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ABSTRACT
In this paper we address the issue of learning diverse ranking mo-
dels for search result diversi�cation. Typical methods treat the
problem of constructing a diverse ranking as a process of sequen-
tial document selection. At each ranking position, the document
that can provide the largest amount of additional information to the
users is selected, because the search users usually browse the docu-
ments in a top-down manner. �us, to select an optimal document
for a position, it is critical for a diverse ranking model to capture the
utility of information the user have perceived from the preceding
documents. Existing methods usually calculate the ranking scores
(e.g., the marginal relevance) directly based on the query and the
selected documents, with heuristic rules or handcra�ed features.
�e utility the user perceived at each of the ranks, however, is not
explicitly modeled. In this paper, we present a novel diverse ranking
model on the basis of continuous state Markov decision process
(MDP) in which the user perceived utility is modeled as a part of the
MDP state. Our model, referred to as MDP-DIV, sequentially takes
the actions of selecting one document according to current state,
and then updates the state for the chosen of the next action. �e
transition of the states are modeled in a recurrent manner and the
model parameters are learned with policy gradient. Experimental
results based on the TREC benchmarks showed that MDP-DIV can
signi�cantly outperform the state-of-the-art baselines.
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1 INTRODUCTION
In many information retrieval tasks, one important goal involves
providing search results that covers a wide range of topics for a
search query, called search result diversi�cation [1]. One of the
key problems in search result diversi�cation is ranking, speci�cally,
how to develop a ranking model that can sort documents based
on their relevance to the given query as well as the novelty of the
information in the documents.

Typical approaches to search result diversi�cation, including the
heuristic approaches and the learning approaches, treat the process
of constructing a diverse ranking as a problem of sequential docu-
ment selection. At each ranking position, the additional amount
of information (utility) a document can provide is estimated, on
the basis of the user query and the documents ranked ahead. �e
document that can provide maximal additional utility is selected.
�e sequential document selection matches well with the user acti-
vity of browsing the search results: search users usually browse the
search results in a top-down manner. �us, to accurately select the
document at each of the positions, it is critical for a diverse ranking
algorithm to model the utility of information the users have already
perceived from the preceding documents.

Several methods for diverse ranking have been developed and
applied to document retrieval. Di�erent criteria are adopted in
these methods to estimate the new utility a candidate document
can provide. For example, in the representative heuristic approach
of maximal marginal relevance (MMR) [2], the marginal relevance,
which is de�ned as a sum of the query-document relevance and the
maximal document distance, is used as the utility. In x�AD [20],
another widely used diverse ranking model, the utility is de�ned
so as to explicitly account for the relationship between documents
retrieved for the original query and the possible aspects underlying
this query, in the form of sub-queries. In recent years, machine
learning methods have been proposed and applied to search result
diversi�cation [18, 24–27, 31]. Typical diverse learning models,
including the relational learning to rank (R-LTR) [31] and its varia-
tions [24–26], de�ne the utilities as the linear combinations of the
relevance features and the novelty features.

All the existing methods on diverse ranking [2, 20, 31] are desig-
ned to estimate the utility of a candidate document directly based
on the user query and the preceding documents, calculated either
by the carefully designed heuristics (e.g., the scoring functions in
MMR and x�AD) or as a linear combination of the handcra�ed
relevance features and novelty features (e.g., the scoring function
in R-LTR). �e utility perceived by the users from the preceding
documents, however, is not explicitly modeled and fully utilized.

In this paper we propose to formalize the construction of a di-
verse ranking as a process of sequential decision making, which can
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be modeled with a continuous state Markov decision process (MDP).
�e new diverse ranking model, referred to as MDP-DIV, model
the user perceived utility of information as a part of its MDP state.
Speci�cally, in MDP-DIV, a document ranking withM positions is
considered as a sequence ofM discrete time steps where each time
step corresponds to a ranking position. �e ranking of documents,
thus, is formalized as a sequence of M decisions and each action
corresponds to selecting one document from the candidate set. At
each time step, the agent receives the environment’s state, which
models the user’s dynamic state on the perceived utility, starting
from the �rst ranking position. Based on the received state, the
agent chooses an action. One time step later, as a consequence of
the action, the search users perceive some additional utility from
the new selected document, and the system transit to a new state.
�e transition function, which maps old state and the selected docu-
ment to a new state, is implemented in a recurrent manner. At each
time step, the chosen of the action depends on a policy, which is a
function maps from the current state to a probability distribution
of selecting each actions.

Reinforcement learning is employed to train the model parame-
ters. Given a set of labeled queries, at each time step, the agent
can receive a numerical action-dependent reward which can be
de�ned upon the diversity evaluation measures. �e policy gra-
dient algorithm of REINFORCE [22] is adopted to adjust the model
parameters so that expected long-term discounted rewards in terms
of the diversity evaluation measure is maximized. In the testing
phase, the system fully trusts the learned policy. Given a query and
the associated documents, the action with the maximal probability
is selected at each ranking position.

Advantages of the proposed model include: 1) explicitly mo-
deling the dynamic state on the user perceived utility of information
in diverse ranking learning, which uni�es the relevance and novelty
and can be utilized as the criterion for selecting documents; 2) abi-
lity to conduct diverse ranking learning in an end-to-end manner,
achieving a diverse ranking model with no need of handcra�ing
features; 3) ability to learn a ranking model towards to a diversity
evaluation measure, via involving the measure in the training.

To evaluate the e�ectiveness of MDP-DIV, we conducted experi-
ments on the basis of TREC benchmark datasets. �e experimental
results showed that MDP-DIV can signi�cantly outperform the
state-of-the-art diverse ranking approaches including the heuristic
methods of MMR, x�AD, and the learning methods of R-LTR,
PAMM, and PAMM-NTN. We analyzed the results and showed that
MDP-DIV improved the performances through 1) optimizing the
diversity evaluation measures in training, 2) modeling the dyna-
mic user state on the perceived utility, and 3) utilizing both the
immediate rewards and the long-term returns in training phase.

2 RELATEDWORK
2.1 Search result diversi�cation
It is a common practice to formalize the construction of a diverse
ranking list in search as a process of sequential document selection.
�is is based on the observation that in diverse ranking the ad-
ditional utility a document can provide depends on not only the
document itself but also the preceding documents. Di�erent models
designed di�erent criteria for estimating the utility the search users

can perceive from a candidate document. Following the idea, Car-
bonell and Goldstein [2] proposed the maximal marginal relevance
criterion to guide the selection of the documents. At each iteration,
the document with the highest marginal relevance score is selected,
where the score is a linear combination of the query-document
relevance and the maximum distance of the document to the docu-
ments in current result set, in other words, novelty. �e marginal
relevance score is then updated in the next iteration as the number
of documents in the result set increases by one. Based on MMR,
Guo and Sanner [7] proposed the probabilistic latent MMR model.
x�AD [19] directly models di�erent aspects underlying the origi-
nal query in the form of sub-queries, and estimates the utility as the
relevance of the retrieved documents to each identi�ed sub-query.
PM-2 [5] treats the problem of �nding a diverse search result as �n-
ding a proportional representation for the document ranking. Hu et
al. [9] proposed a utility function that explicitly leverages the hier-
archical intents of queries and selects the documents that maximize
diversity in the hierarchical structure. Evaluation methods have
also developed based on the intent hierarchies [23]. He et al. [8]
proposed to combine the implicit and explicit topic representations
for constructing be�er diverse rankings. Gollapudi and Sharma [6]
proposed an axiomatic approach to result diversi�cation.

Machine learning techniques, which automatically learn the
ranking models from the human labeled data, have been applied to
construct diverse ranking models. Most of learning approaches still
adopt sequential document selection as the basic framework, and
the additional utility a candidate document can provide is usually
modeled as a sum of the relevance score and the novelty score. For
example, Zhu et al. [31], Xia et al. [24], and Xu et al. [26] employed
a set of handcra�ed relevance features and novelty features to
calculate the relevance score and the novelty score, respectively.
Both of the scores are de�ned as linear combinations of the features.
Xia et al.[25] proposed to model the novelty score with the deep
learning model of neural tensor networks. SVM-DIV [18] propose
to construct a diverse ranking with the diversity criterion only.
Structured output learning [11] and deep learning models [15] have
also been employed to address the problem of learning diverse
rankings.

Existing methods calculates the ranking scores directly based on
the query and the selected documents, with the heuristic rules or
the ranking features. �ough it is a critical issue for constructing
optimal diverse rankings, the dynamic utility the search user per-
ceived from the preceding documents is still not explicitly modeled
and fully utilized in current diverse ranking methods.

2.2 MDP for information retrieval
In this paper we employ MDP for constructing diverse ranking
model, which has been widely used in variant IR applications. For
example, in [13], a win-win search framework based on partially
observed Markov decision process (POMDP) is proposed to model
session search as a dual-agent stochastic game. In the model, the
state of the search users are encoded as a four hidden decision
making states. In [30], the log-based document re-ranking is also
modeled as a POMDP to improve the re-ranking performances.
MDP is also used for building recommender systems. For example,
[21] designed an MDP-based recommendation model for taking
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both the long-term e�ects of each recommendation and the ex-
pected value of each recommendation into account. Besides the
MDP, researchers also employed the bandits model for constructing
diverse ranking [18] and optimizing IR system [28].

Recent advances in deep learning makes it possible to incorpo-
rate deep learning methods with sequential decision making. In the
literature of vision, Mnih et al. [16] a�empts to implement a�en-
tional processing in a deep learning framework. Lu and Yang[12]
proposes POMDP-Rec, a neural-optimized POMDP algorithm, for
building a collaborative �ltering recommender system.

�ough MDP has been applied to various information retrieval
tasks, applying it to learning to rank and search result diversi�ca-
tion is hard. �e di�culties lie in how to formalize diverse ranking
under the MDP framework and how to convert the human labels
to the supervision information that can be utilized by MDP. In this
paper, we propose to formulate the diverse ranking learning as a
problem of learning an MDP model.

3 MARKOV DECISION PROCESS
In the paper, we employ continuous state MDP[17, 22], a widely
used sequential decision making model, for learning the diverse
ranking. An MDP is composed by states, actions, rewards, policy,
and transitions, and represented by a tuple 〈S,A,T ,R,π 〉:

States S is a set of states. For instance, in this paper we de�ne the
state as a tuple consisting of preceding document ranking, candidate
documents, and the utility the user perceived from the preceding
documents.

Actions A is a discrete set of actions that an agent can take. �e
actions available may depend on the state s , denoted as A(s).

Transition T is the state transition function st+1 = T (st ,at )
which speci�es a function which maps a state st into a new state
st+1 in response to the action selected at .

Reward r = R(s,a) is the immediate reward, also known as
reinforcement. It gives the immediate reward of taking action a at
state s .

Policy π (a |s) describes the behaviors of an agent, which is a
probability distribution over the possible actions. π is usually opti-
mized to decide how to move around in the state space to optimize
the long term return.

�e agent and environment interact at each of a sequence of
discrete time steps, t = 0, 1, 2, · · · . At each time step t the agent
receives some representation of the environment’s state, st ∈ S ,
and on that basis selects an action at ∈ A(st ), where A(st ) is the
set of actions available in state st . One time step later, in part as a
consequence of its action, the agent receives a numerical reward,
rt+1 ∈ R and �nds itself in a new state st+1 = T (st ,at ). Figure 1
illustrates the agent-environment interaction in MDP.

4 MDP FORMULATION OF DIVERSE
RANKING

In this paper, we employ the continuous state MDP to model the
construction of the diverse ranking.

4.1 �e basic model
Suppose we are given a query q, which is associated with a set
of retrieved documents X = {x1, · · · , xM } ⊆ X, where both the

Environment

Agent

actionstate reward

rt+1

st+1

rt atst

sample at ⇠ ⇡rt = R(st, at)st = [Zt, Xt,ht]

Figure 1: �e agent-environment interaction in MDP.

query q and the documents xi are represented as L-dimensional
preliminary representations, i.e., the vectors learned by the doc2vec
model [10], and X is the set of all possible documents. �e goal of
diverse ranking is to construct a model that can rank the documents
so that the top ranked documents cover a wide range of subtopics
for a search query.

Supervised learning approaches can be used to construct the mo-
del. Suppose we are given N labeled training queries {(q(n),X (n),
J (n))}Nn=1, where J

(n) denotes the human labels on the documents,
in the form of a binary matrix. J (n)(i, j) = 1 if document x(n)i con-
tains the j-th subtopic of q(n) and 0 otherwise1. �e learning of a
diverse ranking model, thus, can be considered as the learning the
parameters in an MDP model in which each time step corresponds
to a ranking position. �e states, actions, rewards, transitions, and
policy of the MDP are set as:

States S : We design the state at time step t as a triple st =
[Zt ,Xt , ht ], whereZt = {x(n)}tn=1 is the sequence of t preceding
documents, where x(n) is the document ranked at position n. Note
that we de�neZ0 = ∅ is a empty sequence; Xt ∈ 2X is the set of
candidate documents; ht ∈ RK is a vector that encodes the user
perceived utility from preceding documents inZt , as well as the
information need based on q.

At the beginning (t = 0), the state is initialized as s0 = [Z0 =
∅,X0 = X , h0]: Z0 is initialized as an empty sequence ∅, the candi-
date set X0 contains all of theM documents in X , and h0 is initia-
lized as the user’s initial information needs, implemented with a
nonlinear transformation of the query:

h0 = σ (Vqq), (1)

where q ∈ RL is the preliminary representation of the user issued
query, Vq ∈ RK×L is the transformation matrix, and σ (x) is the
nonlinear sigmoid function applied to each of the entries:

σ (x) = σ (〈x1, · · · ,xK 〉) =
〈

1
1 + e−x1 , · · · ,

1
1 + e−xK

〉
.

Actions A: At each time step t , the A(st ) is the set of actions
the agent can choose, each corresponds to selecting a document
from Xt . �at is, the action at the time step t , at ∈ A(st ) selects a
document xm(at ) ∈ Xt for the ranking position t + 1, wherem(at )
is the index of the document selected by at .

1Some datasets also use graded judgements. In this paper, we assume that all labels
are binary.
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TransitionT : �e transition functionT : S×A→ S also consists
of three parts, as shown in the following Equation (2):
st+1 = T (st ,at )
= T ([Zt ,Xt , ht ],at )
=

[
Zt ⊕ {xm(at )},Xt \ {xm(at )},σ (Vxm(at ) +Wht )

]
,

(2)

where ⊕ concatenates the old sequenceZt with xm(at ), V ∈ RK×L
is the document-state transformation matrix, and W ∈ RK×K is
the state-state transformation matrix. At each time step t , based on
state st the system chooses an action at . �en, the system moves to
time step t + 1 and the system transits to a new state st+1: First, the
system appends the selected document to the end ofZt , generating
a new document sequence; Second, the selected document at step
t is removed from the candidate set: Xt+1 = Xt \ {xm(at )}. �us,
the number of actions the agent can choose at step t + 1 is reduced
by one. �ird, the information from the user’s last state and the
selected document are combined together to form a new user state.

Note that in the initialization of h, the parameter Vq is used for
transforming the query to state. In the state transformation, another
parameter V is used for transforming the selected document to state.
�e se�ing is based on the consideration that they have di�erent
goals: Vq is for transforming the query q which represents the
information needs of the search users; V is for transforming the
documents x which contain the utility that can be perceived by the
users for ful�lling the information needs.

Also note that though the state transition function is imple-
mented in a recurrent fashion, they have striking di�erence with
recurrent neural networks (RNN): in MDP-DIV the input at time
step t depends on the output (action) at the time step t − 1.

Reward R: �e reward can be considered as an evaluation of the
quality of the selected document. In search result diversi�cation,
the diversity evaluation measures are used to evaluate the quality
of a ranking. Most of these measures are calculated in a sequential
manner. �us, it is natural to de�ne the reward function on the
basis of the diversity evaluation measures. For example, based
on the diversity evaluation measure of α-DCG, we can de�ne the
reward function as the promotion of α-DCG caused by choosing
the action at :

Rα -DCG(st ,at ) = α-DCG[t + 1] − α-DCG[t],
where α-DCG[t] is the discounted cumulative gain [4] at the t-th
position, and the α-DCG value at the rank 0 is de�ned as zero:
α-DCG[0] = 0. 2

Similarly, on the basis of diversity evaluation measure of S-
recall [29], we can also de�ne another reward which is the promo-
tion of S-recall by the action:

RS-recall(st ,at ) = S-recall[t + 1] − S-recall[t],
where S-recall[t] is the S-recall value at the t-th position, and S-
recall[0] = 0.

Since the training algorithm learns the model parameters under
the supervision of the rewards, de�ning the rewards according to
a diversity evaluation measure can guide the training process to
achieve an optimal model in terms of that evaluation measure.
2�e calculation of reward is based on the document sequence Zt in st , the selected
documents xm(at ) , and the relevance labels of these documents. Here we assume that
the state st also contains the document labels in the training phase.

Policy π (a |s): �e policy π : A × S → [0, 1] de�nes the probabi-
lity of selecting each action. Given current state st = [Zt ,Xt , ht ]
and a possible action at , the policy π is de�ned as a normalized
so�-max function whose input is the bilinear product of the utility
and the selected document:

π (at |[Zt ,Xt , ht ]) =
exp

{
xTm(at )Uht

}
Z

, (3)

where U ∈ RL×K is the parameter in the bilinear product and Z is
the normalization factor:

Z =
∑

a∈A(st )
exp

{
xTm(a)Uht

}
.

Construction of a diverse ranking for the queries in the training
data can be formalized as: given a user query q, a set ofM candidate
documents X , and the corresponding human labels J , the system
state is initialized as s0 = [Z0 = ∅,X0 = X , h0 = σ (Vqq)]. �en, at
each of the time steps t = 0, · · · ,M − 1, the agent receives the state
st = [Zt ,Xt , ht ], chooses an action at which selects the document
xm(at ) from the candidate set, and places it to the rank t+1. Moving
to the next step t + 1, the state becomes st+1 = [Zt+1,Xt+1, ht+1].
On the basis of the human labels J for the query, the agent receives
immediate reward rt+1 = R([Zt ,Xt , ht ],at ), which could be used
as supervision for training the model parameters. �e process is
repeated until the candidate set becomes empty.

Note that in online ranking/testing phase, there is no reward
available because the queries are unlabeled. To construct a diverse
ranking, we fully trust the learned policy and choose the action
with maximal probability at each time step.

Next, we will discuss the o�-line training algorithm and online
ranking algorithm.

4.2 Learning with policy gradient
�e model has parameters Θ = {Vq ,U,V,W} to learn. Inspired
by the REINFORCE [22] algorithm of policy gradient, we devised
a novel algorithm which can learn the parameters toward the di-
versity evaluation measure. �e algorithm is referred as MDP-DIV
and shown in Algorithm 1. �e Algorithm 2 shows the procedure
of sampling an episode for Algorithm 1.

�e basic idea of Algorithm 1 is updating the parameters via
Monte-Carlo stochastic gradient ascent. At each iteration, an epi-
sode (consisting a sequence of M states, actions, and rewards) is
sampled according to current policy. �en, at each time step t of
the sampled episode, the model parameters are adjusted according
to the gradients of the parameters ∇Θ logπ (at |st ;Θ), scaled by the
step size η, discount rate γ t , and the long-term return Gt , where
Gt is de�ned as the discounted sum of the rewards from position t :

Gt =

M−1−t∑
k=0

γkrt+k+1, (4)

whereM = |X | is the number documents in the candidate set. Note
that if γ = 1, G0 is exactly the evaluation measure calculated at
the �nal rank of the document list, i.e., α-DCG@M or S-recall@M .
Intuitively, the se�ing of Gt let the parameters move most in the
directions so that the favor actions can yield the highest return.
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Algorithm 1 MDP-DIV learning

Input: Labeled training set D = {(q(n),X (n), J (n))}Nn=1, learning
rate η, discount factor γ , and reward function R

Output: Θ = {Vq ,U,V,W}
1: Initialize Θ = {Vq ,U,V,W} ← random values in [−1, 1]
2: repeat
3: for all (q,X , J ) ∈ D do
4: (s0,a0, r1, · · · , sM−1,aM−1, rM ) ← SampleEpisode(Θ, q,X , J ,R)

{Algorithm (2), andM = |X |}
5: for t = 0 toM − 1 do
6: Gt ←

∑M−1−t
k=0 γkrt+k+1 {Equation (4)}

7: Θ← Θ + ηγ tGt∇Θ logπ (at |st ;Θ) {Equation (5)}
8: end for
9: end for
10: until converge
11: return Θ

�e gradient of MDP-DIV at time step t is ∇Θ logπ (at |st ;Θ),
which the direction that most increase the probability of repeating
the action at on future visits to state st , and is de�ned as

∇Θ logπ (at |st ;Θ) = ∇Θ f (at |st )−
∑
a∈At ∇Θ f (a |st ) exp { f (a |st )}∑

a∈At exp { f (a |st )}
,

(5)
where f (a |st ) = xTm(a)(Uht ), and ∇Θ f (a |st ) = {∇U f (a |st ),

∇Vq f (a |st ),∇V f (a |st ),∇W f (a |st )
}
, where

∇U f (a |st ) = xm(a)h
T
t .

As for ∇Vq f (a |st ),∇V f (a |st ), and ∇W f (a |st ), they can be calcula-
ted in a similar way:

∇Vq f (a |st ) =
(
∇Vqht

)
UT xm(a),

∇V f (a |st ) = (∇Vht )UT xm(a),

∇W f (a |st ) = (∇Wht )UT xm(a),

where ∇Vqht ,∇Vht , and ∇Wht can be calculated recursively:

∇Vqht = ∇Vqσ (Vxm(at−1) +Wht−1)

= diag(ht ◦ (1 − ht ))
(
∇Vq (Wht−1)

)
= diag(ht ◦ (1 − ht ))

(
∇Vqht−1

)
WT ,

where 1 is an K-dimensional vector of ones, operator “◦” denotes
the element-wise vector product, operator “diag” generates anK×K
diagonal matrix according to the input vector, and ∇Vqht−1 can be
further unrolled in a similar way. At t = 0, ∇Vqh0 is:

∇Vqh0 = ∇Vqσ (Vqq) = diag(h0 ◦ (1 − h0))IK,L,K,Lq,

where IK,L,K,L ∈ RK×L×K×L is an identity tensor.

∇Vht = ∇Vσ (Vxm(at−1) +Wht−1)

= diag(ht ◦ (1 − ht ))
(
∇V(Vxm(at−1) +Wht−1)

)
= diag(ht ◦ (1 − ht ))

(
IK,L,K,Lxm(at−1) + (∇Vht−1)WT

)
,

Algorithm 2 SampleEpisode
Input: Parameters Θ = {Vq ,U,V,W}, q, X , J , and R
Output: An episode
1: Initialize s ← [∅,X ,σ (Vqq)]{Equation (1)}
2: M ← |X |
3: E = (){empty episode}
4: for t = 0 toM − 1 do
5: A← A(s) {Possible actions according to X in state s}
6: for all a ∈ A do
7: P(a) ← π (a |s;Θ)
8: end for
9: Sample an action â ∈ A, according to P
10: r ← R(s, â){Calculation on the basis of J}
11: Append (s, â, r ) to the tail of E
12: [Z,X , h] ← s
13: s ←

[
Z ⊕ {xm(â)},X \ {xm(â)},σ (Vxm(â) +Wh)

]
14: end for
15: return E = (s0,a0, r1, · · · , sM−1,aM−1, rM )

where ∇Vht−1 can be unrolled in a similar way. At t = 0, ∇Vh0 is:

∇Vh0 = ∇Vσ (Vqq) = 0K,L,1,K ,

where 0K,L,1,K ∈ RK×L×1×K is a tensor of zeros.

∇Wht = ∇Wσ (Vxm(at−1) +Wht−1)

= diag(ht ◦ (1 − ht ))
(
∇W(Vxm(at−1) +Wht−1)

)
= diag(ht ◦ (1 − ht ))

(
IK,K,K,Kht−1 + (∇Wht−1)WT

)
,

where IK,K,K,K ∈ RK×K×K×K is an identity tensor, and ∇Wht−1
can be unrolled in a similar way. At t = 0, ∇Wh0 is:

∇Wh0 = ∇Wσ (Vqq) = 0K,K,1,K ,

where 0K,K,1,K ∈ RK×K×1×K is a tensor of zeros.
Compared with conventional REINFORCE algorithm, MDP-DIV

is based on a modi�ed MDP model in which the user state of per-
ceived utility is initialized with query and modeled in a recurrent
manner. �us, in the training phase, MDP-DIV needs to estimate
the policy function, as well as the functions for state initialization
and state transition. In [16], similar idea was presented for ex-
tracting information from images. In this paper we adapt the model
for the task of search result diversi�cation.

4.3 Online ranking
In the online ranking, the ranking system receives a user query
q and the associated documents X = {x1, · · · , xM }. Since there
exists no human label for calculating the immediate rewards, the
system fully relies on the learned policy π for generating the diverse
ranking, as shown in Algorithm 3. A�er initializing with q, the
algorithm makes a sequence of greedy decisions: at each step the
action with the maximal probability is chosen (line 5 of Alglrithm 3),
and the action in return update the state for choosing the next action
(line 7 and line 8 of Algorithm 3).

�e time complexity of the online ranking algorithm is of
O

(
min{KL2,LK2}M (2+M )4 + (M − 1)(K2 + KL)

)
per query. �e �rst
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Algorithm 3 MDP-DIV online ranking
Input: Parameters Θ = {Vq ,U,V,W}, query q, documents X
Output: Permutation of documents τ
1: Initialize s ← [∅,X ,σ (Vqq)]{Equation (1)}
2: M ← |X |
3: for t = 0 toM − 1 do
4: A← A(s) {Possible actions according to X in state s}
5: â ← argmaxa∈A π (a |s ;Θ){Choosing most possible action}
6: τ [t + 1] ←m(â){Document xm(â) is ranked at t + 1}
7: [Z,X , h] ← s
8: s ← [Z ⊕ {xm(â)},X \ {xm(â)},σ (Vxm(â) +Wh)]
9: end for
10: return τ

part corresponds to calculating the policy for all of the possible
actions at each iteration and the second part corresponds to upda-
ting the state for the next iteration. �e term min{KL2,LK2} is for
calculating the matrix multiplication xTm(at )Uht in the policy with
di�erent ways. In most cases L is larger thanK . Please note that the
online ranking algorithm actually runsM − 1 iterations for ranking
M documents, because at the last iteration A(sM−1) contains only
one action. Usually, K and L are not very large, e.g, we set K = 5
and L = 100 in our experiments. �us, the online ranking algorithm
is e�cient if the candidate set is not very large. In our experiments,
on average it takes about 20 milliseconds for ranking about 200
documents, on a server with 24GB memory and two Intel Xeon
E5410 2.33GHz �ad-Core processors. Note that in the analysis
the time for document embedding is not taken into consideration
as the document embeddings can be calculated o�ine.

4.4 �eoretical analysis
�e learning phase of MDP-DIV tries to optimize general diversity
evaluation measures with reinforcement learning. �e measures
can be α-DCG and S-recall, or any other measures that can be
calculated at each of the ranking position. We explain why this is
the case.

In the training, Monte-Carlo stochastic gradient ascent is used
to conduct the optimization. Given a query q in the training set,
we want to maximize the value V , which is the expected return of
the query:

max
Θ

V (q) = EπG0,

where G0 is the discounted sum of the rewards, starting from po-
sition 0, as de�ned in Equation (4). Please note G0 is the diversity
evaluation measure ifγ = 1. �us, maximizingV (q) is actually max-
imizing the expected diversity evaluation measure for the query.

According to the policy gradient theorem presented in [22], chap-
ter 13, the gradient of the performance metric with respect to the
parameters Θ on each query can be calculated as

∇ΘV (Θ) = Es∼ρ,a∼πQπ (s,a)∇Θπ (a |s),

where ρ is the discounted state distribution given a query q and
model parameters, which is de�ned as:

ρ(s |q;Θ) =
∞∑
t=1

γ t−1p(s0 → s, t |qn ;Θ),

sM�1 = [ZM�1, XM�1,hM�1]· · ·T (a0, s0) T (aM�2, sM�2)

⌧ [1] = m(a0) ⌧ [M ] = m(aM�1)

a0 = arg max
a

⇡(a|s0) aM�1 = arg max
a

⇡(a|sM�1)

q
h0 = �(Vqq)

xm(a0) xm(aM�1)

s0 = [Z0, X0,h0]

· · ·

Figure 2: Online document ranking in MDP-DIV.

where p(s0 → s, t |qn ;Θ) is the probability of transitioning from
the initial state s0 given the query q in t steps [22]. Qπ (s,a) is the
expected return starting from s , taking the action a and therea�er
following the policy π :

Qπ (s,a) = Eπ [Gt |st = s,at = a].
Monte-Carlo method is used to estimate the gradient. Speci�-

cally, given a sampled episode s0,a0, r1, · · · , sM−1,aM−1, rM and a
speci�c time step t , the gradient can be estimated as [22]�∇ΘV (Θ)

sample
= γ t

∑
a∈A(st )

∇Θπ (a |st )Qπ (st ,a)

= γ t
∑

a∈A(st )
π (a |st ) ·

(
Qπ (st ,a)

∇Θπ (a |st )
π (a |st )

)
sample
= γ tQπ (st ,at )

∇Θπ (at |st )
π (at |st )

sample
= γ tGt∇Θ logπ (at |st ).

�e �rst sample
= replaces s by its sample st , which is sampled accor-

ding to ρ; the second sample
= replaces a by its sample at , which is

sampled according to π ; and the third sample
= replaces the therea�er

decision process guided by π with the sampled episode. Note that
Eπ [Gt |st ,at ] = Qπ (st ,at ) and ∇Θ logπ (at |st ) = ∇Θπ (at |st )

π (at |st ) .
We can see that the updating rule in Algorithm 1 exactly follows

the estimated gradients presented above. �us, we can conclude
MDP-DIV tries to optimize general diversity evaluation measures
with Monte-Carlo stochastic gradient ascent when γ = 1.

4.5 Advantages
MDP-DIV provides an elegant approach to modeling user’s dyna-
mic state on the perceived utility during the browsing of the diverse
ranking results. More importantly, it is a method that can be justi-
�ed from the theoretical viewpoint, as discussed above. In addition,
MDP-DIV has several other advantages when compared with the
existing diverse ranking learning methods such as SVM-DIV, R-LTR
and PAMM etc.

First, MDP-DIV can conduct an end-to-end learning of the di-
verse ranking model, which achieves a model with no need of
handcra�ing relevance features and novelty features. �e inputs
to the ranking model are the preliminary representations of the
queries and the documents, e.g., the distributed representations
learned by the doc2vec model. In contrast, all existing diverse ran-
king learning methods heavily depend on the handcra�ed relevance
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features and/or novelty features. It has been widely observed that
high quality features are critical for constructing diverse ranking,
while designing the features, especially designing the novelty fea-
tures, is very di�cult in real applications [25]. MDP-DIV solves the
issue via learning a ranking model that needs only the preliminary
representations of the queries and the documents.

Second, MDP-DIV utilizes both the immediate rewards and the
long-term returns as the supervision information during its trai-
ning. Speci�cally, given an episode, the parameters are updated
a�er receiving each of the immediate rewards (line 5-8 of Algo-
rithm 1). Meanwhile, the updating rule also utilizes the long-term
return Gt , which accumulates all of the future rewards (line 6-7 of
Algorithm 1), to re-scale the step size. In contrast, existing methods
that directly optimize evaluation measures are only based on a
evaluation measure calculated at a �xed position [24, 26] on the
basis of whole ranking. Our empirical analysis in Section 5.3.2 also
showed that training with both the rewards and the returns can
achieve be�er ranking accuracies.

�ird, MDP-DIV makes use of a uni�ed criterion, the additio-
nal utility a search user can perceive, for selecting documents at
each iteration. In contrast, the criterion adopted by most existing
methods, e.g., the marginal relevance, consists of two individual
factors: the relevance and the novelty. Heuristic diverse ranking
model x�AD tried to replace these two factors with “the relevance
to the underlying sub-queries”, which has shown to be more reaso-
nable and e�ective. In this paper, we also showed that under the
MDP framework, the document selection criterion can be uni�ed
to “the perceived utility”, which has shown to be simple in concept
and be powerful in the real applications.

5 EXPERIMENTS
We conducted experiments to test the performances of MDP-DIV
using a combination of four TREC benchmark datasets: TREC 2009
Web Track (WT2009), TREC 2010 Web Track (WT2010), TREC 2011
Web Track (WT2011), and TREC 2012 Web Track (WT2012).

5.1 Experimental settings
�e training ofMDP-DIVmodel need lots of labeled queries because
it has a large number of parameters. In experiments, for e�ective
training of the model parameters, we combined four TREC datasets,
achieving a new dataset with 200 queries, and in total about 45,000
labeled documents. Each query includes several subtopics identi�ed
by the TREC assessors. �e document relevance labels are made at
the subtopic level and the labels are binary3.

All the experiments were carried out on the ClueWeb09 Cate-
gory B data collection4, which is comprised of 50 million English
web documents. Porter stemming, tokenization, and stop-words
removal (using the INQUERY list) were applied to the documents as
preprocessing. For each query, the initial ranking is generated by
�ery-likelihood language model[14]. We conducted 5-fold cross-
validation experiments. We randomly split the queries into �ve
even subsets. At each fold, three subsets were used for training, one
was used for validation, and one was used for testing. �e results
reported were the average over the �ve trials.

3WT2011 has graded judgements. In this paper we treat them as binary.
4h�p://boston.lti.cs.cmu.edu/data/clueweb09

�e TREC o�cial evaluation metrics for the diversity task were
used in the experiments, including the ERR-IA [3] and α-NDCG [4].
�ey measure the diversity of a result list by explicitly rewarding
diversity and penalizing redundancy observed at every rank. Follo-
wing the default se�ings in o�cial TREC evaluation program, the
parameter α in these evaluation measures are set to 0.5. We also
used traditional diversity measures of subtopic recall (denoted as
“S-recall”) [29]. All of the measures are computed over the top-k
search results (k = 5 and k = 10).

We compared MDP-DIV with several state-of-the-arts baselines
in search result diversi�cation, including the heuristic methods:

MMR [2]: a heuristic approach in which the document is se-
lected according to maximal marginal relevance.

x�AD [19]: a representative approach which explicitly models
di�erent aspects underlying the original query in the form of sub-
queries.

PM-2 [5]: a method of optimizing proportionality for search
result diversi�cation.

We also compared MDP-DIV with the learning methods:
SVM-DIV [27]: a learning approach which utilizes structural

SVMs to optimize the subtopic coverage.
R-LTR [31]: a state-of-the-art learning approach developed in

the relational learning to rank framework. Following the practice
in [31], we used the results of R-LTRmin in which the relation
function was de�ned as the minimal distance of the candidate
document to the selected documents

PAMM [24]: another learning algorithm under R-LTR frame-
work. PAMM directly optimizes diversity evaluation measure using
structured Perceptron. Following the practice in [24], we con�gu-
red the PAMM algorithm to directly optimize α-NDCG@10 in our
experiments, and set the number of sampled positive rankings per
query τ+ = 5 and the number of sampled negative rankings per
query τ− = 20.

NTN-DIV: a learning approach which automatically learns no-
velty features based on neural tensor networks. Following the
practice in [25], we con�gured the learning of NTN-DIV algorithm
to directly optimize α-NDCG@10 and the number of tensor slices
is 7.

MDP-DIV and the baseline of NTN-DIV need preliminary re-
presentations of the queries and the documents as their inputs. In
the experiments, we used the query vector and document vector
generated by the doc2vec [10] to represent the document. Doc2vec
model was trained on all of the documents in Web Track dataset
and the number of vector dimensions were set to 100. For training
the model, we used the distributed bag of words (DBOW) model5.
�e learning rate is set to 0.025 and the window size is set to 8.

�e MDP-DIV also has some parameters. �e reward function
in MDP-DIV was set as either Rα -DCG or RS-recall, denoted as MDP-
DIV(α-DCG) and MDP-DIV(S-recall), respectively. In all of the ex-
periments, the learning rate η is tuned on the basis of the validation
set. We set the discounting parameter γ = 1, which means that the
return is the undiscounted sum of the future rewards, which makes
the long term return in Equation (4) becomesGt =

∑M−1−t
k=0 rt+k+1.

It makes the training algorithm optimizes the diversity evaluation
measure of α-DCG and S-recall.

5h�p://radimrehurek.com/gensim/tutorial.html
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5.2 Experimental results
Table 1 reports the performances of our approach and all of the ba-
seline methods in terms of the six diversity performance metrics, in-
cluding α-NDCG@5, α-NDCG@10, S-recall@5, S-recall@10, ERR-
IA@5, and ERR-IA@10. Boldface indicates the highest score among
all runs. From the results we can see that, in terms of the six
diversity evaluation metrics, both MDP-DIV(α-DCG) and MDP-
DIV(S-recall) outperformed all of the baseline methods, including
the heuristic method of MMR, x�AD, PM-2 and learning met-
hods of R-LTR, PAMM(α-NDCG), and NTN-DIV(α-NDCG). We
conducted signi�cance testing (t-test) on the improvements of our
approaches over the best baseline NTN-DIV(α-NDCG). �e results
indicate that the improvements are signi�cant (p-value < 0.05), in
terms of all of the evaluation measures.

Comparing the results of theMDP-DIV(α-DCG) andMDP-DIV(S-
recall), we can see that MDP-DIV(α-DCG) trained with α-DCG
(se�ing α-DCG as reward function) performed be�er in terms of α-
NDCG@5 and α-NDCG@10. Similarly, MDP-DIV(S-recall) trained
with S-recall (se�ing S-recall as reward function) performed be�er
in terms of S-recall@5 and S-recall@10. �e results indicate that
MDP-DIV can indeed enhance diverse ranking performance in
terms of a measure by using the measure as reward function in
training6. �e result agrees well with the theoretical analysis shown
in Section 4.4.

5.3 Discussion
We conducted experiments to show the reasons that MDP-DIV
outperformed the baselines, using the results of MDP-DIV(α-DCG)
on one trial of the cross validation as examples.

5.3.1 E�ects of modeling user perceived utility. We analyzed how
the user state on the perceived utility e�ects the selection of do-
cuments in MDP-DIV. Speci�cally, based on the trained MDP-DIV
model, we tracked the online ranking process for query number
93 “ambiguous”, which contains �ve subtopics. Figure 3 shows
the details of the �rst three document selection steps, including
the transition of the user dynamic state hi , the ranking score
f (at |st ) = xTm(at )Uht for each of the actions7, and the constructed
document ranking. Due to the space limitation, we only showed
the �ve top ranked documents d1, · · · ,d5, corresponding to the do-
cuments of enwp03-28-04544, en0007-80-16124, en0094-80-42411,
en0006-08-03878, and en0010-24-38000 in the Clueweb09 collection,
respectively. �e subtopics covered by each of the documents are
shown in the square brackets.

From Figure 3, we can see that ht was updated a�er choosing
each action, indicating the changes of the user state a�er percei-
ving the utility provided by the selected document. At step 0, the
selected document d2 covered subtopics 3 and 5. At step 1, as the
consequence of the action the user state was updated, and the ran-
king score of d4 (with the covered subtopic 5) was suppressed from
0.46 to 0.35, while the ranking scores of the other three documents
(d1,d3, and d5, with uncovered subtopics) were promoted. �e re-
sults indicate that the user state h1 captured the utility provided
6Here we consider α -NDCG and α -DCG as “one” measure as the only di�erence
between them is the normalization factor.
7In the online ranking, the selection of actions can be implemented as directly based
on the ranking scores instead of based on the probabilities π (at |st ).
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Figure 3: �e online ranking process for query number 93.

by d2, which made the ranking model focusing on documents that
can provide the largest amount of new information. As the result,
d5, which contains two new subtopics 1 and 4, was selected at step
1. Similarly, at step 2 state vector h2 captured the utility provided
by d2 and d5 and making the model to select d1, which contains
a new subtopic 2. In contrast, the ranking scores for d3 and d4,
whose subtopics had been covered by the preceding documents,
were suppressed. �e phenomenon clearly indicates MDP-DIV can
e�ectively capture the user perceived utility of information in its
state, and utilize it for generating diverse rankings.

5.3.2 E�ects of using immediate rewards in training. One advan-
tage of MDP-DIV is that it has the ability of utilizing the immediate
rewards as the supervision in training, which makes the training
more e�ective and e�cient. We tried to verify the e�ectiveness and
e�ciency of using the immediate rewards in the training phase.
Speci�cally, we modi�ed the training Algorithm 1 so that the mo-
del parameters were updated only at the end of an episode (i.e.,
se�ing the iteration variable t in the line 5 of Algorithm 1 starts
fromM). In this way, the modi�ed algorithm only utilizes the long
term return of the whole episode for training, denoted as “MDP-
DIV(ReturnOnly)”. Figure 4 shows the performance curves of MDP-
DIV(α-DCG) and MDP-DIV(ReturnOnly) trained with α-DCG, on
the test data of one trail in the cross validation. �e performances
of other baseline methods on the same cross validation trail are
also shown in the �gure.

From the results, we can see that MDP-DIV(α-DCG) outperfor-
med the MDP-DIV(ReturnOnly) in terms of both convergency rate
and the converged performances. �e result indicates that utilizing
the immediate rewards in MDP-DIV(α-DCG) leads to an e�ective
and e�cient training algorithm. Note that in contrast, most existing
learning approaches to diverse ranking, including R-LTR, PAMM,
and NTN-DIV, can only utilize the accumulated information on the
whole ranking as supervision in their training phase. For example,
R-LTR uses the likelihood of the whole document rankings, and
PAMM uses the prede�ned evaluation measure calculated based on
the whole ranking. �e experimental results showed one reason
why MDP-DIV(α-DCG) can outperform these baselines.

We also noticed that the converged MDP-DIV(ReturnOnly) mo-
del still outperformed the baseline methods including SVM-DIV,
R-LTR, PAMM, and NTN-DIV, indicating that modeling the user’s
dynamic state on the perceived utility with MDP is e�ective.
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Table 1: Performance comparison of all methods on TREC web track datasets.

Method α -NDCG@5 α -NDCG@10 S-recall@5 S-recall@10 ERR-IA@5 ERR-IA@10
MMR 0.2753 0.2979 0.4388 0.5151 0.2005 0.2309
x�AD 0.3165 0.3941 0.4933 0.6043 0.2314 0.2890
PM-2 0.3047 0.3730 0.4910 0.6012 0.2298 0.2814
SVM-DIV 0.3030 0.3699 0.5122 0.6230 0.2268 0.2726
R-LTR 0.3498 0.4132 0.5397 0.6511 0.2521 0.3011
PAMM(α -NDCG) 0.3712 0.4327 0.5561 0.6612 0.2619 0.3029
NTN-DIV(α -NDCG) 0.3962 0.4577 0.5817 0.6872 0.2773 0.3285
MDP-DIV(S-recall) 0.4156 0.4734 0.6123 0.7155 0.2963 0.3477
MDP-DIV(α -DCG) 0.4189 0.4762 0.6102 0.7117 0.2988 0.3494
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PAMM

R-LTR

SVM-DIV

Figure 4: �e performance curves on the test data for MDP-
DIV(α-DCG), and the modi�ed MDP-DIV(α-DCG) in which
the training only involves the long-term returns. �e per-
formances of other baselines are shown as horizontal lines.

5.3.3 Analysis of convergence and online ranking criterion. We
conducted experiments to test whether the ranking accuracy in
terms of the evaluation measure can be continuously improved, as
the training of MDP-DIV goes on.

Speci�cally, we tested the MDP-DIV(α-DCG) models generated
at each of the training iteration in one trail of the cross validation.
�e performances in terms of α-DCG at the last position of the
whole document ranking is reported. For each model, the average
performances over all of the training queries (or the testing queries)
are reported. Figure 5 shows the performance curves on the training
data (solid red line and denoted as “train(arg max)”) and on the test
data (dashed yellow line and denoted as “test(arg max)”). For these
two curves, the document rankings for the queries are generated
by the online ranking Algorithm 3. �e document rankings can
also be generated through sampling during the training, via the
episode sampling Algorithm 2. �e average performances of the
sampled rankings for all the training queries are also shown in the
�gure (blue dots and denoted as “train(sample)”).

From the results shown in Figure 5, we can see that on both of
the training set and test set, the ranking accuracies of MDP-DIV(α-
DCG) steadily improves, as the training goes on. �e experimental

0 500 1000 1500 2000 2500

iteration

1.5

2

2.5

3

train(sample)

train(arg max)

test(arg max)

Figure 5: �e performance curves in terms of α-DCG on the
training data (“train(arg max)”) and the test data (“test(arg
max)”). �e average performances of the sampled rankings
over all training queries are also shown (“train(sample)”).

results also showed that the ranking accuracies of the sampled ran-
kings (by Algorithm 2) has an obvious trend of steadily improving
with some random noise, as the training goes on.

Comparing the sampled rankings (“train(sample)”) and the ran-
king generated by the online ranking algorithm (“train(arg max”),
we can see that at the beginning of the training phase, the sampled
rankings can achieve be�er α-DCG values than the rankings gene-
rated by the online ranking algorithm, on the basis of the training
queries. As the training went on and a�er about 200 iterations,
the online ranking algorithm outperformed the sampling method,
and the trend remains to the end of the training. �e phenome-
non was repeated in other experiments. We analyzed the reasons.
�e online ranking algorithm (Algorithm 3) fully trusts the lear-
ned ranking model when generating the document ranking, i.e.,
â ← argmaxa∈A π (a |s;Θ). In contrast, the sampled rankings are
generated according to the same ranking model while with some
randomness. At the beginning of the training phase, the model
parameters are far from their optimal values. In many cases, fully
trusting the policy leads to bad decisions and generating rankings
with low performances. �e sampling method, in contrast, may
make be�er decisions due to the random natural of sampling. As
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the training goes on, the model parameters gradually converge to
nearly optimal values. Fully trusting the learned policy has the
advantages of achieving stable and (nearly) optimal decisions in
most cases. �e sampling method, however, hurts from unstable
results due to the random noise. �e results clearly indicate that,
fully trusting the learned model (as that of in Algorithm 3) in the
online ranking phase is a good criterion, given the model is well
trained.

6 CONCLUSION AND FUTUREWORK
In this paper we have proposed a novel approach to learning di-
verse ranking model for search result diversi�cation, referred to
as MDP-DIV. In contrast to existing methods, MDP-DIV explicitly
models the dynamic utility the search users perceived during the
browsing of the ranking result. �e dynamic utility is modeled with
a continuous state MDP and the model parameters are estimated
with reinforcement learning. MDP-DIV o�ers several advantages:
no need for handcra�ing ranking features, optimizing diversity
evaluation measures in training, utilizing both immediate rewards
and long-term returns as supervision, and high accuracy in ranking.
Experimental results based on the TREC benchmark datasets show
that MDP-DIV can signi�cantly outperform the baseline methods.
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