
MatchZoo: A Learning, Practicing, and Developing System for
Neural Text Matching

Jiafeng Guo†,‡, Yixing Fan†,‡, Xiang Ji∗ and Xueqi Cheng†,‡
†University of Chinese Academy of Sciences, Beijing, China

‡CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

∗Beijing Institute of Technology University, Beijing, China
{guojiafeng,fanyixing,jixiang,cxq}@ict.ac.cn

ABSTRACT
Text matching is the core problem in many natural language pro-
cessing (NLP) tasks, such as information retrieval, question answer-
ing, and conversation. Recently, deep leaning technology has been
widely adopted for text matching, making neural text matching a
new and active research domain. With a large number of neural
matching models emerging rapidly, it becomes more and more dif-
ficult for researchers, especially those newcomers, to learn and
understand these new models. Moreover, it is usually difficult to try
these models due to the tedious data pre-processing, complicated
parameter configuration, and massive optimization tricks, not to
mention the unavailability of public codes sometimes. Finally, for
researchers who want to develop new models, it is also not an easy
task to implement a neural text matching model from scratch, and
to compare with a bunch of existing models. In this paper, therefore,
we present a novel system, namely MatchZoo, to facilitate the learn-
ing, practicing and designing of neural text matching models. The
system consists of a powerful matching library and a user-friendly
and interactive studio, which can help researchers: 1) to learn state-
of-the-art neural text matching models systematically, 2) to train,
test and apply these models with simple configurable steps; and 3)
to develop their own models with rich APIs and assistance.

CCS CONCEPTS
• Information systems→ Learning to rank.

KEYWORDS
neural network; text matching; matchzoo;

ACM Reference Format:
Jiafeng Guo, Yixing Fan, Xiang Ji and Xueqi Cheng. 2019. Match-Zoo: A
Learning, Practicing, and Developing System for Neural Text Matching. In
Proceedings of the 42nd Int’l ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR’19), July 21–25, 2019, Paris, France.
ACM, NY, NY, USA, 4 pages. https://doi.org/10.1145/3331184.3331403

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6172-9/19/07.
https://doi.org/10.1145/3331184.3331403

1 INTRODUCTION
Many natural language processing (NLP) tasks can be formulated as
a matching problem between two texts. For example, information
retrieval is about the matching between a query and a document,
question answering attempts to match an answer to a question,
while conversation could be viewed as the matching between a
response and an input utterance. In recent years, with the advance
of deep learning technology, we have witnessed a growing body
of work in applying shallow or deep neural models for the text
matching problem, leading to a new and active research direction
named neural text matching in this work.

Just as the emergence of Web applications leads to information
overload, the quick growth of neural text matching models also
brings some kind of “model overload” to researchers. Firstly, the
learning cost increases significantly with the number of neural
matching models. It becomes more and more difficult for research-
ers, especially those newcomers to this area, to learn and understand
these new models. Secondly, it takes a lot of effort to try or apply
existing models. Sometimes the public code of a specific model is
not available. If it is available, it might be a stand-alone algorithm
and you need to conduct tedious data pre-processing, complicated
parameter configuration, and massive optimization tricks before
you can apply it to your dataset. Finally, for researchers who want
to develop new models, it is not an easy task either. It takes time to
implement a neural text matching model from scratch, and even
more time to compare with the a bunch of existing models.

In this demo, we present a novel system, namely MatchZoo, to
tackle the above challenges. The system is designed to facilitate
the learning, practicing and developing of neural text matching
models. The overall architecture of the system consists of two
major components: 1) the MatchZoo library: a neural text matching
library which implements popular neural text matching algorithms
as well as rich APIs for data pre-processing, model construction,
training and testing, and automatic machine learning (AutoML); 2)
the MatchZoo studio: a user friendly and interactive Web interface
which enables users to browse, configure, run, test, apply and create
neural text matching models.

With the MatchZoo system1, researchers can: 1) learn state-of-
the-art neural text matching models systematically, including the
model descriptions, network structures, performances, as well as the
code implementation; 2) apply these models easily through simple
parameter configuration, interactive training/testing, and direct

1http://www.bigdatalab.ac.cn/matchzoo/#/

ar
X

iv
:1

90
5.

10
28

9v
2

 [
cs

.I
R

]
 2

4
Ju

l 2
01

9

https://doi.org/10.1145/3331184.3331403

Data	Preparation Model	Construction Train	&	Test

Automatic Machine Learning
Preparation Parameter	Tuning Model	Selection

MatchZoo Library

User Interface

Model Learning Model Practicing Model Designing

Architectures

Parameters

Tutorials

Datasets	
select/upload

Model	 train/test

Results	Analysis

Data
Preprocessing

Layers	
Implementation

MatchZoo Studio

Figure 1: An Overview of the System Architecture.

application on real data; and 3) develop their own models rapidly
with rich pre-processing APIs, off-the-shelf network layers, popular
learning objectives/optimization methods/evaluation metrics, and
fully-assistant notebooks.

The MatchZoo system is built upon the previously released open
source toolkit [2] with updated library and fresh new interfaces.
There have been some related system in this direction, such as
TFRank [7] and Anserini [11]. However, TFRank only focuses on
learning to rank techniques based on TensoFlow while Anserini is
an IR toolkit on reproducing retrieval models. Our system is signi-
ficantly different from them with a focus on helping researchers
learning, practicing and developing neural text matching models.

2 SYSTEM OVERVIEW
The architecture of the system is shown in the Figure 1. The system
consists of two major components, namely the MatchZoo library
and the MatchZoo studio. The library provides a number of text
processing units, popular neural text matching models, as well
as matching based evaluation and loss functions, for all stages
(i.e, data preparation, model construction, and train and test.) of
the machine learning based text matching tasks. Moreover, we
have also provided the AutoML operators to support automatic
data preparation, hyper-parameter tuning, and model selection in
the library. The studio provides an interactive interface based on
the MatchZoo library. There are three key functions, i.e., model
learning, model practicing, and model designing, to ease the process
of learning, using and creating neural text matching models. The
studio contains a user-friendly GUI which is built on theWeb server,
and users can interact with the studio through Web browsers.

3 MATCHZOO LIBRARY
The MatchZoo library is to provide the functions supporting the
high-level text matching tasks. Generally, the matching task can be
decomposed into three steps, namely data preparation, model con-
struction, and train/test. To support these steps, we extended the
Keras library to include layer interfaces that are specially designed
for text matching problems. Moreover, we have also added the auto-
matic component in which the data preparation, hyper-parameter

Model Construction
§ Representation-

focused model
§ Interaction-

focused model

Training and Testing
§ Objective functions:

ü regression
ü classification
ü ranking

§ Metrics: MAP, NDCG …

Extended Keras Library
Extended	MatchZoo Operators:
ü 2DGRU	layer,	crossing	matching
ü Attention	layer
ü ……

Data	Preparation
§ Vocabulary	
§ Stem,	Lowercase
§ Frequency	filter
§ …

Basic		Keras Operators:
ü Convolution	 NN	layer
ü Recurrent	NN	layer
ü ……

Automatic Machine Learning

Auto	Data	Preparation Auto	Parameter	Tuning Auto	Model	Selection

Figure 2: An overview of the MatchZoo library.

tuning, and model selection can be done automatically. This is very
important as tuning machine learning hyper-parameters is a tedi-
ous yet crucial task, as the performance of an algorithm is highly
dependent on the choice of hyper-parameters. In this way, we can
largely alleviate the burden on tuning the hyper-parameters. The
architecture of the MatchZoo library is shown in Figure 2.

3.1 Data Preparation
The data preparation module aims to convert the raw texts into
the format of model’s input. Here, we provided a number of text
processing units where each unit is designed to perform a specific
data transformation. Here, we list a few examples here.

• Lowercase Unit converts all the characters into lower case.
• FrequencyFilterUnit filters outwords based on pre-defined
word frequency threshold.

• PuncRemoval Unit removes the punctuations from texts.
• Vocabulary Unit transforms the word tokens into a se-
quence word indices.

• WordHashing Unit transforms the word tokens into tri-
letter tokens.

All the processing units can be easily combined together to meet
different model’s data format requirement since they share a unified
API. After converting the raw dataset to the desired format, the
module provides three types of data batch modes, i.e., generating a
batch of data in pointwise, pairwise or listwise manner.

3.2 Model Construction
In the model construction module, we employ Keras library to help
users build the deep matching model layer by layer conveniently.
The Keras library provides a set of common layers widely used in
neural models, such as convolutional layer, pooling layer, dense
layer and so on. To further facilitate the construction of deep text
matching models, we extend the Keras library to provide some
layer interfaces specifically designed for text matching. We list a
few examples here.

• Matching_Matrix layer builds a word-by-word matching
matrix based on dot product, cosine similarity or indicator
function [6].

• Attention layers builds a general attention layer for a pairs
of text input.

(1) Description Tab (2) Guideline Tab

Figure 3: The interface of the model learning component.

2. Primary Panel 3. Secondary Panel1. Navigation Panel

Figure 4: The interface of the MatchZoo studio.

• Matching_Histogram layer builds a matching histogram
based on cosine similarity between word embeddings from
two texts [3].

Moreover, the library has implemented two schools of represent-
ative deep text matching models, namely representation-focused
models and interaction-focused models [3].

• Representation-basedmodels includeARC-I [4], DSSM [5],
CDSSM [8], MV-LSTM [9], and so on;

• Interaction-based models include DRMM [3], ARC-II [4],
KNRM [10], and so on;

Users can apply these models out-of-the-box or modify them via
simple configuration.

3.3 Train & Test
For learning the deep matching models, the Library provides a vari-
ety of objective functions for regression, classification and ranking.
For example, the ranking-related objective functions include several
well-known pointwise, pairwise and listwise losses. It is flexible for
users to pick up different objective functions in the training phase
for optimization. For evaluation, the library provides several widely
adopted evaluation metrics, such as Precision, MAP, and NDCG.

3.4 Automatic Machine Learning
The AutoML component is to ease the application of neural text
matching models by automatically conducting the data transform-
ation, hyper-parameter tuning, and model selection. Specifically,

each existing model is connected with a data transformer which
directly converts the raw dataset into the required input format. To
conduct AutoML, users just need to define the search space for all
the hyper-parameters, then an automatic optimization process will
be conducted through the random search algorithm [1]. The best
model will be selected according to some pre-determined metric.

4 MATCHZOO STUDIO
The MatchZoo studio provides a user-friendly Web GUI so that
ordinary users can lean, practice, and develop neural text matching
models easily. Figure 4 shows an overview of the MatchZoo studio.
As we can see, the interface is segmented into three vertical panels.

• Navigation panel is on the left where users can select a neural
matching model from the model list or choose to create a
new model.

• Primary panel is in the middle which includes three tabs
namely description, guideline and train/test. These tabs are
used to display the model description, interactive program-
ming, and configurable experiments.

• Secondary panel is on the right which provides some auxil-
iary information such as detailed model structures, experi-
mental results and API documentation.

4.1 Model Learning
Figure 3 shows the interface how users can learn different neural
matching models in MatchZoo. Specifically, users can select a model
in the navigation panel. Then, a systematical tutorial including the-
oretical descriptions and implementation details could be found
under the description tab and guideline tab in the primary panel. As
shown in Figure 3, the description tab contains a brief introduction
of the model structure, parameters, performance of the selected
neural text matching model DSSM. The guideline tab is an interact-
ive Jupyter notebook. Under this tab, users can not only learn the
original implementation code of DSSM, but also modify the code
and experience with it.

4.2 Model Practicing
Figure 5 shows the interface how users can practice different neural
matching models in MatchZoo. After selecting a model from the
navigation panel, there are two stages to experience with the model,
namely training stage and testing stage. In training stage, as is

(1) Training Stage (2) Testing Stage

Figure 5: The interface of the model practicing component.

shown in Figure 5 (1), users can interactively configure the model
hyper-parameters and select/upload a dataset in the primary panel.
Then, the secondary panel will display the training process, includ-
ing the loss curve on the training set and performance curves on the
validation set. In testing stage, as is shown in Figure 5 (2), users can
type in or select two texts as inputs in the primary panel. Then, the
secondary panel will show the matching score as well as the layer
weights. Note here the example DSSM model is a representation-
focused model, so the learned representation vector of the two
inputs are displayed for comparison and intuitive understanding.
For interaction-focused model, one can visualize the interaction
matrix for model explanation.

4.3 Model Designing
Figure 6 shows the interface how users can create a new neural
matching models in MatchZoo. Specifically, users can click the
“Model Design” in the navigation panel. Then, a Jupyter Notebook
will be present in the primary panel where users can directly im-
plement his/her own neural matching model. At the same time, on
the secondary panel, a detailed documentation about all the exist-
ing component APIs in MatchZoo would be displayed for users to
search and access.

5 DEMO PLAN
We will present our system in the following aspects: (1) We will
use a poster to give an overview of system architecture and briefly
show the stages of the neural text matching process as well as the
system components. (2) We will show the audience how to use the
system to complete an example of text matching task, including
data set pre-processing, model configuration, train, and test. (3) We
will give a brief introduction of the neural text matching models
in the system. (4) We will share our thoughts on the strengths and
weakness of the system, and further discuss the future work.

6 ACKNOWLEDGMENTS
This work was funded by the National Natural Science Foundation
of China (NSFC) under Grants No. 61425016, 61722211, 61773362,
and 61872338, the Youth Innovation Promotion Association CAS
under Grants No. 20144310 and 2016102, the National Key R&D

1. Interface for designing new models 2. List of components in MatchZoo

Model Design

Figure 6: The interface of the model designing component.

Program of China under Grants No. 2016QY02D0405, and the Found-
ation and Frontier Research Key Program of Chongqing Science
and Technology Commission (No. cstc2017jcyjBX0059).

REFERENCES
[1] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter

optimization. Journal of Machine Learning Research 13, Feb (2012), 281–305.
[2] Yixing Fan, Liang Pang, JianPengHou, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng.

2017. Matchzoo: A toolkit for deep text matching. arXiv preprint arXiv:1707.07270
(2017).

[3] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In CIKM. ACM, 55–64.

[4] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional
neural network architectures for matching natural language sentences. In NIPS.
2042–2050.

[5] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM. ACM, 2333–2338.

[6] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text Matching as Image Recognition. In AAAI.

[7] Rama Kumar Pasumarthi, Xuanhui Wang, Cheng Li, Sebastian Bruch, Michael
Bendersky, Marc Najork, Jan Pfeifer, Nadav Golbandi, Rohan Anil, and Stephan
Wolf. 2018. TF-Ranking: Scalable TensorFlow Library for Learning-to-Rank.
arXiv:arXiv:1812.00073

[8] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In WWW. 373–374.

[9] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
2016. A deep architecture for semantic matching with multiple positional sen-
tence representations. In Thirtieth AAAI Conference on Artificial Intelligence.

[10] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In SIGIR. ACM, 55–64.

[11] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling the use of Lucene
for information retrieval research. In SIGIR. ACM, 1253–1256.

http://arxiv.org/abs/arXiv:1812.00073

	Abstract
	1 Introduction
	2 System Overview
	3 MatchZoo Library
	3.1 Data Preparation
	3.2 Model Construction
	3.3 Train & Test
	3.4 Automatic Machine Learning

	4 MatchZoo Studio
	4.1 Model Learning
	4.2 Model Practicing
	4.3 Model Designing

	5 Demo Plan
	6 Acknowledgments
	References

