set of handcrafted features.
Both the similarity functions and the features are difficult
to manually design in real world due to the complexity of
modeling the document novelty. In this paper, we propose
to model the novelty of a document with a neural tensor net-
work. Instead of manually defining the similarity functions
or features, the new method automatically learns a nonlin-
ear novelty function based on the preliminary representation
of the candidate document and other documents. New di-
verse learning to rank models can be derived under the rela-
tional learning to rank framework. To determine the model
parameters, loss functions are constructed and optimized
with stochastic gradient descent. Extensive experiments on
three public TREC datasets show that the new derived algo-
rithms can significantly outperform the baselines, including
the state-of-the-art relational learning to rank models.

Keywords
search result diversification; neural tensor network; rela-
tional learning to rank

1. INTRODUCTION
In web search, it has been widely observed that a large

fraction of queries are ambiguous or multi-faceted. Search
result diversification has been proposed as a way to tackle
this problem and diverse ranking is one of the central prob-
lems. The goal of diverse ranking is to develop a ranking
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model that can sort documents based on their relevance to
the given query as well as the novelty of the information in
the documents. Thus, how to measure the novelty of a can-
didate document with respect to other documents becomes a
key problem in the designing of the diverse ranking models.

Methods for search result diversification can be catego-
rized into heuristic approaches and learning approaches. The
heuristic approaches construct diverse rankings with heuris-
tic rules [3, 8, 14, 24, 25, 26]. As a representative model,
the maximal marginal relevance (MMR) [3] formulates the
construction of a diverse ranking as a process of sequential
document selection. At each iteration the document with
the highest marginal relevance is selected. The marginal
relevance consists of the relevance score and novelty score.
The novelty score is calculated based on a predefined doc-
ument similarity function. Thus, the selection of the docu-
ment similarity function becomes a critical issue for MMR.
Different choices of the similarity functions result in different
ranking lists. Usually it is difficult to define an appropriate
similarity function in a real application.

Recently, machine learning models have been proposed
and applied to the task of search result diversification [17,
20, 23, 28, 32]. The basic idea is to automatically learn a
diverse ranking model from the labeled training data. Rela-
tional learning to rank is one of the representative framework
in this field. In relational learning to rank, the novelty of a
document with respect to the previously selected documents
is encoded as a set of handcrafted novelty features. Several
algorithms have been developed under the framework and
state-of-the-art performances have been achieved [28, 32].
However, it is still an unsolved problem to define a set of
novelty features which can effectively capture the complex
document relationship. Unlike the designing of relevance
features in conventional learning to rank, it is much more
difficult to extract novelty features for search result diver-
sification. Currently, a very limited number of novelty fea-
tures can be utilized when constructing a diverse ranking
model. For example, in R-LTR [32] and PAMM [28], the
novelty of a document is characterized with only seven nov-
elty features. Most of the features are based on the cosine
similarities of two documents represented with tf-idf vectors
or topic vectors. Thus, it is very difficult, if not impossible,
for users to handcraft an optimal set of novelty features for
search result diversification.

To address above problems and inspired by the neural
models for relation classification [27], we propose to model
the document novelty for search result diversification using
a neural tensor network (NTN). Unlike existing methods
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which manually define the document similarity functions or
novelty features, the method automatically learns a non-
linear document novelty function from the training data.
It first generates the novelty signals with a nonlinear ten-
sor layer, through interacting the candidate document with
other documents. Then, a max-pooling operation is applied
to select the most effective novelty signals. Finally, the se-
lected signals are combined linearly to form the final docu-
ment novelty score.

New diverse ranking models, then, can be proposed under
the relational learning to rank framework. The marginal
relevance in relational learning to rank, which is used for
selecting the best document at each step, is calculated as a
sum of the query-document relevance score and document
novelty score. Modeling the document novelty score with the
proposed neural tensor network, we can achieve new diverse
ranking models. On the basis of existing relational learning
to rank algorithms of R-LTR and PAMM, two new loss func-
tions are constructed and optimized, achieving two novel di-
verse ranking algorithms of R-LTR-NTN and PAMM-NTN.

To evaluate the effectiveness of the proposed algorithms,
we conducted extensive experiments on three public TREC
benchmark datasets. The experimental results showed that
our proposed algorithms, including R-LTR-NTN and PAMM-
NTN, can significantly outperform the state-of-the-art base-
lines including heuristic approaches of MMR, and learning
approaches of SVM-DIV [29], R-LTR, and PAMM. Analysis
showed that the proposed approaches achieved better results
through learning better document dissimilarities in terms
of distinguishing the documents with different subtopics.
Thus, the proposed algorithms have the ability to improve
the queries with high ambiguity.

Contributions of the paper include: 1) We proposed to
model the document novelty with a neural tensor network,
which enables us to get rid of the manually defined similar-
ity functions or handcrafted novelty features in search re-
sult diversification; 2) Based on the new document novelty
model, two diverse ranking algorithms were derived under
the framework of relational learning to rank; 3) The effec-
tiveness of the proposed algorithms were verified based on
public benchmark datasets.

The rest of the paper is organized as follows. After a
summary of related work in Section 2, we present the neural
tensor network model for measuring document novelty in
Section 3. Section 4 presents the two derived diverse ranking
algorithms under the relational learning to rank framework.
Experimental results and discussions are given in Section 5.
Section 6 concludes the paper and gives future directions.

2. RELATED WORK
This paper concerns about the ranking models for search

result diversification. Existing methods can be categorized
into heuristic approaches and learning approaches. One of
the central problems in both of these two approaches is nov-
elty, that is, how to model the novelty information of a doc-
ument with respect to other documents.

2.1 Heuristic approaches
It is a common practice to use heuristic rules to construct

a diverse ranking list in search. Usually, the rules are cre-
ated based on the observation that in diverse ranking a doc-
ument’s novelty depends on not only the document itself but
also the documents ranked in previous positions. Carbonell

and Goldstein [3] proposed the maximal marginal relevance
criterion to guide the design of diverse ranking models. The
criterion is implemented with a process of iteratively select-
ing the documents from the candidate document set. At
each iteration, the document with the highest marginal rel-
evance score is selected, where the score is a linear combi-
nation of the query-document relevance and the maximum
distance of the document to the documents in current re-
sult set, in another word, novelty. The marginal relevance
score is then updated in the next iteration as the number of
documents in the result set increases by one. A number of
methods have been developed under the criterion. PM-2 [8]
treats the problem of finding a diverse search result as find-
ing a proportional representation for the document ranking.
xQuAD [26] directly models different aspects underlying the
original query in the form of sub-queries, and estimates the
relevance of the retrieved documents to each identified sub-
query. Hu et al. [14] proposed a diversification framework
that explicitly leverages the hierarchical intents of queries
and selects the documents that maximize diversity in the
hierarchical structure. See also [2, 4, 10, 11, 12, 22]

All of these heuristic approaches rely on a predefined doc-
ument similarity (or distance) function to measure the nov-
elty of a document. Thus, the selection of the similarity
function is critical for the ranking performances. Usually it
is hard to design an optimal similarity function for a specific
task. In this paper, we focus on the learning approaches to
estimate the novelty scores of documents.

2.2 Learning approaches
Machine learning techniques have been applied to con-

struct ranking models for search result diversification. In
these approaches, the relevance features and novelty features
are extracted for characterizing the relevance and novelty in-
formation of a document, respectively. The ranking score is
usually a linear combination of these features and the pa-
rameters can be automatically estimated from the training
data. Some promising results have been obtained. For ex-
ample, Zhu et al. [32] proposed the relational learning to
rank framework in which the diverse ranking is constructed
with a process of sequential document selection. The train-
ing of a relational learning to rank model thus amounts to
optimizing the object function based on the ground-truth
rankings. With different definitions of the object functions
and optimization techniques, different diverse ranking al-
gorithms have been derived [28, 32]. Radlinski et al. [23]
proposed online learning algorithms that directly learn a di-
verse ranking of documents based on users’ clicking behav-
iors. More works please refer to [17, 20, 30].

Most learning approaches depend on a set of handcrafted
novelty features to represent the novelty of a document.
Construction of such features is usually difficult and time
consuming in real applications. In real world, we have a
very limited number of novelty features, which greatly lim-
its the usability of these diverse ranking models. In this
paper, we propose to automatically learn the novelty with
a neural tensor network and enhance the usability of the
diverse ranking algorithms.

3. MODELING DOCUMENT NOVELTY
WITH NEURAL TENSOR NETWORK

Inspired by the neural models for relation classification, in

396



tanh

tanh

Tensor
Layer

Linear
Layer

+

+

+

+VR


e1

e2

�
e2W

[1:z]
R

bR
t 2 Rz

eT
1

µT
R 2 Rz

Figure 1: Visualization of the neural tensor network for

relation classification. Each dashed box represents one

slice of the tensor, in this case there are z = 2 slices.

this paper we propose to use neural tensor network to model
the novelty of a document w.r.t. a set of other documents.

3.1 Neural tensor network
In deep learning literature, neural tensor networks (NTN)

is originally proposed to reason the relationship between two
entities in knowledge graph [27]. Given two entities (e1, e2)
represented with le dimensional features, the goal of NTN
is to predict whether they have a certain relationship R.
Specifically, NTN computes a score of how likely it is that
these two entities are in certain relationship R by the fol-
lowing function:

g(e1, R, e2) = µTR tanh

(
eT1 W

[1:z]
R e2 + VR

[
e1

e2

]
+ bR

)
,

where e1, e2 ∈ Rle are the vector representations of two

entities, W
[1:z]
R ∈ Rle×le×z is a tensor and the bilinear tensor

product eT1 W
[1:z]
R e2 results in a vector h ∈ Rz, where each

entry of h is computed by one slice i (i = 1, · · · , z) of the

tensor: hi = eT1 W
[i]
R e2. The other parameters for relation

R are the standard form of a neural network: VR ∈ Rz×2le ,
µR ∈ Rz, and bR ∈ Rz. Figure 1 illustrates the neural tensor
network with two slices for entity relationship reasoning.

3.2 Modeling document novelty with neural
tensor network

Intuitively, the neural tensor networks model the relation-
ships between two entities with a bilinear tensor product.
The idea can be naturally extended to model the novelty
relation of a document with respect to other documents for
search result diversification. That is, we can represent the
novelty information of a candidate document as a bilinear
tensor product of the document and other documents, as
shown in Figure 2.

More specifically, suppose that we are given a set of M
documents X = {dj}Mj=1, where each document dj can be

characterized with its preliminary representation vj ∈ Rlv ,
e.g., the topic distribution [9, 13] of dj or the document
vector generated with a doc2vec [15] model. Given a candi-
date document d ∈ X with its preliminary presentation v,
and a set of documents S ⊆ X \ {d} with their preliminary
representations {v1, · · · ,v|S|}, the novelty score of d with
respect to the documents in S can be defined as a neural
tensor network with z hidden slices:

gn(v, S) = µT max
{

tanh
(
vTW[1:z] [v1, . . . ,v|S|

])}
,

where each column in matrix
[
v1, . . . ,v|S|

]
∈ Rlv×|S| stands
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Figure 2: Visualization of the neural tensor network for

modeling document novelty (z = 2).

for the preliminary representation vector of the correspond-
ing document in S, W[1:z] ∈ Rlv×lv×z is a tensor, and
µ ∈ Rz the weights correspond to the slices of the tensor.
As shown in Figure 2, the neural tensor network consists of
a tensor layer, a max-pooling layer, and a linear layer.

Tensor Layer: The tensor layer takes the preliminary
representations of the documents as inputs. The interactions
between the document d and documents in S are represented
as a bilinear product followed by a nonlinear operation:

H =

 hT1
...

hTz

 =


tanh

(
vTW[1]

[
v1, . . . ,v|S|

])
...

tanh
(
vTW[z]

[
v1, . . . ,v|S|

])
 , (1)

where hi ∈ R|S| is computed by one slice of the tensor.
Compared with the original neural tensor network in Sec-

tion 3.1, the tensor in Equation (1) models the relationship
between one document and multiple documents simultane-
ously. Thus, the output of Equation (1) is a z × |S| matrix
rather than a z-dimensional vector. Also, since the number
of documents in S varies in different document selection it-

erations, the term VR

[
e1

e2

]
in the original tensor neural

network is ignored. Moreover, in ranking we cares about
the order of the documents rather than the ranking scores.
Thus, the bias term bR is also ignored.

Max-pooling Layer: In the max-pooling layer, the ma-
trix outputted by the tensor layer is mapped to a z-dimensional
vector with the max operation:

t =
[
max(hT1 ), · · · ,max(hTz )

]T
. (2)

Intuitively, the pooling layer aggregates individual novelty
signal learned at each tensor layer hTi . Max-pooling extracts
the most significant signals among them. Thus, vector t can
be considered as a the z-dimensional novelty features and
each dimension is defined by one slice of the tensor.

Linear Layer: Finally, the novelty score of the document
is calculated as a linear combination of the novelty signals
outputted by the max-pooling layer: µT t, where µ is an
z-dimensional parameter vector.

4. DIVERSE RANKING ALGORITHMS
BASED ON NEURAL TENSOR NETWORK

New diverse ranking algorithms can be derived based on
the proposed neural tensor network for modeling document
novelty. In this paper, we propose two algorithms under the
framework of relational learning to rank.
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Algorithm 1 Ranking via maximizing marginal relevance

Input: documents X and novelty features R
Output: ranking of documents Y
1: S0 ← empty set
2: for r = 1, · · · ,M do
3: Y (r)← arg maxj:xj∈X\Sr−1

f(xj , Rj , Sr−1)

4: Sr ← Sr−1 ∪ {xY (r)}
5: end for
6: return Y

4.1 Relational learning to rank
The relational learning to rank framework [32] formalizes

the ranking of documents as a process of sequential docu-
ment selection and defines the marginal relevance as linear
combination of the relevance score and the novelty score.
Formally, let X = {d1, · · · , dM} denotes the set of docu-
ments retrieved by a query q. For each query-document pair
(q, di), relevance feature vector xi ∈ Rlx is extracted. Let
R ∈ RM×M×K denotes a 3-way tensor representing relation-
ships between the documents, where Rijk stands for the k-th
feature of relationship between documents di and dj . As-
suming that a set of documents S have been selected in the
previous iterations, the marginal relevance of the i-th candi-
date document with respect to S, denoted as f(xi, Ri, S), is
then defined as the combination of the relevance score and
the novelty score:

f(xi, Ri, S) = ωTr xi + ωTnhS(Ri),∀xi ∈ X\S, (3)

where ωTr xi stands for the relevance score and ωr is the rel-
evance weight vector, ωTnhS(Ri) stands for the novelty score
of the document with respect to S and ωn is the diversity
weight vector, Ri stands for the matrix of relationships be-
tween document xi and other documents, and hS(Ri) stands
for the aggregation function on Ri which aggregates the ma-
trix Ri into a novelty feature vector. Usually, hS can be one
of the operations of max, min, or average.

According to the maximal marginal relevance criterion,
sequential document selection process can be used to cre-
ate a diverse ranking, as shown in Algorithm 1. The algo-
rithm initializes S0 as an empty set, and then iteratively
selects the documents from the candidate set. At iteration r
(r = 1, 2, · · · ,M), the document with the maximal marginal
relevance score f(xj , Rj , Sr−1) is selected and ranked at po-
sition r. At the same time, the selected document is inserted
into Sr−1.

Given a set of training instances which consist of queries,
documents, and their relevance labels, the model parame-
ters can be learned from the training data. The process
amounts to optimizing an objective function based on the
training data. Different definitions of the objective func-
tions and optimization techniques lead to different relational
learning to rank algorithms. For example, in algorithm R-
LTR [32], the likelihood of the training queries is maximized
using stochastic gradient descent. In algorithm PAMM [28],
the loss function upper bounding the diversity evaluation
measure is constructed and optimized with structured Per-
ceptron.

Relational learning to rank models depend on a set of
handcrafted features for characterizing the novelty of a doc-
ument. However, how to design the features that can ef-
fectively capture the complex document relationship is still
an unsolved problem. Unlike the conventional learning to

Table 1: Novelty features used in R-LTR.
Name Explanation

Subtopic diversity document distance based on PLSA [13]
Text diversity one minus cosine similarity of the tf-idf

vectors on body text
Title diversity text novelty feature based on title
Anchor text diversity text novelty feature based on anchor
ODP-Based diversity categorical distance based on ODP1

taxomony
Link-based diversity link similarity based on inlink/outlink
URL-based diversity whether the two URLs belong to

the same domain/site

rank in which a large number effective relevance features
have been developed [21], it is much harder to find novelty
features for search result diversification. As a result, the re-
lational learning to rank algorithms of R-LTR and PAMM
utilized only seven features in their experiments, as have
listed in Table 1. We can see that most of these features
are calculated based on the predefined similarities of two
documents (represented as tf-idf vectors or topic distribu-
tions), and respectively applied to the document fields of
title, body, and anchor.

In real world applications, the performances of the rank-
ing algorithms heavily depend on the effectiveness of these
handcrafted features and different ranking tasks need differ-
ent features. It is necessary to develop a method that can
learn the document novelty automatically and release people
from the handcrafted novelty features.

4.2 Relational learning to rank algorithms
based on neural tensor network

In this subsection, based on the technique of modeling the
document novelty with neural tensor network, we develop
two new relational learning to rank algorithms that can learn
the document novelty function automatically.

4.2.1 The ranking model
Following the notations used in Section 3.2 and Section 4.1,

let X = {d1, · · · , dM} denotes the set of documents retrieved
by a query q. Each query-document pair (q, d) is represented
with the relevance feature vector x ∈ Rlx . Each document
d ∈ X is characterized with its preliminary representation
vector v ∈ Rlv . Assuming that at one iteration of the se-
quential document selection, a set of documents S have been
selected. We define the marginal relevance score of a candi-
date document d as:

f(d, S) =gr(x) + gn(v, S) (4)

=ωTx + µT max
{

tanh
(
vTW[1:z] [v1, . . . ,v|S|

])}
,

where gr(x) is the relevance of d w.r.t. query q, which is
further defined as a linear combination of the relevance fea-
tures; gn(v, S) is the novelty of d w.r.t. the documents in S,
which is further defined as a neural tensor network, as have
been shown in Section 3.2. The model parameters ω, µ, and
W[1:z] can be learned with the training data.

In the online ranking, a diverse ranking can created with
the sequential document selection process, similar to the pro-
cedure shown in Algorithm 1.

1http://www.dmoz.org

398



The main advantage of using neural tensor network to
model document novelty is that the tensor can relate the
candidate document and the selected documents multiplica-
tively, instead of only through a predefined similarity func-
tion (as that of in heuristic approaches) or through a linear
combination of novelty features (as that of in learning ap-
proaches and shown in Equation (3)). Intuitively, the model
can be explained that each slice of the tensor is responsi-
ble for one aspect or subtopic of a query. Each tensor slice
settles the diversity relationship between the candidate doc-
ument and the selected documents set differently. Thus,
with multiple tensor slices, the model calculates the novelty
scores based on multiple diversity aspects.

4.2.2 General loss function
The parameters of the ranking model can be determined

with supervised learning methods, which amounts to opti-
mizing the objective function built upon the labeled training
data.

In training procedure, given the labeled data withN queries
as: (X(1), J(1)), (X(2), J(2)), · · · , (X(N), J(N)), whereX(n) =

{d(n)j }
M(n)

j=1 , where M (n) denotes the number of documents

related with the n-th query. Let x
(n)
j ∈ Rlx denote the rele-

vance feature vector for the n-th query and document d
(n)
j ,

v
(n)
j ∈ Rlv the preliminary representation of document d

(n)
j ,

and J(n) the human labels on documents which is in the
form of a binary matrix. J

(n)
js = 1 if document d

(n)
j con-

tains the s-th subtopic of the query and 0 otherwise2. The
learning process amounts to minimizing the total loss with
respect to the given training data:

min
f∈F

N∑
n=1

`
(
π
(
X(n), f

)
, J(n)

)
,

where π
(
X(n), f

)
denotes the ranking generated by the

ranking model f in Equation (4), for the documents in X(n).
The generated ranking π is then compared with the human
labels J(n) by the loss function `. Intuitively, the learn-
ing process can be interpreted as finding an optimal ranking
model f from some functional space F so that for each train-
ing query the difference between the generated permutation
π and the human labels J is minimal.

Different objective functions and optimization techniques
lead to different algorithms. In this section, based on the
relational learning to rank algorithms of R-LTR [32] and
PAMM [28], we construct two novel algorithms in which the
document novelty is modeled with a neural tensor network,
referred to as R-LTR-NTN and PAMM-NTN, respectively.

4.2.3 R-LTR-NTN
Based on the loss function defined for R-LTR [32], we

derive the loss function of R-LTR-NTN, which is a negative
logarithm likelihood of the training queries:

LR-LTR-NTN(f) = −
N∑
n=1

log Pr
(
Y (n)|X(n)

)
,

where Y (n) is the ground-truth ranking generated from the
human label J(n). For any query, the probability Pr(Y |X)

2In this paper we assume that all labels are binary.

Algorithm 2 The R-LTR-NTN Algorithm

Input: training data {(X(n), J(n))}Nn=1 and learning rate η

Output: model parameter (ω, µ,W[1:z])

1: initialize {ω, µ,W[1:z]} ← random values in [0, 1]
2: repeat
3: Shuffle the training data
4: for n = 1, · · · , N do

5: calculate ∇ω(n), ∇µ(n) and ∇W[1:z](n)

{Equation (6), Equation (7), and Equation (8)}
6: ω ← ω − η ×∇ω(n)

7: µ← µ− η ×∇µ(n)

8: W[1:z] ←W[1:z] − η ×∇W[1:z](n)

9: end for
10: until convergence
11: return (ω, µ,W[1:z])

can be further defined as

Pr(Y |X) =Pr(dY (1)dY (2) · · · dY (M)|X)

=

M−1∏
r=1

Pr(dY (r)|X,Sr−1)

=

M−1∏
r=1

exp{f(dY (r), Sr−1)}∑M
k=r exp{f(dY (k), Sr−1)}

, (5)

where Y (r) denotes the index of the document ranked at
the r-th position in Y , Sr−1 = {dY (k)}r−1

k=1 is the documents
ranked at the top r − 1 positions in Y , f(dY (r), Sr−1) is
the marginal relevance score of document dY (r) w.r.t. the
selected documents in Sr−1, as defined in Equation (4), and
S0 is an empty set.

Stochastic gradient descent is adopted to conduct the op-
timization. Given a query q, the retrieved documents X =
{dj}Mj=1, and the ranking Y generated by the ground-truth
labels, the gradient of the model parameters can be written
as

∇ω =

M−1∑
r=1

{∑M
k=r

{
exp

{
f
(
dY (k), Sr−1

)}
xY (k)

}∑M
k=r exp{f(dY (k), Sr−1)}

− xY (r)

}
,

(6)

∇µ =

M−1∑
r=1

{∑M
k=r

{
exp

{
f
(
dY (k), Sr−1

)}
tY (k)

}∑M
k=r exp{f(dY (k), Sr−1)}

− tY (r)

}
, (7)

∇W[i] =

M−1∑
r=1

{∑M
k=r

{
exp

{
f
(
dY (k), Sr−1

)}
µiΩY (k)

}∑M
k=r exp{f(dY (k), Sr−1)}

−µiΩY (r)

}
,

(8)

where t is defined in Equation (2), and

ΩY (r) =
{

1− tanh2
(
vTY (r)W

[i]vτi

)}
vY (r)v

T
τi , (9)

where Ω ∈ Rlv×lv and τi(1 ≤ τi ≤ |S|) stands for the output
of the max-pooling position for the i-th (1 ≤ i ≤ z) tensor
slice.

Algorithm 2 shows the pseudo code of the R-LTR-NTN.

4.2.4 PAMM-NTN
Based on the loss function defined for PAMM [28], we

derive the loss function of PAMM-NTN, which is directly
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defined over a diversity evaluation measure:

N∑
n=1

1− E
(
π
(
X(n), f

)
, J(n)

)
, (10)

where E(·, ·) ∈ [0, 1] is a diversity evaluation measure such as
α-NDCG or ERR-IA etc. It can be proved that the Equation
(10) is upper bounded by

LPAMM-NTN(f) =

N∑
n=1

∑
Y +∈Y(n)+;

Y−∈Y(n)−

r(
Pr(Y +|X(n))− Pr(Y −|X(n))

)

≤
(
E(Y +,J(n))−E(Y −,J(n))

)z
.

where Y(n)+ and Y(n)− are the sets of positive and neg-
ative rankings generated from human labels J(n), respec-
tively. J·K is one if the condition is satisfied otherwise zero.
Pr(·|·) stands for the probability of the ranking, as defined
in Equation (5).

Also, stochastic gradient descent is adopted to conduct the
optimization. At each iteration, we are given a query q, the
retrieved documents X = {dj}Mj=1, a positive ranking Y +,
and a negative ranking Y −. For convenience of calculation,

we resort to the optimization problem of max log Pr(Y +|X)

Pr(Y−|X)
.

Thus, the gradients of the parameters can be written as

∇ω =

M−1∑
r=1

{∑M
k=r

{
exp

{
f(dY +(k), Sr−1)

}
xY +(k)

}
∑M
k=r exp

{
f(dY +(k), Sr−1)

}
−

∑M
k=r

{
exp

{
f(dY−(k), Sr−1)

}
xY−(k)

}
∑M
k=r exp

{
f(dY−(k), Sr−1)

}
−xY +(r) + xY−(r)

}
,

(11)

∇µ =

M−1∑
r=1

{∑M
k=r

{
exp

{
f(dY +(k), Sr−1)

}
tY +(k)

}
∑M
k=r exp

{
f(dY +(k), Sr−1)

}
−

∑M
k=r

{
exp

{
f(dY−(k), Sr−1)

}
tY−(k)

}
∑M
k=r exp

{
f(dY−(k), Sr−1)

}
−tY +(r) + tY−(r)

}
,

(12)

∇W[i] =

M−1∑
r=1

{∑M
k=r

{
exp

{
f(dY +(k), Sr−1)

}
µiΩY +(k)

}
∑M
k=r exp

{
f(dY +(k), Sr−1)

}
−

∑M
k=r

{
exp

{
f(dY−(k), Sr−1)

}
µiΩY−(k)

}
∑M
k=r exp

{
f(dY−(k), Sr−1)

}
−µiΩY +(r) + µiΩY−(r)

}
,

(13)

where t is defined in Equation (2), and Ω is defined in Equa-
tion (9). Algorithm 3 shows the pseudo code of the PAMM-
NTN algorithm.

4.2.5 Time complexities
We analyzed time complexities of R-LTR-NTN and PAMM-

NTN. The learning process of R-LTR-NTN (Algorithm 2) is

Algorithm 3 The PAMM-NTN algorithm

Input: training data {(X(n), J(n))}Nn=1,
parameter: learning rate η, diversity evaluation measure E,
number of positive/negative rankings per query τ+/τ−.

Output: model parameter (ω, µ,W[1:z])
1: for n = 1 to N do
2: PR(n) ← Sample positive rankings {[28]}
3: NR(n) ← Sample negative rankings {[28]}
4: end for
5: initialize (ω, µ,W[1:z])← random values in [0, 1]
6: repeat
7: for n = 1 to N do
8: for all {Y +, Y −} ∈ PR(n) ×NR(n) do

9: ∆P ← Pr(Y +|X(n))− Pr(Y −|X(n))
{Pr(Y |X) is defined in Equation (5)}

10: if ∆P ≤ E(Y +,J(n))−E(Y −,J(n)) then

11: calculate ∇ω, ∇µ and ∇W[1:z]

{Equation (11), Equation (12), and Equation (13)}
12: ω ← ω + η ×∇ω
13: µ← µ+ η ×∇µ
14: W[1:z] ←W[1:z] + η ×∇W[1:z]

15: end if
16: end for
17: end for
18: until convergence
19: return (ω, µ,W[1:z])

of order O(T ·N ·M2 ·(lx+lv ·Z)), where T denotes the num-
ber of iterations, N the number of queries in training data,
M the maximum number of documents per training query,
lx the number of relevance features, lv the dimensions of the
preliminary document representation, and Z the number of
tensor slices. The learning process of PAMM-NTN (Algo-
rithm 3) is of order O(T · N · τ+ · τ− ·M2 · (lx + lv · Z)),
where τ+ denotes the number of positive rankings per query
and τ− the number of negative rankings per query.The time
complexity of online ranking prediction (Algorithm 1) is of
order O(M ·K · (lx + lv ·Z)), where M is the number of can-
didate documents for the query and K denotes the number
documents need to be ranked.

5. EXPERIMENTS

5.1 Experimental settings
We conducted experiments to test the performances of

R-LTR-NTN and PAMM-NTN using three TREC bench-
mark datasets for diversity task: TREC 2009 Web Track
(WT2009), TREC 2010 Web Track (WT2010), and TREC
2011 Web Track (WT2011). Each dataset consists of queries,
corresponding retrieved documents, and human judged la-
bels. Each query includes several subtopics identified by the
TREC assessors. The document relevance labels were made
at the subtopic level and the labels are binary3. Statistics
on the datasets are given in Table 2.

All the experiments were carried out on the ClueWeb09
Category B data collection4, which comprises of 50 million
English web documents. Porter stemming, tokenization, and
stop-words removal (using the INQUERY list) were applied
to the documents as preprocessing. We conducted 5-fold
cross-validation experiments on the three datasets. For each
dataset, we randomly split the queries into five even subsets.

3The graded judgements in WT2011 was treated as binary.
4http://boston.lti.cs.cmu.edu/data/clueweb09
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Table 2: Statistics on WT2009, WT2010 and WT2011.
Dataset #queries #labeled docs #subtopics per query

WT2009 50 5149 3 ∼ 8
WT2010 48 6554 3 ∼ 7
WT2011 50 5000 2 ∼ 6

At each fold three subsets were used for training, one was
used for validation, and one was used for testing. The results
reported were the average over the five trials.

The TREC official evaluation metrics for the diversity task
were used in the experiments, including the ERR-IA [5], α-
NDCG [6], and NRBP [7]. They measure the diversity of
a result list by explicitly rewarding novelty and penalizing
redundancy observed at every rank. Following the default
settings in official TREC evaluation program, the parame-
ters α and β in these evaluation measures are set to 0.5. We
also used traditional diversity measures of Precision-IA (de-
noted as “Pre-IA”) [1], and Subtopic Recall (denoted as “S-
recall”) [31]. All of the measures are computed over the
top-k search results (k = 20).

We compared R-LTR-NTN and PAMM-NTN with sev-
eral types of baselines. The baselines include three heuristic
approaches to search result diversification.

MMR [3] : a heuristic approach in which the document
ranking is constructed via iteratively selecting the doc-
ument with the maximal marginal relevance.

xQuAD [26] : a representative heuristic approach to search
result diversification which explicitly accounts for the
various aspects associated to an under-specified query.

PM-2 [8] : a method of optimizing proportionality for search
result diversification.

Note that these baselines require a prior relevance function
to implement their diversification steps. In our experiments,
ListMLE [16, 18] was chosen as the relevance function.

The baselines also include state-of-the-art learning ap-
proaches to search result diversification.

SVM-DIV [29] : a learning approach in which structural
SVMs was used to optimize the subtopic coverage.

R-LTR [32] : a state-of-the-art learning approach devel-
oped in the relational learning to rank framework.

PAMM [28] : another state-of-the-art learning algorithm
that directly optimizes diversity evaluation measure.

Following the practice in [32], for the baseline of R-LTR, we
used the results of R-LTRmin in which the relation function
hS(R) was defined as the minimal distance of the candidate
document to the selected documents.

For the baseline PAMM (and our approach PAMM-NTN),
we configure them to directly optimize α-NDCG@20 be-
cause it is one of the most widely used performance mea-
sures. Thus, the baseline of PAMM is denoted as PAMM(α-
NDCG). Following the practice in [28], we set the number of
sampled positive rankings per query τ+ = 5 and the number
of sampled negative rankings per query τ− = 20.

5.2 Relevance features and preliminary docu-
ment representations

As for the relevance features, we adopted the features used
in R-LTR experiments [21], including the typical weighting

Table 3: Relevance features used in the experiments.

Each of the first 4 features is applied to the fields of

body, anchor, title, URL, and the whole documents. [32]
Name Description # Features

TF-IDF The tf-idf model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5

MRF [19] MRF with ordered/unordered phrase 10
PageRank PageRank score 1
#inlinks number of inlinks 1

#outlinks number of outlinks 1

models (e.g., TF-IDF, BM25, LM) and term dependency
model [19]. Table 3 summarized the relevance features. For
all the query-document matching features, they were applied
in five fields: body, anchor, title, URL, and the whole doc-
ument, resulting in 5 features in total. Note that the MRF
feature has two variations: ordered phrase and unordered
phrase [19]. Thus the total number of MRF features be-
comes 10.

The neural tensor network need preliminary representa-
tions of the documents as its inputs. In the experiments,
we used the document vector generated by the topic model
of probabilistic latent semantic analysis (PLSA) [13] or the
deep learning model of doc2vec [15], both are trained on
all of the documents in ClueWeb09 Category B data col-
lection and the number of latent dimensions are set to 100.
For training the doc2vec model, we used the distributed bag
of words (DBOW) model5. In all of the experiments, the
learning rate is set to 0.025 and the window size is set to 8.

Our approaches (R-LTR-NTN and PAMM-NTN) with the
settings of using the PLSA or doc2vec as document repre-
sentations are denoted with the corresponding subscripts.
For example, the R-LTR-NTN that using PLSA as docu-
ment representations is denoted as R-LTR-NTNplsa. Thus,
in all of the experiments, our approaches include R-LTR-
NTNplsa, R-LTR-NTNdoc2vec, PAMM-NTN(α-NDCG)plsa,
and PAMM-NTN(α-NDCG)doc2vec. Please note in all of the
experiments, PAMM-NTN was configured to direct optimize
the evaluation measure of α-NDCG@20.

5.3 Experimental results
Table 4, Table 5, and Table 6 report the performances

of the proposed methods and baselines in terms of 5 diver-
sity metrics (ERR-IA@20, α-NDCG@20, NRBP@20, Pre-
IA@20, and S-recall@20) on the datasets of WT20096, WT2010,
and WT2011, respectively. Boldface indicates the highest
score among all runs. For all of our approaches, the number
of tensor slices z is set to 7.

From the results we can see that, on all of the three
datasets and in terms of the five diversity evaluation met-
rics, our approaches (R-LTR-NTNplsa, R-LTR-NTNdoc2vec,
PAMM-NTN(α-NDCG)plsa, and PAMM-NTN(α-NDCG)doc2vec)
can outperform all of the baselines. We conducted signifi-
cant testing (t-test) on the improvements of our approaches
over the baselines. The results indicate that the improve-
ments of R-LTR-NTNplsa and R-LTR-NTNdoc2vec over R-
LTR are significant (p-value < 0.05), in terms of all of the

5http://radimrehurek.com/gensim/models/doc2vec.html
6The performances of XQuAD reported in Table 4 are differ-
ent to that of reported in [26]. It may caused by the different
splitting of the dataset in cross validation.
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Table 4: Performance comparison of all methods for WT2009.
Method ERR-IA@20 α-NDCG@20 NRBP@20 Pre-IA@20 S-recall@20

MMR 0.2022 0.3083 0.1715 0.0918 0.4698
xQuAD 0.2316 0.3437 0.1956 0.0984 0.4931
PM-2 0.2294 0.3369 0.1788 0.0949 0.4876
SVM-DIV 0.2408 0.3526 0.2073 0.1075 0.5101
R-LTR 0.2714 0.3964 0.2339 0.1233 0.5511
R-LTR-NTNplsa 0.3015 0.4444 0.2563 0.1588 0.5743
R-LTR-NTNdoc2vec 0.3117 0.4503 0.2578 0.1670 0.5910
PAMM(α-NDCG) 0.2842 0.4271 0.2411 0.1265 0.5612
PAMM-NTN(α-NDCG)plsa 0.3081 0.4377 0.2642 0.1661 0.5755
PAMM-NTN(α-NDCG)doc2vec 0.3135 0.4555 0.2626 0.1745 0.5772

Table 5: Performance comparison of all methods for WT2010.
Method ERR-IA@20 α-NDCG@20 NRBP@20 Pre-IA@20 S-recall@20

MMR 0.2735 0.4036 0.2252 0.1722 0.6444
xQuAD 0.3278 0.4445 0.2872 0.1883 0.6732
PM-2 0.3296 0.4478 0.2901 0.1885 0.6749
SVM-DIV 0.3331 0.4593 0.2934 0.1925 0.6774
R-LTR 0.3647 0.4924 0.3293 0.2042 0.6893
R-LTR-NTNplsa 0.3876 0.5311 0.3333 0.2341 0.6912
R-LTR-NTNdoc2vec 0.3932 0.5376 0.3623 0.2418 0.6994
PAMM(α-NDCG) 0.3802 0.5249 0.3431 0.2111 0.6832
PAMM-NTN(α-NDCG)plsa 0.3898 0.5379 0.3479 0.2264 0.7006
PAMM-NTN(α-NDCG)doc2vec 0.3901 0.5407 0.3553 0.2386 0.7032

Table 6: Performance comparison of all methods for WT2011.
Method ERR-IA@20 α-NDCG@20 NRBP@20 Pre-IA@20 S-recall@20

MMR 0.4284 0.5302 0.3913 0.3176 0.7567
xQuAD 0.4753 0.5645 0.4274 0.3299 0.7683
PM-2 0.4873 0.5786 0.4318 0.3405 0.7743
SVM-DIV 0.4898 0.5910 0.4475 0.3468 0.7750
R-LTR 0.5389 0.6297 0.4982 0.3921 0.8512
R-LTR-NTNplsa 0.5483 0.6537 0.5050 0.4011 0.8543
R-LTR-NTNdoc2vec 0.5538 0.6555 0.5223 0.4125 0.8590
PAMM(α-NDCG) 0.5417 0.6433 0.5012 0.3955 0.8518
PAMM-NTN(α-NDCG)plsa 0.5496 0.6469 0.5111 0.4169 0.8524
PAMM-NTN(α-NDCG)doc2vec 0.5554 0.6566 0.5212 0.4177 0.8533

performance measures. The results also indicate that the
improvements of PAMM-NTN(α-NDCG)plsa and PAMM-
NTN(α-NDCG)doc2vec over all of the baselines are signifi-
cant, in terms of all of the performance measures. The re-
sults indicate that the neural tensor network is effective for
modeling the document novelty information, and thus can
improve the performances.

5.4 Discussions
We conducted experiments to show the reasons that our

approaches outperformed the baselines and impacts of differ-
ent parameter settings, using the results of R-LTR-NTNplsa

and R-LTR-NTNdoc2vec on WT2009 dataset as examples.

5.4.1 Ability to learn better document dissimilarities
We found that the learned neural tensor network can help

to distinguish the relevant documents in terms of different
subtopics, by learning a better dissimilarity (novelty) func-
tion for documents. That is one of the reasons why our
approaches can outperform the baselines.

Specifically, the dissimilarities between two documents can
be calculated based on the preliminary document represen-
tations, either using the Euclidean distance or using the
learned neural tensor network (the novelty score of a doc-
ument w.r.t. another document). That is, given two doc-
uments represented with the preliminary presentations vi
and vj , the dissimilarity score can calculated either based

on the Euclidean distance:

de(vi,vj) = ‖vi − vj‖2,

or based on the learned neural tensor network:

dn(vi,vj) = gn(vi, {vj}) = µT tanh
(
vTi W

[1:z]vj
)

where µ and W[1:z] are learned with the R-LTR-NTN algo-
rithms. Here we can ignore the max operation because there
is only one document vj at the righthand of W[1:z].

Suppose we are given a set of queries and the associated
relevant documents. For each query, the relevant documents
can be grouped into several clusters, each corresponds a
subtopic of the query. Thus, all of the associated docu-
ments from all queries are grouped into different clusters,
each corresponds to a subtopic. We calculated the ratio
of average inter-cluster documents dissimilarities to average
intra-cluster document dissimilarities. It is obvious that in
search result diversification, a good document dissimilarity
function would get large inter-cluster document dissimilar-
ities and small intra-cluster document dissimilarities (large
ratio value). This is because such a dissimilarity function
could discriminate the subtopics well.

Table 7 shows the ratios calculated based on different
dissimilarity definitions and different preliminary document
representations. From the results, we can see that the ra-
tio of “dn with PLSA” (documents represented with PLSA
topics and dissimilarities are calculated with neural tensor
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Table 7: Ratio of average inter-cluster documents dis-

similarities to average intra-cluster document dissimilar-

ities. The documents are grouped according to their as-

sociated subtopics.
Method average dissimilarity ratio

de with PLSA 1.65
dn with PLSA 2.73
de with doc2vec 2.10
dn with doc2vec 4.32

network) is larger than the ratio of “de with PLSA” (docu-
ments represented with PLSA topics and dissimilarities are
calculated as Euclidean distance), and the ratio of “dn with
doc2vec” is larger than the ratio of “de with doc2vec”. The
results indicates that the dissimilarity functions learned by
the tensor neural network are better than the Euclidean dis-
tances, in terms of discriminating the query subtopics.

The conclusion is quite intuitive and nature because the
parameters of neural tensor network are determined based
on the labeled data and thus can be adapted to the spe-
cific dataset and task, while the Euclidean distance is a pre-
defined function for all datasets and tasks. Therefore, we
can conclude that R-LTR-NTN (and also PAMM-NTN) can
improve the performances through learning a better doc-
ument dissimilarity function which distinguishes the docu-
ments with different subtopics effectively.

5.4.2 Ability to improve queries with high ambiguity
We also conducted experiments to show on which kinds

of queries our approaches can perform well. Specifically,
in each fold of the experiments on WT2009, we trained
an R-LTR-NTNdoc2vec model, an R-LTR, and a PAMM(α-
NDCG) model on the training data and tested them on the
test data. We then grouped the queries in the test datasets
according to the number of subtopics they associated. We
compared the performances of these three models in terms
of α-NDCG@20 on each of the query groups and the re-
sults are shown in Figure 3. Boldface indicates the number
of associated subtopics by the candidate documents, and
the numbers in the parentheses indicate the proportion of
queries in that group to the number of all queries. Please
note that in Figure 3 some queries associated with only one
or two subtopics while in Table 2 all queries have at least
3 subtopics associated. This is because we used the Indri7

toolkit to retrieve the top 1000 documents as the candidates.
Some labeled documents may not be ranked at top 1000 and
thus be eliminated from the candidate set.

From the results reported in Figure 3, we can see that for
those queries that associated with only one or two subtopics,
R-LTR-NTN performed worse than the baselines of R-LTR
and PAMM(α-NDCG). However, for those queries that as-
sociated with three or more subtopics (queries with high
ambiguity), R-LTR-NTN outperformed the baselines. We
also observed the trends that larger improvements R-LTR-
NTN can achieve on the queries with more subtopics. The
results is also intuitive because the document relations are
more complex for ambiguous queries and neural tensor net-
work can model the complex document relationship better.
Thus, we can conclude that R-LTR-NTN can improve the
baselines through improving the high ambiguity queries.

7http://lemurproject.org/indri
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respect to the number of tensor slices z.

5.4.3 Effects of the number of tensor slices
Finally, we conducted experiments to test if the proposed

algorithms are sensitive to the model parameters. One of
the most important parameters in the proposed method is
the number of tensor slices z. Thus, in the experiments we
tested if R-LTR-NTNdoc2vec is sensitive to different settings
of z values. Specifically, we tuned z by varying the values
of parameter z from 1 to 19, with step 2 and fixing other
model parameters to the default or optimal values. Figure 4
shows the performances of R-LTR-NTNdoc2vec with respect
to number of slices z, in terms of α-NDCG@20. The training
time (in hours) with respect to z are also shown in the figure.

From the results, we can see that the performances did
not change much with different z values, which indicates
R-LTR-NTNdoc2vec (and other proposed algorithms) are ro-
bust and not sensitive to the parameter settings. In all of
the experiments the number of tensor slices was set to the
optimal value 7.

One of the negative effects of increasing z values is that
the training time increased dramatically with the creased
z values, as shown in Figure 4. This is because much more
operations are needed for training the model if z is increased.
Please refer to Section 4.2.5 for the time complexities of the
proposed algorithms.
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6. CONCLUSIONS
How to model the novelty of a candidate document with

respect to other documents is one of the key problems in
search result diversification. Existing approaches have been
hurt from the necessaries of predefining a document simi-
larity function or a set of novelty features, which are usu-
ally hard in real applications. In this paper we proposed to
model the novelty of a document with a neural tensor net-
work, which enables us to automatically learns a nonlinear
novelty function based on the preliminary representations
of the candidate document and other documents. Under
the framework of relational learning to rank, new diverse
learning to rank models have been derived, by replacing the
novelty term in the original objective function with the neu-
ral tensor network. Experimental results based on three
benchmark datasets showed that the proposed models sig-
nificantly outperformed the baseline methods, including the
state-of-the-art relational learning to rank models. Experi-
mental results also showed that the proposed algorithms can
improve the baselines via learning a document dissimilarity
function that matches well with the query subtopics. The
results also showed that more improvements can be achieved
on the queries with high ambiguity.

As future work, we would like to verify the effectiveness of
the proposed algorithms on applications other than search
result diversification such as multi-document summarization
etc. We also want to study the approaches to learning the
relevance features and novelty features simultaneously.
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