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Directly Optimize Diversity Evaluation Measures: A New Approach
to Search Result Diversification
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The queries issued to search engines are often ambiguous or multifaceted, which requires search engines
to return diverse results that can fulfill as many different information needs as possible; this is called
search result diversification. Recently, the relational learning to rank model, which designs a learnable
ranking function following the criterion of maximal marginal relevance, has shown effectiveness in search
result diversification [Zhu et al. 2014]. The goodness of a diverse ranking model is usually evaluated with
diversity evaluation measures such as α-NDCG [Clarke et al. 2008], ERR-IA [Chapelle et al. 2009], and
D#-NDCG [Sakai and Song 2011]. Ideally the learning algorithm would train a ranking model that could
directly optimize the diversity evaluation measures with respect to the training data. Existing relational
learning to rank algorithms, however, only train the ranking models by optimizing loss functions that loosely
relate to the evaluation measures. To deal with the problem, we propose a general framework for learning
relational ranking models via directly optimizing any diversity evaluation measure. In learning, the loss
function upper-bounding the basic loss function defined on a diverse ranking measure is minimized. We can
derive new diverse ranking algorithms under the framework, and several diverse ranking algorithms are
created based on different upper bounds over the basic loss function. We conducted comparisons between
the proposed algorithms with conventional diverse ranking methods using the TREC benchmark datasets.
Experimental results show that the algorithms derived under the diverse learning to rank framework always
significantly outperform the state-of-the-art baselines.

CCS Concepts: � Information systems → Learning to rank; Information retrieval diversity;

Additional Key Words and Phrases: Search result diversification, relational learning to rank, diversity
evaluation measure

ACM Reference Format:
Jun Xu, Long Xia, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Directly optimize diversity evaluation
measures: A new approach to search result diversification. ACM Trans. Intell. Syst. Technol. 8, 3, Article 41
(January 2017), 26 pages.
DOI: http://dx.doi.org/10.1145/2983921

1. INTRODUCTION

It has been widely observed that users’ information needs, described by keyword-
based queries, are often ambiguous or multifaceted. It is important for commercial
search engines to provide search results that balance query-document relevance and

This work was funded by the 973 Program of China under Grant No. 2014CB340401 and 2013CB329606, the
863 Program of China under Grant No. 2014AA015204 and 2015AA020104, the National Natural Science
Foundation of China (NSFC) under Grant No. 61232010, 61425016, 61472401 and 61203298, and the Youth
Innovation Promotion Association CAS under Grant No. 20144310 and 2016102.
Authors’ addresses: J. Xu, L. Xia, Y. Lan, J. Guo, and X. Cheng, Institute of Computing Technology, Chinese
Academy of Sciences, No. 6 Kexueyuan South Road, Zhongguancun, Haidian District, Beijing, China 100190;
emails: junxu@ict.ac.cn, xialong@software.ict.ac.cn, {lanyanyan, guojiafeng, cxq}@ict.ac.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 2157-6904/2017/01-ART41 $15.00
DOI: http://dx.doi.org/10.1145/2983921

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 3, Article 41, Publication date: January 2017.

http://dx.doi.org/10.1145/2983921
http://dx.doi.org/10.1145/2983921


41:2 J. Xu et al.

document novelty, called search result diversification [Zhai et al. 2003; Agrawal et al.
2009]. One of the key problems in search result diversification is ranking: specifically,
how to develop a ranking model that can sort documents based on their relevance to
the given query as well as by the novelty of the information in the documents.

Methods for search result diversification can be categorized into heuristic approaches
and learning approaches. The heuristic approaches construct diverse rankings with
handcrafted ranking rules. As a representative method in the category, Carbonell and
Goldstein proposed the Maximal Marginal Relevance (MMR) criterion for guiding the
construction of ranking models [Carbonell and Goldstein 1998]. In MMR, constructing
a diverse ranking is formulated as a process of sequential document selection. At each
iteration, the document with the highest marginal relevance is selected. The marginal
relevance can be defined as, for example, a linear combination of the query-document
relevance and the maximum distance of the document to the selected document set. A
number of approaches have been proposed [Rafiei et al. 2010; Santos et al. 2010; Dang
and Croft 2012; Raman et al. 2012] on the basis of the criterion and promising results
have been achieved. User studies also shows that user browsing behavior matches very
well with the MMR criterion: Usually, users browse the web search results in a top-
down manner and perceive diverse information from each individual document based
on what they have obtained in the preceding results [Clarke et al. 2008]. Therefore,
in a certain sense, we can say that MMR has been widely accepted as a criterion for
guiding the construction of diverse ranking models.

Machine learning approaches have also been proposed for the task of search result
diversification [Radlinski et al. 2008; Li et al. 2009; Mihalkova and Mooney 2009;
Zhu et al. 2014], especially those methods that can directly optimize evaluation mea-
sures on training data [Yue and Joachims 2008; Liang et al. 2014]. Yue and Joachims
propose SVM-DIV, which formulates the task as a problem of structured output pre-
diction [Yue and Joachims 2008]. In the model, the measure of subtopic diversity is
directly optimized under the structural SVM framework. Liang et al. propose to con-
duct personalized search result diversification via directly optimizing the measure
of α-NDCG, also under the structural SVM framework [Liang et al. 2014]. All these
methods try to resolve the mismatch between the objective function used in training
and the final evaluation measure used in testing. Experimental results also showed
that directly optimizing the diversity evaluation measures can indeed improve diverse
ranking performances [Yue and Joachims 2008; Liang et al. 2014].

One problem with the direct optimization approaches is that it is hard, if not im-
possible, to define a ranking model that can meet the MMR criterion under the direct
optimization framework. Recently, Zhu et al. proposed the Relational Learning to Rank
(R-LTR) model [Zhu et al. 2014] in which the ranking function is designed following the
criterion of MMR. In training, R-LTR maximizes the likelihood of the “positive” rank-
ings derived from the training data, which is loosely related to the diversity evaluation
measures.

Thus, there is an open question regarding machine learning approaches to search
result diversification. Is there a general theory that can guide the development of new
diverse learning to rank algorithms, one that can utilize the MMR model for ranking
as well as directly optimize diversity evaluation measure in training?

In this article, we conduct a study on directly optimizing diversity evaluation mea-
sures in diverse learning to rank and answered the posed question. Specifically, we
develop a new diverse learning to rank framework that adopts the R-LTR as its ranking
model. In training, the model parameters are estimated by minimizing a loss function
upper bounding the basic loss function defined on the diversity evaluation measures.
New algorithms can be easily derived and studied under the framework. As examples,
we created several algorithms by optimizing different upper bounds.
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The framework offers several advantages: (i) it makes use of the R-LTR model
in ranking, which has been shown to be effective for the task of search result
diversification; (ii) it has the ability to easily derive different algorithms that can
directly optimize any diversity evaluation measure in training by minimizing different
upper bounds of the basic loss function; and (iii), it has the possibility to analyze new
diverse ranking algorithms under a unified framework.

To evaluate the effectiveness of the framework and the new derived diverse rank-
ing algorithms, we conducted extensive experiments on three public TREC benchmark
datasets. The experimental results show that the new derived diverse ranking al-
gorithms under the diverse ranking framework significantly outperformed the state-
of-the-art approaches including MMR, SVM-DIV, and R-LTR. We analyzed the results
and showed that the new derived algorithms attained good balances between relevance
and novelty in ranking and directly optimizing evaluation measures in training. We
also showed that by directly optimizing a measure in training, the derived algorithms
can indeed enhance the ranking performances in terms of the measure used in train-
ing. From the experimental results, we also observed that there exists no significant
difference among the performances of the algorithms derived under the framework.

The rest of the article is organized as follows. After a summary of related work in
Section 2, we describe R-LTR in Section 3. In Section 4, we describe the proposed
general framework for directly optimizing diversity evaluation measures. The example
algorithms derived under the framework are shown in Section 5. In Section 6, we
give a summary of the upper bounds and analyze the advantages of our approaches.
Experimental results and discussions are given in Section 7. Section 8 concludes this
article and gives future work.

2. RELATED WORK

Methods of search result diversification can be categorized into heuristic approaches
and learning approaches.

2.1. Heuristic Approaches

It is a common practice to use heuristic rules to construct a diverse ranking list in
search. Usually, the rules are created based on the observation that, in diverse rank-
ing, a document’s novelty depends not only on the document itself but also on the
documents ranked in previous positions. Carbonell and Goldstein propose the MMR
criterion to guide the design of diverse ranking models [Carbonell and Goldstein 1998].
The criterion is implemented through a process of iteratively selecting documents
from the candidate document set. At each iteration, the document with the highest
marginal relevance score is selected, where the score is a linear combination of the
query-document relevance and the maximum distance of the document to the docu-
ments in the current result set. The marginal relevance score is then updated in the
next iteration as the number of documents in the result set increases by one. More
methods have been developed under the criterion. PM-2 [Dang and Croft 2012] treats
the problem of finding a diverse search result as finding a proportional representation
for the document ranking. xQuAD [Santos et al. 2010] directly models different aspects
underlying the original query in the form of subqueries and estimates the relevance
of the retrieved documents to each identified subquery. Dou et al. [2011] proposes to
explicitly diversify search results based on multiple dimensions of subtopics. Hu et al.
[2015] proposed a diversification framework that leverages the hierarchical intents
of queries and selects those documents that maximize diversity in the hierarchical
structure [Radlinski and Dumais 2006; Carterette and Chandar 2009; Gollapudi and
Sharma 2009; Guo and Sanner 2010; He et al. 2012; Dang and Croft 2013; Wu et al.
2016].
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Heuristic approaches rely on the utility functions that can only use a limited number
of ranking signals. Also, the parameter tuning cost is high, especially in complex search
settings. In this article, we focus on machine learning approaches to constructing
diverse ranking models that can meet the MMR criterion.

2.2. Learning Approaches

Methods of machine learning have been applied to search result diversification. In
these approaches, rich features can be utilized and the parameters are automatically
estimated from the training data. Some promising results have been obtained. For
example, Zhu et al. [2014] proposed the R-LTR model, in which diverse ranking is
constructed with a process of sequential document selection. The training of R-LTR
amounts to optimizing the likelihood of ground truth rankings. Radlinski et al. proposed
online learning algorithms that directly learn a diverse ranking of documents based
on users’ clicking behavior [Radlinski et al. 2008]; for more such works, please refer
to Li et al. [2009], Mihalkova and Mooney [2009], and Yue and Joachims [2009]. All
these methods, however, formulate the learning problem as optimizing loss functions
that are loosely related to diversity evaluation measures.

Recently, methods that can directly optimize evaluation measures have been pro-
posed and applied to search result diversification. Yue and Joachims formulate the
task of constructing a diverse ranking as a problem of predicting diverse subsets [Yue
and Joachims 2008]. The structural SVM framework is adopted to perform the training.
Liang et al. propose to conduct personalized search result diversification, also under
the structural SVM framework [Liang et al. 2014]. In the model, the loss function is
defined based on the diversity evaluation measure of α-NDCG. Thus, the algorithm
can be considered as directly optimizing α-NDCG in training. One issue with these
methods is that it is hard to learn a MMR model under the structural SVM framework.

In this article, we propose a framework that can learn a MMR model at the same
time it can minimize loss functions upper bounding the basic loss function defined on
diversity evaluation measures.

3. RELATIONAL LEARNING TO RANK

Zhu et al. proposed R-LTR for search result diversification [Zhu et al. 2014]. In R-LTR,
the ranking of documents is designed as a process of selecting documents sequentially,
and thus it meets the criterion of MMR. Specifically, suppose that we are given a
query q, which is associated with a set of retrieved documents X = {x1, . . . , xM}, where
each document xi is represented as a D-dimensional relevance feature vector. Let R =
RM×M×K denotes a 3-way tensor representing relationship among the M documents,
where Rijk stands for the k-th relationship feature of document xi and document x j .

3.1. Document Level Ranking Model fS
The MMR model creates a diverse ranking over X with a process of sequential document
selection. At each step, the document with the highest marginal relevance is selected
and added to the tail of the list [Zhu et al. 2014]. Specifically, let S ⊆ X be the set of
documents that have been selected for query q at one of the document selection steps.
Given S, the marginal relevance score of each document xi ∈ X\S at the current step
is defined as a linear combination of the query-document relevance and novelty of the
document to the documents in S:

fS(xi, Ri) = ωT
r xi + ωT

d hS(Ri), (1)

where xi denotes the relevance feature vector of the document, Ri ∈ RM×K is the matrix
representation of the relationship between document i and the other documents (note
that Rij ∈ RK denotes the relationship feature vector of document pair (i, j)), and ωr
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ALGORITHM 1: Ranking with Relational Learning to Rank Model
Input: documents X, document relation R, and ranking model parameters ωr and ωd
Output: ranking y
1: S0 ← φ
2: for r = 1, . . . , M do
3: y(r) ← arg max j:x j∈X\Sr−1 fSr−1 (x j, Rj)
4: Sr ← Sr−1 ∪ {xy(r)}
5: end for
6: return y

and ωd are the weights for the relevance features and novelty features, respectively.
The first term in Equation (1) represents the relevance of document i to the query, and
the second term represents the novelty of documents i with respect to the documents in
S. Following the practice in Zhu et al. [2014], the relational function hS(Ri) is defined
as the minimal distance:

hS(Ri) =
(

min
x j∈S

Rij1, . . . , min
x j∈S

RijK

)
.

According to the MMR criterion, a sequential document selection process can be
used to create a diverse ranking, as shown in Algorithm 1. Specifically, given a query
q, the retrieved documents X, and document relationship R, the algorithm initializes
S0 as an empty set. It then iteratively selects the documents from the candidate set.
At iteration r (r = 1, . . . , M), the document with the MMR score fSr−1 is selected and
ranked at position r. At the same time, the selected document is inserted into Sr−1.

3.2. Query Level Ranking Model F

The query level ranking model F(X, R, y) is the query level ranking function. F takes
the document set X, document relationship R, and ranking over the documents y as
inputs. The output of F is the confidence score of the ranking y. The predicted ŷ(n) can
be considered as the ranking that maximizes F:

ŷ(n) = arg max
y∈Y (n)

F(X(n), R(n), y), (2)

whereY (n) is the set of all possible rankings over X(n). Here, F is defined as the logarithm
of the probability of generating the ranking list y with a process of iteratively selecting
the top-ranked documents from the remaining documents and using the marginal
relevance function fS in Equation (1) as the selection criterion:

F(X, R, y) = log Pr(y|X, R)
= log Pr(xy(1) . . . xy(M)|X, R)

= log
M−1∏
r=1

Pr(xy(r)|X, Sr−1, R)

=
M−1∑
r=1

log
exp{ fSr−1 (xi, Ry(r))}∑M

k=r exp{ fSr−1 (xi, Ry(k))}

(3)

where y(r) denotes the index of the document ranked at the r-th position in y, Sr−1 =
{xy(k)}r−1

k=1 is the documents ranked at the top r − 1 positions in y, fSr−1 (xi, Ri) is the
marginal relevance score of document xi with respect to the selected documents in
Sr−1, and S0 = φ is an empty set.
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With the definition of query level ranking model F, it is obvious that the MMR process
of Algorithm 1 actually greedily searches the solution for optimizing the problem of
Equation (2).

In learning, the R-LTR algorithm optimizes the log likelihood of ground truth rank-
ings derived from the training data:

max
ωr ,ωd

M∑
m=1

F(Xm, Rm, y∗
m),

where y∗
m is the ground truth ranking for the m-th query.

4. A GENERAL FRAMEWORK FOR DIRECTLY OPTIMIZING DIVERSITY
EVALUATION MEASURES

In this section, we describe the general framework for learning the diverse ranking
model via directly optimizing diversity evaluation measures. The framework directly
adopts the R-LTR model described in Section 3 which meets the criterion of MMR.

As for the loss functions, the framework first defines the basic loss function defined
over diversity evaluation measures. Different loss functions upper bounding the basic
loss function are then defined and optimized, achieving different diverse learning to
rank algorithms.

4.1. The Basic Loss Function

Suppose we are given N labeled training queries {(X(n), R(n), J(n))}N
n=1, where J(n) denotes

the human labels on the documents in the form of a binary matrix. J(n)(i, s) = 1 if
document x(n)

i contains the s-th subtopic of qn and 0 otherwise.1 The learning process,
thus, amounts to minimizing the loss over all of the training queries:

min
ωr ,ωd

N∑
n=1

L
(
ŷ(n), J(n)), (4)

where ŷ(n) is the ranking constructed by the diverse learning to rank model (Algo-
rithm 1) for documents X(n), and L(ŷ(n), J(n)) is the function for judging the “loss” of the
predicted ranking ŷ(n) compared with the human labels J(n).

An ideal learning algorithm for search result diversification would train a ranking
model that could directly optimize the diversity evaluation measures with respect to
the training data. That is, the loss function of Equation (4) can be written as

min
ωr ,ωd

N∑
n=1

(
1 − E(X(n), ŷ(n), J(n))

)
, (5)

where E is an evaluation measure for search result diversification such as α-NDCG or
D#-NDCG or the like. ŷ(n) is the permutation selected for applying to X(n) by ranking
model F. We refer to Equation (5) as the “basic loss function” and those methods that
minimize the basic loss function as the “direct optimization approach” to search result
diversification.

It is obvious that the basic loss function is hard to optimize because E is not a smooth
and convex function. We resort to optimizing the upper bound of the loss function under
the framework of structured output prediction. According to Theorem 2 in Xu et al.

1Some datasets also use graded judgments. In this article, we assume that all labels are binary.
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[2008], the loss function defined in Equation (5) can be upper bounded by the function
defined over the ranking pairs:

N∑
n=1

max
y+∈Y+(n) ;
y−∈Y−(n)

(
E(X(n), y+, J(n)) − E(X(n), y−, J(n))

)

· �F(y+, X(n), R(n)) ≤ F(y−, X(n), R(n))�

=
N∑

n=1

max
y+∈Y+(n) ;
y−∈Y−(n)

�E(y+, y−) · ��F(y+, y−) ≤ 0�, (6)

where Y+(n) is the set of all possible positive rankings for the n-th query, Y−(n) is the
set of all possible negative rankings for the n-the query (note that positive rankings
and negative rankings are relative to each other, which means that the score of positive
rankings is higher than of negative rankings), and �·� is 1 if the condition is satisfied,
otherwise zero. Here, �E(y+, y−) = E(X(n), y+, J(n))− E(X(n), y−, J(n)) and �F(y+, y−) =
F(y+, X(n), R(n)) − F(y−, X(n), R(n)) are the differences between the positive ranking y+
and negative ranking y− in terms of the evaluation measure E and ranking model F,
respectively.

Practically, in order to leverage existing optimization technologies like Perceptron
and stochastic gradient descent, bound optimization has been widely used. We can
consider upper bounds over Equation (6). Different diverse learning to rank algorithms
can be derived by defining different upper bounds and adopting different optimization
techniques.

4.2. Upper Bounds on the Basic Loss Function

We show that the loss function in Equation (6) can be upper bounded by the following
loss functions.

(1) We can get rid of the max by replacing it with the sum function. This is because∑
i xi ≥ maxi xi if xi ≥ 0 holds for all i. Thus, Equation (6) can be upper bounded by

N∑
n=1

∑
y+∈Y+(n) ;
y−∈Y−(n)

�E(y+, y−) · ��F(y+, y−) ≤ 0�. (7)

(2) Moving the term �E(y+, y−) into �·� as margin, we get an upper bound on Equation
(7):

N∑
n=1

∑
y+∈Y+(n) ;
y−∈Y−(n)

��F(y+, y−) ≤ �E(y+, y−))�. (8)

It can be shown that Equation (8) upper bounds the basic loss function in Equation (7)
if E ∈ [0, 1].

The preceding loss functions are still not continuous and differentiable because they
contain the 0-1 function �·�, which is not continuous and differentiable. We can consider
using continuous, differentiable, and even convex upper bounds, which are also upper
bounds on the basic loss function in Equation (5).

(3) Replacing the 0-1 function �·� with its upper bounds, such as the logistic function,
exponential function, and hinge function, we can get three different upper bounds on
Equation (7), as shown in Table I.
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Table I. Upper Bounds on the 0-1 Loss Function �·�
Name Upper bound

Logistic function
∑N

n=1
∑

y+∈Y+(n);y−∈Y−(n) �E(y+, y−) · log
(
1 + e−�F(y+,y−))

Exponential function
∑N

n=1
∑

y+∈Y+(n);y−∈Y−(n) �E(y+, y−) · e−�F(y+,y−)

Hinge function
∑N

n=1
∑

y+∈Y+(n);y−∈Y−(n) �E(y+, y−) · [
1 − �F(y+, y−)

]
+

Note that the relaxations in Equations (1), (2), and (3) can be applied separately or
simultaneously, leading to different upper bounds on the basic loss function.

5. DERIVED ALGORITHMS

In this section, without loss of generality, we show several diverse ranking algorithms
that optimize different upper bounds over the basic loss function. All these upper
bounds are those shown in Section 4.2.

5.1. Perceptron Algorithm with Measures as Margin

Optimizing the upper bound shown in Equation (7) with Perceptron [Collins 2002; Li
et al. 2002], we can get the algorithm called Perceptron Algorithm with Measures as
Margin (PAMM), as shown in Algorithm 2.

PAMM takes a training set {(X(n), R(n), J(n))}N
n=1 as input and takes the diversity

evaluation measure E, learning rate η, number of positive rankings per query τ+, and
number of negative rankings per query τ− as parameters. For each query qn, PAMM first
generates τ+ positive rankings PR(n) and τ− negative rankings NR(n) (Lines 2 and 3).
PR(n) and NR(n) play as the random samples of Y+(n) and Y−(n), respectively. PAMM then
optimizes the model parameters ωr and ωd iteratively in a stochastic manner over the
ranking pairs: At each round, for each pair between a positive ranking and a negative
ranking (y+, y−), the gap of these two rankings in terms of the query-level ranking
model �F = F(X, R, y+) − F(X, R, y−) is calculated based on current parameters ωr
and ωd (Line 9). If �F is smaller than the margin in terms of evaluation measure
�E = E(X, y+, J) − E(X, y−, J) (Line 10), the model parameters will be updated so
that �F will be enlarged (Lines 11 and 12). The iteration continues until convergence.
Finally, PAMM outputs the optimized model parameters (ωr, ωd).

Next, we explain the key steps of PAMM in detail.

5.1.1. Generating Positive and Negative Rankings. In PAMM, it is hard to directly conduct
the optimization over the sets of positive rankings Y+(n) and negative rankings Y−(n)

because, in total, these two sets have M! rankings if the candidate set contains M
documents. Thus, PAMM samples the rankings to reduce the training time.

For each training query, PAMM first samples a set of positive rankings. Algorithm 3
illustrates the procedure. Similar to the online ranking algorithm shown in Algo-
rithm 1, the positive rankings are generated through a sequential document selection
process, and the selection criteria is the diversity evaluation measure E. After gener-
ating the first positive ranking y(1), the algorithm constructs other positive rankings
based on y(1) by randomly swapping the positions of two documents whose subtopic
coverage is identical.

For each training query, PAMM also samples a set of negative rankings. Algorithm 4
shows the procedure. The algorithm simply generates random rankings iteratively.
If the generated ranking is not a positive ranking and satisfies the user predefined
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ALGORITHM 2: The PAMM Algorithm
Input: Training data {(X(n), R(n), J(n))}N

n=1, learning rate η, diversity evaluation measure E, num-
ber of positive rankings per query τ+, number of negative rankings per query τ−.

Output: Model parameters (ωr, ωd)
1: for n = 1 to N do
2: PR(n) ←PositiveRankings(X(n), J(n), E, τ+) {Algorithm 3}
3: NR(n) ←NegativeRankings(X(n), J(n), E, τ−) {Algorithm 4}
4: end for
5: initialize {ωr, ωd} ← random values in [0, 1]
6: repeat
7: for n = 1 to N do
8: for all {y+, y−} ∈ PR(n) × NR(n) do
9: �F ← F(X(n), R(n), y+) − F(X(n), R(n), y−)

{F(X, R, y) is defined in Equation (3)}
10: if �F ≤ E(X(n), y+, J(n)) − E(X(n), y−, J(n)) then
11: calculate ∇ω(n)

r and ∇ω(n)
d {Equation (9) and Equation (11)}

12: (ωr, ωd) ← (ωr, ωd) + η × (∇ω(n)
r , ∇ω

(n)
d )

13: end if
14: end for
15: end for
16: until convergence
17: return (ωr, ωd)

ALGORITHM 3: PositiveRankings
Input: Documents X, diversity labels J, evaluation measure E, and the number of positive

rankings τ+

Output: Positive rankings PR
1: for r = 1 to |X| do
2: y(1)(r) ← arg max j:x j∈X\Sr−1

E
(
Sr−1 ∪ {x j},

(
y(1)(1), . . . , y(1)(r − 1), j

)
, J

)
3: Sr ← Sr−1 ∪ {xy(1)(r)}
4: end for
5: PR ← {y(1)}
6: while |PR| < τ+ do
7: y ← y(1)

8: (k, l) ← randomly choose two documents whose human labels are identical, i.e., J(y(k)) =
J(y(1)(l))

9: y(k) ↔ y(l) {swap documents at rank k and l}
10: if y /∈ PR then
11: PR ← PR ∪ {y}
12: end if
13: end while
14: return PR

constraints (e.g., α-NDCG@20 ≤ 0.8), the ranking will be added into the ranking set
NR.

Note that, in some extreme cases, Algorithm 3 and Algorithm 4 cannot create enough
rankings. In our implementations, the algorithms are forced to return after running
enough iterations.
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ALGORITHM 4: NegativeRankings
Input: Documents X, diversity labels J, evaluation measure E, and number of negative rank-

ings τ−

Output: NR
1: NR = φ
2: while |NR| < τ− do
3: y ← random shuffle (1, . . . , |X|)
4: if y /∈ NR and E(X, y, J) is as expected then
5: NR ← NR ∪ {y}
6: end if
7: end while
8: return NR

5.1.2. Updating ωr and ωd for PAMM. Given a ranking pair (y+, y−) ∈ PR(n)×NR(n), PAMM
updates ωr and ωd as

ωr ← ωr + η × ∇ωr,

ωd ← ωd + η × ∇ωd,

if F(X, R, y+) − F(X, R, y−) ≤ E(X, y+, J) − E(X, y−, J). The goal of the update is
to enlarge the margin between y+ and y− in terms of query level model: �F =
F(X, R, y+) − F(X, R, y−). ∇ωr can be calculated as the gradient:

∇ωr = ∂F(X, R, y+)
∂ωr

− ∂F(X, R, y−)
∂ωr

, (9)

where

∂F(X, R, y)
∂ωr

= ∂
∑|X|−1

j=1 log Pr(xy( j)|X\Sj−1, R)

∂ωr

=
|X|−1∑
j=1

{
xy( j) −

∑|X|
k= j xy(k)e

fSj−1 (xy(k),Ry(k))∑|X|
k= j e fSj−1 (xy(k),Ry(k))

}
. (10)

Similarly, ∇ωd can be calculated as

∇ωd =∂F(X, R, y+)
∂ωd

− ∂F(X, R, y−)
∂ωd

, (11)

where

∂F(X, R, y)
∂ωd

=
|X|−1∑
j=1

{
hSj−1 (Ry( j)) −

∑|X|
k= j hSj−1 (Ry(k))e

fSj−1 (xy(k),Ry(k))∑|X|
k= j e fSj−1 (xy(k),Ry(k))

}
. (12)

Intuitively, the gradients ∇ωr and ∇ωd are calculated so that Line 12 of Algorithm 2
will increase F(X, R, y+) and decrease F(X, R, y−).

5.2. Algorithms that Optimize the Logistic and Exponential Upper Bounds

Optimizing the logistic and exponential upper bounds in Table I with stochastic gra-
dient descent, we can get different algorithms that directly optimize the diversity
evaluation measures, referred to as the Stochastic Gradient Descent with Measure as
Margin and Logistic (SGDMM-Log) function as upper bound and Stochastic Gradient
Descent with Measure as Margin and Exponential (SGDMM-Exp) function as upper
bound, respectively. The procedures of SGDMM-Log and SGDMM-Exp are shown in
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ALGORITHM 5: The SGDMM-Log/SGDMM-Exp Algorithms
Input: Training data {(X(n), R(n), J(n))}N

n=1, learning rate η, diversity evaluation measure E, num-
ber of positive rankings per query τ+, number of negative rankings per query τ−.

Output: Model parameters (ωr, ωd)
1: for n = 1 to N do
2: PR(n) ←PositiveRankings(X(n), J(n), E, τ+) {Algorithm 3}
3: NR(n) ←NegativeRankings(X(n), J(n), E, τ−) {Algorithm 4}
4: end for
5: initialize {ωr, ωd} ← random values in [0, 1]
6: repeat
7: for n = 1 to N do
8: for all {y+, y−} ∈ PR(n) × NR(n) do
9: calculate ∇ω(n)

r and ∇ω(n)
d {For SGDMM-Log, calculating with Equation (13) and Equa-

tion (14); for SGDMM-Exp, calculating with Equation (15) and Equation (16)}
10: (ωr, ωd) ← (ωr, ωd) − η × (∇ω(n)

r , ∇ω(n)
d )

11: end for
12: end for
13: until convergence
14: return (ωr, ωd)

Algorithm 5. Here, we show both in the same Algorithm 5 because the only difference
is the method for calculating the gradients ωr and ωd (Line 9).

The procedures shown in Algorithm 5 are almost identical to the PAMM algorithm
in Algorithm 2, except that (i) in PAMM, the gradients are calculated only for those
training pairs that satisfy �F(y+, y−) ≤ �E(y+, y−) (Line 10). In SGDMM-Log and
SGDMM-Exp, however, the gradients are calculated for all ranking pairs; and (ii)
PAMM, SGDMM-Log, and SGDMM-Exp make use of different methods for calculating
the gradients (Line 11 in Algorithm 2 and Line 9 in Algorithm 5).

5.2.1. Updating ωr and ωd for SGDMM-Log. According to the logistic loss in Table I, given
a ranking pair (y+, y−) ∈ PR(n) × NR(n), SGDMM-Log updates ωr and ωd as

ωr ← ωr + η × ∇ωr,

ωd ← ωd + η × ∇ωd,

where

∇ωr = �E(y+, y−) · e−�F(y+,y−)

1 + e−�F(y+,y−)
·
(

∂F(X, R, y−)
∂ωr

− ∂F(X, R, y+)
∂ωr

)
, (13)

where ∂F(X,R,y)
∂ωr

is calculated as in Equation (10).
Similarly, ∇ωd can be calculated as

∇ωd = �E(y+, y−) · e−�F(y+,y−)

1 + e−�F(y+,y−)
·
(

∂F(X, R, y−)
∂ωd

− ∂F(X, R, y+)
∂ωd

)
, (14)

where ∂F(X,R,y)
∂ωd

is defined in Equation (12).

5.2.2. Updating ωr and ωd for SGDMM-Exp. Similarly, according to the exponential loss in
Table I, given a ranking pair (y+, y−) ∈ PR(n) × NR(n), SGDMM-Exp updates ωr and ωd
as

ωr ← ωr + η × ∇ωr,

ωd ← ωd + η × ∇ωd,
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Fig. 1. Summary on upper bounds.

where

∇ωr = �E(y+, y−) · e−�F(y+,y−) ·
(

∂F(X, R, y−)
∂ωr

− ∂F(X, R, y+)
∂ωr

)
, (15)

where ∂F(X,R,y)
∂ωr

is defined in Equation (10).
Similarly, ∇ωd can be calculated as

∇ωd = �E(y+, y−) · e−�F(y+,y−) ·
(

∂F(X, R, y−)
∂ωd

− ∂F(X, R, y+)
∂ωd

)
, (16)

where ∂F(X,R,y)
∂ωd

is defined in Equation (12).

6. ANALYSIS

6.1. Summary on Upper Bounds

Here, we give a summary of the upper bounds on the basic loss function and differ-
ent optimization methods. Figure 1 shows the relationships. To maximize the diverse
ranking accuracy in terms of a diversity evaluation measure, the basic loss function is
defined as the sum of 1 minus the performance of each query (Equation (5)). The basic
loss function can be upper bounded by a loss function over possible ranking pairs, as
shown in Equation (6). Replacing the max operation with sum, Equation (6) can be
further upper bounded by the sum of 0-1 losses, as shown in Equation (7). Based on
Equation (7), different upper bounds can derived, each corresponds to one algorithm.
For example, moving E into �·�, we get the loss function for PAMM (Equation (8)).
Replacing �·� with its upper bounds of logistic function and exponential function, we
get the loss function of SGDMM-Log and SGDMM-Exp, respectively.

6.2. Advantages

The proposed diverse ranking framework in this paper is simple yet powerful for search
result diversification. It provides a general method for directly optimizing the diversity
evaluation measures in learning diversity ranking models. New algorithms can be
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easily derived under the framework. Compared with the existing learning methods
such as R-LTR [Zhu et al. 2014], SVM-DIV [Yue and Joachims 2008], and structural
SVM [Liang et al. 2014], the algorithms derived from the framework have several
advantages.

First, these algorithms employ a more reasonable ranking model. The relational
ranking model follows the MMR criterion and thus can be mimic the process of se-
quential document selection, which naturally meets search user behaviors. In con-
trast, existing approaches to search result diversification, such as structural SVM
approaches [Liang et al. 2014], calculate all ranking scores within a single step, that of
in relevance ranking. The marginal relevance of each document cannot be taken into
consideration at ranking time.

Second, these algorithms have the ability to incorporate any diversity evaluation
measure in training, which makes the algorithm focus on the specified measure when
updating the model parameters. In contrast, existing algorithms such as R-LTR only
minimizes a loss function that is loosely related to diversity evaluation measures, and
SVM-DIV is trained to optimize the subtopic coverage.

Third, these algorithms utilize the pairs between the positive rankings and the
negative rankings in training, which makes it possible to leverage more information in
training. Specifically, the algorithms enlarge the margins between the positive rankings
and negative rankings when updating the parameters. In contrast, R-LTR only uses
the information in the positive rankings, and the training is aimed at maximizing the
likelihood.

6.3. Comparison of the Derived Algorithms

PAMM optimizes a modified 0-1 loss in which the difference of the two rankings is
used as the margin. The penalty to a ranking pair will be zero if the model correctly
predicts the ranking pair with some high confidence; otherwise, 1. Since the penalty to
one pair is upper bounded by 1, PAMM is not sensitive to data noise. However, the 0-1
loss function is non-smooth and non-convex. Thus, PAMM makes use of the Perceptron
updating rules in training. At each iteration, PAMM updates the model parameters
only if the ranking pairs are not correctly predicted or the confidence is not large
enough. After a few training iterations, most ranking pairs will be correctly predicted.
This property makes PAMM perform faster than SGDMM-Log and SGDMM-Exp.

SGDMM-Log optimizes a logistic loss function with stochastic gradient descent. The
logistic loss function is smooth and convex. It does not assign zero penalty to any
ranking pairs. The ranking model that correctly predicts a ranking pair with high
confidence is penalized less. This leads SGDMM-Log to be more sensitive to outliers in
the data than PAMM.

SGDMM-Exp optimizes an exponential loss function with stochastic gradient de-
scent. The exponential loss function is also smooth and convex. Compared with the 0-1
loss and the logistic loss, the exponential loss penalizes incorrect prediction of a ranking
pair very severely, whereas it penalizes almost nothing when the prediction is correct.
This is a very desirable property in most cases. However, this property also means
that SGDMM-Exp has the disadvantage of being very sensitive to noisy data since the
learning process will spend more effort on the outliers and tend to be vulnerable to
noisy data.

7. EXPERIMENTS

We conducted experiments to test the performances of the example algorithms (PAMM,
SGDMM-Log, and SGDMM-Exp) derived under the framework of directly optimizing
diversity evaluation measures.
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Table II. Statistics on WT2009, WT2010, and WT2011

Dataset #queries #labeled docs #subtopics per query

WT2009 50 5149 3∼8
WT2010 48 6554 3∼7
WT2011 50 5000 2∼6

7.1. Experimental Settings

7.1.1. Datasets and Evaluation Measures. Three TREC benchmark datasets for diversity
tasks are used: TREC 2009 Web Track (WT2009), TREC 2010 Web Track (WT2010),
and TREC 2011 Web Track (WT2011). Each dataset consists of queries, corresponding
retrieved documents, and human-judged labels. Each query includes several subtopics
identified by TREC assessors. The document relevance labels were made at the subtopic
level, and the labels are binary.2 Statistics on the datasets are given in Table II.

All experiments were carried out on the ClueWeb09 Category B data collection,3
which comprises 50 million English web documents. Porter stemming, tokenization,
and stop-words removal (using the INQUERY list) were applied to the documents as
preprocessing. We conducted 5-fold cross-validation experiments on the three datasets.
For each dataset, we randomly split the queries into five even subsets. At each fold,
three subsets were used for training, one was used for validation, and one was used for
testing. The results reported were the average over the five trials.

The current official evaluation metrics of the diversity task, ERR-IA [Chapelle et al.
2009], α-NDCG [Clarke et al. 2008], and NRBP [Clarke et al. 2009] were adopted in our
experiments. They measure the diversity of a result list by explicitly rewarding novelty
and penalizing redundancy observed at every rank. The associated parameters α and
β are all set to 0.5, which is consistent with the default settings in the official TREC
evaluation program. D#-NDCG [Sakai and Song 2011], which encourages high intent
recall in a search output within the D-measure framework [Sakai et al. 2010], is also
used in our experiments. The parameter γ in D#-NDCG is set to 0.5. In all measures,
the scores are computed over the top-k search results (k = 20).

7.1.2. Baselines. We compared PAMM, SGDMM-Log, and SGDMM-Exp with several
types of baselines. The baselines include the conventional relevance ranking models in
which document novelty is not taken into consideration:

Query likelihood (QL) [Manning et al. 2008]: Language models for information
retrieval.

ListMLE [Liu 2009; Li 2014]: A representative learning-to-rank model for informa-
tion retrieval.

We also compared PAMM, SGDMM-Log, and SGDMM-Exp with three heuristic ap-
proaches to search result diversification in the experiments:

MMR [Carbonell and Goldstein 1998]: A heuristic approach to search result diver-
sification in which the document ranking is constructed via iteratively selecting the
document with the MMR.

xQuAD [Santos et al. 2010]: A representative heuristic approach to search result
diversification.

PM-2 [Dang and Croft 2012]: Another widely used heuristic approach to search
result diversification.

Note that these three baselines require a prior relevance function to implement
their diversification steps. In our experiments, ListMLE was chosen as the relevance
function.

2WT2011 has graded judgments. In this article, we treat them as binary.
3http://boston.lti.cs.cmu.edu/data/clueweb09.
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Table III. Relevance Features Used in the Experiments

Name Description # Features

TF-IDF The tf-idf model 5
BM25 BM25 with default parameters 5
LMIR LMIR with Dirichlet smoothing 5

MRF [Metzler and Croft 2005] MRF with ordered/unordered phrase 10
PageRank PageRank score 1
#inlinks number of inlinks 1

#outlinks number of outlinks 1
The first four lines are query-document matching features, each applied to the fields
of body, anchor, title, URL, and the whole documents. The latter three lines are
document quality features. Zhu et al. [2014].

Learning approaches to search result diversification are also used as baselines in the
experiments:

SVM-DIV [Yue and Joachims 2008]: A representative learning approach to search
result diversification. It utilizes structural SVMs to optimize the subtopic coverage.
SVM-DIV does not consider relevance. For fair performance comparison, in the base-
line, we first apply ListMLE to capture relevance and then apply SVM-DIV to re-rank
the top-K retrieved documents.

Structural SVM [Tsochantaridis et al. 2005]: Structural SVM can be configured to
directly optimize diversity evaluation measures, as shown in Liang et al. [2014]. In this
article, we used structural SVM to optimize α-NDCG@20 and ERR-IA@20, denoted as
StructSVM(α-NDCG) and StructSVM(ERR-IA), respectively.

R-LTR [Zhu et al. 2014]: A state-of-the-art learning approach to search result di-
versification. The ranking function is a linear combination of the relevance score and
novelty score between the current document and those previously selected. Following
the practice in Zhu et al. [2014], in our experiments, we used the results of R-LTRmin
which defines the relation function hS(R) as the minimal distance.

7.1.3. Parameters Settings. PAMM, SGDMM-Log, and SGDMM-Exp have some param-
eters. The learning rate parameter η was tuned based on the validation set during each
experiment. In all of the experiments in this subsection, we set the number of positive
rankings per query τ+ = 5 and number of negative rankings per query τ− = 20. As for
the parameter E, α-NDCG@20, ERR-IA@20, and D#-NDCG@20 were utilized, denoted
as PAMM(α-NDCG), PAMM(ERR-IA), PAMM(D#-NDCG), SGDMM-Log(α-NDCG),
SGDMM-Log(ERR-IA), SGDMM-Log(D#-NDCG), SGDMM-Exp(α-NDCG), SGDMM-
Exp(ERR-IA), and SGDMM-Exp(D#-NDCG), respectively.

7.1.4. Features. We adopted the features used in the work of R-LTR [Zhu et al. 2014].
There are two types of features: relevance features, which capture the relevance infor-
mation of a query with respect to a document, and novelty features, which represent
the relation information among documents. Tables III and IV list the relevance and
novelty features used in the experiments, respectively.

7.2. Experimental Results

The experimental results on WT2009, WT2010, and WT2011 are reported in Tables V,
VI, and VII, respectively. Boldface indicates the highest score in terms of the cor-
responding evaluation measure. From the results, we can see that all of our meth-
ods (PAMM(α-NDCG), PAMM(ERR-IA), PAMM(D#-NDCG), SGDMM-Log(α-NDCG),
SGDMM-Log(ERR-IA), SGDMM-Log(D#-NDCG), SGDMM-Exp(α-NDCG), SGDMM-
Exp(ERR-IA), and SGDMM-Exp(D#-NDCG)) outperform all of the baselines on all
three datasets in terms of all evaluation measures. We conducted significant testing
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Table IV. The Seven Novelty Features Used in the Experiments

Name Description

Subtopic Diversity Euclidean distance based on PLSA [Hofmann 1999]
Text Diversity Cosine-based distance on term vectors
Title Diversity Text diversity on title
Anchor Text Diversity Text diversity on anchor
ODP-Based Diversity ODP4 taxonomy-based distance
Link-Based Diversity Link similarity of document pair
URL-Based Diversity URL similarity of document pair
Each feature is extracted over two documents. Zhu et al. [2014].

Table V. Performance Comparison of All Methods on WT2009

Method ERR-IA α-NDCG D#-NDCG NRBP

QL 0.1637 0.2691 0.1445 0.1382
ListMLE 0.1913 0.3074 0.1571 0.1681
MMR 0.2022 0.3083 0.1863 0.1715
xQuAD 0.2316 0.3437 0.1899 0.1956
PM-2 0.2294 0.3369 0.1858 0.1788
SVM-DIV 0.2408 0.3526 0.2121 0.2073
StructSVM(ERR-IA) 0.2613 0.3732 0.2134 0.2066
StructSVM(α-NDCG) 0.2602 0.3771 0.2127 0.2130
StructSVM(D#-NDCG) 0.2555 0.3756 0.2249 0.2091
R-LTR 0.2714 0.3964 0.2296 0.2339
PAMM(ERR-IA) 0.2945* 0.4229* 0.2430* 0.2363
PAMM(α-NDCG) 0.2842* 0.4271* 0.2421* 0.2411*
PAMM(D#-NDCG) 0.2844* 0.4241* 0.2502* 0.2476*
SGDMM-Log(ERR-IA) 0.2888* 0.4152* 0.2433* 0.2531*
SGDMM-Log(α-NDCG) 0.2877* 0.4221* 0.2431* 0.2340
SGDMM-Log(D#-NDCG) 0.2851* 0.4096 0.2497* 0.2409*
SGDMM-Exp(ERR-IA) 0.2914* 0.4007 0.2411 0.2373
SGDMM-Exp(α-NDCG) 0.2876* 0.4142* 0.2407 0.2400
SGDMM-Exp(D#-NDCG) 0.2880* 0.4130* 0.2489* 0.2451*
Boldface indicates the highest score and ‘*’ indicates that the improvement
over R-LTR is statistically significant (p-value < 0.05).

(t-test) on the improvements of our methods over the baseline of R-LTR (the best base-
line) in terms of α-NDCG@20, ERR-IA@20, D#-NDCG, and NRBP. The asterisks in
Tables V, VI, and VII indicate that the corresponding improvements are statistically
significant (p-value < 0.05). The results show that the algorithms derived from the
framework of directly optimizing diversity evaluation measures are effective for the
task of search result diversification.

From the results, we can see that all of the direct optimization methods derived
under the framework perform better than the baselines. These methods themselves
perform equally well on all three datasets. There exist no significant differences among
them.

We also observed that, on all three datasets, the derived algorithms trained with α-
NDCG@20 performed best in terms of α-NDCG@20, the algorithms trained with ERR-
IA@20 performed best in terms of ERR-IA@20, and the algorithms trained with D#-
NDCG performed best in terms of D#-NDCG. The results indicate that the algorithms
derived under the framework can enhance diverse ranking performances in terms of a
measure by using the measure in training. More detailed analysis of the phenomenon
is reported in Section 7.3.2 and Appendix A.

4http://www.dmoz.org
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Table VI. Performance Comparison of All Methods on WT2010

Method ERR-IA α-NDCG D#-NDCG NRBP

QL 0.1980 0.3024 0.1678 0.1549
ListMLE 0.2436 0.3755 0.2221 0.1949
MMR 0.2735 0.4036 0.2345 0.2252
xQuAD 0.3278 0.4445 0.2679 0.2872
PM-2 0.3296 0.4478 0.2673 0.2901
SVM-DIV 0.3331 0.4593 0.3164 0.2934
StructSVM(ERR-IA) 0.3557 0.4724 0.3379 0.2933
StructSVM(α-NDCG) 0.3521 0.4764 0.3393 0.2991
StructSVM(D#-NDCG) 0.3497 0.4722 0.3451 0.2947
R-LTR 0.3647 0.4924 0.3506 0.3293
PAMM(ERR-IA) 0.3876* 0.5119* 0.3726* 0.3333
PAMM(α-NDCG) 0.3802* 0.5249* 0.3712* 0.3431*
PAMM(D#-NDCG) 0.3811* 0.5220* 0.3793* 0.3417*
SGDMM-Log(ERR-IA) 0.3855* 0.5100* 0.3713* 0.3411*
SGDMM-Log(α-NDCG) 0.3825* 0.5221* 0.3716* 0.3400*
SGDMM-Log(D#-NDCG) 0.3856* 0.5166* 0.3758* 0.3397*
SGDMM-Exp(ERR-IA) 0.3862* 0.5135* 0.3741* 0.3384
SGDMM-Exp(α-NDCG) 0.3826* 0.5219* 0.3700* 0.3424*
SGDMM-Exp(D#-NDCG) 0.3821* 0.5149* 0.3799* 0.3403*
Boldface indicates the highest score and ‘*’ indicates that the improvement
over R-LTR is statistically significant (p-value < 0.05).

Table VII. Performance Comparison of All Methods on WT2011

Method ERR-IA α-NDCG D#-NDCG NRBP

QL 0.3520 0.4531 0.3177 0.3123
ListMLE 0.4172 0.5169 0.3947 0.3887
MMR 0.4284 0.5302 0.4034 0.3913
xQuAD 0.4753 0.5645 0.4395 0.4274
PM-2 0.4873 0.5786 0.4473 0.4318
SVM-DIV 0.4898 0.5910 0.4702 0.4475
StructSVM(ERR-IA) 0.5137 0.6134 0.4973 0.4574
StructSVM(α-NDCG) 0.5127 0.6179 0.4930 0.4630
StructSVM(D#-NDCG) 0.5121 0.6122 0.4988 0.4620
R-LTR 0.5389 0.6297 0.5082 0.4982
PAMM(ERR-IA) 0.5483* 0.6373* 0.5221* 0.4981
PAMM(α-NDCG) 0.5417 0.6433* 0.5211* 0.5012
PAMM(D#-NDCG) 0.5466* 0.6368 0.5260* 0.5000
SGDMM-Log(ERR-IA) 0.5499* 0.6359 0.5141 0.4999
SGDMM-Log(α-NDCG) 0.5423 0.6403* 0.5208* 0.4986
SGDMM-Log(D#-NDCG) 0.5476* 0.6396* 0.5233* 0.5001
SGDMM-Exp(ERR-IA) 0.5477* 0.6371* 0.5218* 0.4975
SGDMM-Exp(α-NDCG) 0.5416 0.6436* 0.5231* 0.5008
SGDMM-Exp(D#-NDCG) 0.5468* 0.6365 0.5220* 0.5018
Boldface indicates the highest score and ‘*’ indicates that the improvement
over R-LTR is statistically significant (p-value < 0.05).

7.3. Discussions

We conducted experiments to show the reasons that the algorithms derived from the
framework of directly optimizing diversity evaluation measures outperform the base-
lines, using the PAMM algorithm and results of the WT2009 dataset as examples. The
experimental results of SGDMM-Log and SGDMM-Exp on the WT2009 dataset are
shown in the Appendix.
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Fig. 2. Example rankings from WT2009. Each shaded block represents a document, and the number(s) in
the block represent the subtopic(s) covered by the document.

7.3.1. Effect of Maximizing Marginal Relevance. We found that PAMM makes a good trade-
off between the query-document relevance and document novelty via maximizing
marginal relevance. Here, we use the result with regard to query number 24 (“diversity,”
which contains four subtopics) to illustrate why our method is superior to the base-
line method of Structural SVM trained with α-NDCG@20 (denoted as StructSVM(α-
NDCG)). Note that structural SVM cannot leverage the marginal relevance in its
ranking model. Figure 2 shows the top five ranked documents by StructSVM(α-
NDCG), as well as four intermediate rankings generated by PAMM(α-NDCG)
(denoted as fS0 , fS1 , fS2 , and fS3 ). The ranking denoted as fSr is generated by first
sequentially selecting the documents for ranking positions of 1, 2, . . . , r − 1 with mod-
els fS0 , fS1 , . . . , fSr−2 , respectively, then ranking the remaining documents with fSr−1 .
For example, the intermediate ranking denoted fS2 is generated by selecting one docu-
ment with fS0 and setting it to rank 1, then selecting one document with fS1 and set it to
rank 2, and finally ranking the remaining documents with fS2 and putting them at the
tail of the list. Each of the shaded blocks indicates a document, and the number(s) in
the block indicate the subtopic(s) assigned to the document by the human annotators.
The performances in terms of α-NDCG@5 are also shown in the last column. Here, we
used α-NDCG@5 because only the top five documents are shown.

The results in Figure 2 indicate the effectiveness of the MMR criterion. We can see
that the α-NDCG@5 increases steadily with increasing rounds of document selection
iterations. In the first iteration, fS0 selects the most relevant document and puts it in
the first position without considering the document novelty. Thus, the α-NDCG@5 of
the ranking generated by fS0 is lower than that of StructSVM(α-NDCG). In the second
iteration, the ranking function fS1 selects the document associated with subtopics
1 and 3 and ranks it to the second position, according to the MMR criterion. From
the viewpoint of diverse ranking, this is obviously a better choice than StructSVM(α-
NDCG) made, which selects the document with subtopics 1 and 4. (Note that both
Structural SVM and PAMM select the document with subtopics 2 and 4 for the first
position.) In the following steps, fS2 and fS3 select documents for ranking positions
of 3 and 4, also following MMR criterion. As a result, fS1 , fS2 , and fS3 outperform
StructSVM(α-NDCG).

7.3.2. Ability to Improve the Evaluation Measures. We conducted experiments to see
whether PAMM has the ability to improve the diverse ranking quality in terms of
a measure by using the measure in training. Specifically, we trained models using
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Fig. 3. Performance in terms of ERR-IA@20 when model is trained with ERR-IA@20, α-NDCG@20, or
D#-NDCG@20.

Fig. 4. Performance in terms of α-NDCG@20 when model is trained with ERR-IA@20, α-NDCG@20, or
D#-NDCG@20.

ERR-IA@20, α-NDCG@20, and D#-NDCG@20 and evaluated their accuracies on the
test dataset in terms of ERR-IA@20, α-NDCG@20, and D#-NDCG@20. The experiments
were conducted for each fold of the cross-validation, and performances on each fold are
reported. Figures 3, 4, and 5 show the results in terms of α-NDCG@20, ERR-IA@20,
and D#-NDCG@20, respectively. From Figure 3, we can see that on all five folds (ex-
cept fold four), PAMM(ERR-IA) trained with ERR-IA@20 performs better in terms of
ERR-IA@20. Similarly, from Figure 4, we can see that on all five folds (except fold four),
PAMM(α-NDCG) trained with α-NDCG@20 performs better in terms of α-NDCG@20.
From Figure 5, we can see that on all five folds, PAMM(D#-NDCG) trained with D#-
NDCG@20 performs better in terms of D#-NDCG@20. Similar results have also been
observed in the experiments on other datasets (see the results in Tables V, VI, and VII)
and in the experiments for the other derived algorithms of SGDMM-Log and SGDMM-
Exp (see the results in Appendix A). All results indicate that the algorithms derived
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Fig. 5. Performance in terms of D#-NDCG@20 when model is trained with ERR-IA@20, α-NDCG@20, or
D#-NDCG@20.

Fig. 6. Ranking accuracies and training time with respect to τ+.

under the proposed framework can indeed enhance diverse ranking quality in terms of
a measure by using the measure in training.

7.3.3. Effects of Positive and Negative Rankings. We examined the effects of the number of
positive rankings generated per query (parameter τ+). Specifically, we compared the
performances of PAMM(α-NDCG) with respect to different τ+ values. Figure 6 shows
the performance curve in terms of α-NDCG@20. The performance of R-LTR baseline is
also shown for reference. From the result, we can see that the curve does not change
much with different τ+ values, which indicates the robustness of PAMM. Figure 6 also
shows training time (in hours) with respect to different τ+ values. The training time
increased dramatically with large τ+ because more ranking pairs are generated for
training. In our experiments, τ+ was set to 5.

We further examined the effect of the number of negative rankings per query (param-
eter τ−). Specifically, we compared the performances of PAMM(α-NDCG) with respect
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Fig. 7. Ranking accuracies and training time with respect to τ−.

Fig. 8. Ranking accuracies with respect to different α-NDCG@20 values of the negative rankings.

to different τ−, and the results are shown in Figure 7. From the results, we can see
that the performance of PAMM increased steadily with increasing τ− values until
τ− = 20, which indicates that PAMM can achieve better ranking performance with
more information from the negative rankings. As the cost, the training time increased
dramatically because more training instances are involved. In our experiments, τ− was
set to 20.

We also conducted experiments to show the effect of sampling the negative rankings
with different α-NDCG values. Specifically, in each experiment, we configured Algo-
rithm 4 to choose the negative rankings whose α-NDCG@20 values are 0.5, 0.6, 0.7,
0.8, and 0.9, respectively. Figure 8 shows the performances of PAMM(α-NDCG) with
respect to different α-NDCG@20 values of the sampled negative rankings. From the
results, we can see that PAMM performs best when the α-NDCG@20 of the sampled
negative rankings ranges from 0.6 to 0.9. The results also indicate that PAMM (and
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Fig. 9. Learning curve of PAMM(α-NDCG).

the algorithms derived under the proposed framework) is robust and not very sensitive
to different methods of sampling the negative rankings.

7.3.4. Improving the User Experience. We conducted A/B testing to check whether the
derived algorithms can actually improve user experience. Specifically, for each of the 50
queries from WT2009, the rankings generated by the R-LTR model (ranking A) and the
rankings generated by the PAMM(α-NDCG) (ranking B) were shown to 19 annotators
simultaneously. Each annotator compared these two rankings and selected a label
of “win,” “draw,” or “loss” based on user experience. Note that the names of the two
ranking models are anonymized before being sent to the annotators. Table VIII shows
the results, and each line correspond to a query. The query string, the α-NDCG@20
of R-LTR, the α-NDCG@20 of PAMM(α-NDCG), the number of annotators who think
PAMM won, the number of annotators who think PAMM and R-LTR are equally good,
and the number of annotators who think PAMM lost are shown in the table. From
the results, we can see that the user annotations match well with α-NDCG@20, which
indicates that α-NDCG@20 is an effective evaluation measure for simulating user
satisfaction judgments. Among the 950 judgements (50 queries and 19 judgments per
query), 524 voted for a PAMM win, 173 voted for a PAMM loss, and 253 voted for a
draw. The results showed that PAMM (and the algorithms derived from the framework)
can actually improve user experience.

7.3.5. Convergence and Training Time. We conducted experiments to show whether
PAMM can converge in terms of the diversity evaluation measures. Specifically, we
showed the learning curve of PAMM(α-NDCG) in terms of α-NDCG@20, ERR-IA@20,
and D#-NDCG during the training phase. At each training iteration, the model param-
eters are outputted and evaluated on the test data. Figure 9 shows the performance
curves with respect to the number of training iterations. From the results, we can
see that the ranking accuracy of PAMM(α-NDCG) steadily improves in terms of α-
NDCG@20, ERR-IA@20, and D#-NDCG as the training goes on. PAMM converges and
returns after running about 60 iterations. We also observed that, in all of our ex-
periments, PAMM usually converges and returns after running 50∼100 iterations. A
similar phenomenon was also observed from the learning curve of SGDMM-Log and
SGDMM-Exp (see Appendix C). The results indicates that the algorithms derived un-
der the proposed framework converge fast and conduct training efficiently.
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Table VIII. A/B Testing for R-LTR and PAMM(α-NDCG) on WT2009 Queries

α-NDCG@20 α-NDCG@20 PAMM PAMM
ID: Query of R-LTR of PAMM win draw loss

1: obama family tree 0.866 0.920 13 1 5
2: french lick resort and casino 0.322 0.378 16 1 2
3: getting organized 0.694 0.669 1 13 5
4: toilet 0.445 0.478 15 0 4
5: mitchell college 0.295 0.338 15 1 3
6: kcs 0.094 0.109 2 13 4
7: air travel information 0.163 0.172 14 3 2
8: appraisals 0.358 0.357 0 14 5
9: used car parts 0.383 0.405 14 4 1
10: cheap internet 0.220 0.276 14 3 2
11: gmat prep classes 0.503 0.518 12 6 1
12: djs 0.567 0.617 18 1 0
13: map 0.471 0.496 16 3 0
14: dinosaurs 0.759 0.755 2 10 7
15: espn sports 0.349 0.356 1 14 4
16: arizona game and fish 0.381 0.426 13 3 3
17: poker tournaments 0.368 0.374 13 2 4
18: wedding budget calculator 0.541 0.514 1 1 17
19: the current 0.000 0.000 0 19 0
20: defender 0.101 0.171 19 0 0
21: volvo 0.457 0.483 10 3 6
22: rick warren 0.135 0.208 17 1 1
23: yahoo 0.000 0.000 1 18 0
24: diversity 0.830 0.875 12 5 2
25: euclid 0.479 0.539 13 3 3
26: lower heart rate 0.530 0.554 5 9 5
27: starbucks 0.314 0.346 10 6 3
28: inuyasha 0.327 0.379 12 4 3
29: ps 2 games 0.286 0.318 14 2 3
30: diabetes education 0.144 0.181 10 8 1
31: atari 0.817 0.812 1 9 9
32: website design hosting 0.676 0.744 12 6 1
33: elliptical trainer 0.489 0.496 10 5 4
34: cell phones 0.181 0.225 11 7 1
35: hoboken 0.209 0.236 12 4 3
36: gps 0.218 0.195 3 4 12
37: pampered chef 0.475 0.541 15 3 1
38: dogs for adoption 0.681 0.662 1 1 17
39: disneyland hotel 0.393 0.426 15 3 1
40: michworks 0.361 0.391 16 2 1
41: orange county convention center 0.268 0.373 13 5 1
42: the music man 0.428 0.455 15 3 1
43: the secret garden 0.220 0.296 17 1 1
44: map of the united states 0.156 0.213 16 1 2
45: solar panels 0.284 0.329 14 3 2
46: alexian brothers hospital 0.332 0.371 15 3 1
47: indexed annuity 0.779 0.832 9 9 1
48: wilson antenna 0.680 0.755 13 4 2
49: flame designs 0.237 0.264 9 4 6
50: dog heat 0.556 0.527 4 5 10

total 524 253 173
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Table IX. Comparison of the Training Time for Different
Algorithms Derived from the Framework

Method training time (hour)

PAMM(α-NDCG) ∼5h
SGDMM-Log(α-NDCG) ∼6.5h
SGDMM-Exp(α-NDCG) ∼6.5h

We compared the training time of PAMM(α-NDCG), SGDMM-Log(α-NDCG), and
SGDMM-Exp(α-NDCG) on the first fold of the WT2009 dataset. All experiments
were conducted on a server with 24GB memory and two Intel Xeon E5410 2.33
GHz Quad-Core processors. From the results reported in Table IX,5 we can see that
PAMM(α-NDCG) used less training time than SGDMM-Exp(α-NDCG) and SGDMM-
Exp(α-NDCG) to converge. This is because (i) we empirically found that PAMM usually
converges at about 60 iterations while SGDMM-Exp needs about 70∼80 iterations to
converge; and (ii) at each iteration, PAMM updates the model parameter only if the
condition F(X(n), R(n), y+)− F(X(n), R(n), y−) ≤ E(X(n), y+, J(n))− E(X(n), y−, J(n)) (Line 10
of Algorithm 2) is satisfied. SGDMM-Exp and SGDMM-Log, however, need to update
the parameter for all pairs (y+, y−). The results show that PAMM is more efficient than
other derived algorithms.

8. CONCLUSION

In this article, we proposed a novel framework that can directly optimize diversity
evaluation measures for learning ranking models for search result diversification. The
framework makes use of the MMR model for constructing the diverse rankings. In
training, the diversity evaluation measure on training queries is directly optimized.
New diversity ranking algorithms can be easily derived under the framework by op-
timizing the loss functions upper bounding the basic loss defined over the diversity
evaluation measure. The algorithms derived under the framework offer several ad-
vantages: they employ a ranking model that meets the MMR criterion, they have the
ability to directly optimize any diversity evaluation measure, and they have the ability
to utilize both positive and negative rankings in training. Experimental results based
on three benchmark datasets show that the algorithms derived under the framework
significantly outperformed the state-of-the-art baseline methods including SVM-DIV,
structural SVM, and R-LTR.
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