
From Greedy Selection to Exploratory Decision-Making:
Diverse Ranking with Policy-Value Networks
Yue Feng, Jun Xu∗, Yanyan Lan, Jiafeng Guo, Wei Zeng, Xueqi Cheng

1 University of Chinese Academy of Sciences, Beijing, China
2 CAS Key Lab of Network Data Science and Technology,

Institute of Computing Technology, Chinese Academy of Sciences
{fengyue,zengwei}@software.ict.ac.cn,{junxu,lanyanyan,guojiafeng,cxq}@ict.ac.cn

ABSTRACT
The goal of search result diversication is to select a subset of
documents from the candidate set to satisfy as many dierent
subtopics as possible. In general, it is a problem of subset selection
and selecting an optimal subset of documents is NP-hard. Existing
methods usually formalize the problem as ranking the documents
with greedy sequential document selection. At each of the rank-
ing position the document that can provide the largest amount
of additional information is selected. It is obvious that the greedy
selections inevitably produce suboptimal rankings. In this paper
we propose to partially alleviate the problem with a Monte Carlo
tree search (MCTS) enhanced Markov decision process (MDP), re-
ferred to as M2Div. In M2Div, the construction of diverse ranking
is formalized as an MDP process where each action corresponds
to selecting a document for one ranking position. Given an MDP
state which consists of the query, selected documents, and candi-
dates, a recurrent neural network is utilized to produce the policy
function for guiding the document selection and the value function
for predicting the whole ranking quality. The produced raw policy
and value are then strengthened with MCTS through exploring the
possible rankings at the subsequent positions, achieving a better
search policy for decision-making. Experimental results based on
the TREC benchmarks showed that M2Div can signicantly out-
perform the state-of-the-art baselines based on greedy sequential
document selection, indicating the eectiveness of the exploratory
decision-making mechanism in M2Div.

KEYWORDS
Diverse ranking; Markov decision process; Monte Carlo tree search
ACM Reference Format:
Yue Feng, Jun Xu∗, Yanyan Lan, Jiafeng Guo, Wei Zeng, Xueqi Cheng .
2018. From Greedy Selection to Exploratory Decision-Making: Diverse
Ranking with Policy-Value Networks. In SIGIR ’18: The 41st International
ACM SIGIR Conference on Research Development in Information Retrieval,
July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3209978.3209979
∗ Corresponding author: Jun Xu

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for prot or commercial advantage and that copies bear this notice and the full citation
on the rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specic permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3209979

1 INTRODUCTION
One important goal in many information retrieval tasks involves
providing search results that covers a wide range of topics for a
search query, called search result diversication [1]. The goal of
search result diversication can be formalized as selecting a mini-
mal subset of documents from the candidate set to cover as many
dierent subtopics as possible. Since the novelty of a document
depends on the other selected documents, selecting an optimal sub-
set of documents amounts to the problem subset selection and its
complexity is in general NP-hard.

Typical approaches treat search result diversication as rank-
ing the documents based on their relevance as well as the novelty.
Greedy sequential document selection has been widely adopted
to construct the diverse document ranking, that is, the document
ranking is constructed step by step. At each step the ranking model
selects one document from the candidate set for the current rank-
ing position. Usually, the document with the maximal amount of
additional utility, a.k.a. marginal relevance, is selected.

A number of diverse ranking algorithms have been developed
under the greedy document selection framework. Dierent algo-
rithms utilize dierent criteria to estimate the additional utility a
candidate document can provide. For example, the representative
approach of maximal marginal relevance (MMR) [3] uses the sum of
the query-document relevance and the maximal document distance
(referred to as marginal relevance) as the utility. xQuAD [25] denes
the utility so as to explicitly account for the relationship between
documents retrieved for the original query and the possible sub-
queries. In recent years, machine learning based methods have been
proposed for conducting diverse ranking [23, 31, 32, 34, 36, 39]. The
relational learning to rank (R-LTR) [39] and its variations [31, 32, 34]
dene the utilities based on the relevance features and the novelty
features. MDP-DIV adapted the Markov decision process (MDP) to
model the document ranking process. The utility of a document is
estimated based on the MDP state, which consists of the query, the
preceding documents, and the remaining candidates [33].

The greedy sequential document selection simplies the rank-
ing process and can accelerate the online ranking. However, the
rankings produced by greedy document selection are inevitably
suboptimal. At each ranking position, the greedy selection mecha-
nism only considers the possibilities at the current ranking position
(i.e., estimates the utility of each candidate document if it were
selected). Thus, greedy document selection will select the locally
optimal document at each ranking position. However, a sequence of
the locally optimal documents cannot lead to the globally optimal
diverse ranking, because the utilities of the documents are not inde-
pendent. The selection of a document at one position will change

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

125

https://doi.org/10.1145/3209978.3209979
https://doi.org/10.1145/3209978.3209979

the utilities of the remaining candidate documents and thereafter
aects the subsequent decisions. In general the ranking algorithm
need to explore the whole ranking space if the optimal ranking is
mandatory. However, this is usually infeasible in real applications
because of the huge space size: there exist N ! dierent rankings for
N documents.

Inspired by the success and methodology of the AlphaGo [27]
and AlphaGo Zero [28] for the Game of Go, in this paper we pro-
pose to enhance the MDP model for diverse ranking [33] with the
Monte Carlo tree search (MCTS), for alleviating the suboptimal
ranking problem. The new ranking model, referred to as M2Div
(stands for MCTS enhanced MDP for Diverse ranking), makes use
of an MDP to model the sequential document selection process
of diverse ranking. At each time step (corresponding to a ranking
position), based on the user query and the preceding document
ranking, a recurrent neural network (RNN) is used to produce the
policy (a distribution over the candidate documents) for guiding
the document selection and the value for estimating the whole doc-
ument ranking quality (e.g., in terms of α-NDCG@M). To alleviate
the problem of suboptimal diverse ranking, in stead of greedily se-
lecting a document with the predicted raw policy, M2Div conducts
an exploratory decision making: an MCTS is conducted to explore
the possible document rankings at the subsequent positions, result-
ing a strengthened search policy for conducting the real document
selection at current position. Since it has explored more future pos-
sible document rankings, the search policy has higher probability
to select a globally optimal document than the predicted raw policy.
Moving to the next iteration, the above process is continued until
the candidate set is empty.

Reinforcement learning is used to train the model parameters. In
the training phase, at each training iteration and for each training
query, an MCTS guided by the current policy function and value
function is conducted at each ranking position. The MCTS pro-
duces a search policy for the document selection. Then the model
parameters are adjusted to minimize the loss function. The loss
function consists of two terms: 1) the squared error between the
predicted value and the nal quality of the whole document ranking
in terms of α-NDCG@M; and 2) the cross entropy of the predicted
raw policy and the search policy for document selection. Stochastic
gradient descent is utilized for conducting the optimization.

To evaluate the eectiveness of M2Div, we conducted experi-
ments on the basis of TREC benchmark datasets. The experimental
results showed that M2Div can signicantly outperform the state-
of-the-art diverse ranking approaches that using greedy sequential
decision making, including the heuristic based diverse ranking
methods of MMR and xQuAD, and the machine learning based
diverse ranking methods of PAMM and MDP-DIV. We analyzed the
results and showed that the exploratory decision-making mecha-
nism in M2Div does help to improve the ranking performances.

2 RELATEDWORK
2.1 Search result diversication
It is a common practice to formalize the construction of a diverse
ranking list in search as a process of greedy sequential decision
making. Existing research focus on designing eective criteria to

estimate the utility a document can provide. Carbonell and Gold-
stein [3] proposed the maximal marginal relevance criterion, which
is a linear combination of the query-document relevance and the
document novelty, to select the document. xQuAD [24] directly
models dierent aspects of a query and estimates the utility as the
relevance of the retrieved documents to each identied aspects.
Hu et al. [13] proposed a utility function that explicitly leverages
the hierarchical intents of queries and selects the documents that
maximize diversity in the hierarchical structure. See also [2, 4, 7, 9–
11, 22, 29]

Machine learning techniques have been applied to construct di-
verse ranking, also adopting the greedy sequential decision making
as the basic framework. The key problem becomes how to auto-
matically learn the utility function on the basis of training queries.
Some researchers dene the utility as a linear combination of the
handcrafted relevance features and novelty features [23, 31, 34, 39].
The novelty term in the utility function can be modeled with the
deep learning model of neural tensor networks [32]. Jiang et al.
used recurrent neural networks and max-pooling to model subtopic
information explicitly with the attention mechanism [14, 15]. Xia
et al. [33] proposed to model the dynamics of the document utility
with MDP and learning the model parameters with policy gradient.
Other learning approaches please refer to [18, 21, 23, 34, 35, 37].

2.2 Reinforcement learning for IR
The reinforcement learning has been widely used in variant IR
applications. For example, in [20], a win-win search framework
based on partially observed Markov decision process (POMDP) is
proposed tomodel session search as a dual-agent stochastic game. In
the model, the state of the search users are encoded as a four hidden
decision making states. In [38], the log-based document re-ranking
is modeled as a POMDP. [33] and [30] propose to model the process
of constructing a document rankingwithMDP, for the ranking tasks
of search result diversication and relevance ranking, respectively.
Muti-armed bandit, another type of reinforcement learning model,
is also widely applied to rank learning. For example, [23] proposes
two online learning bandit algorithms to learn a diverse ranking
of documents based on users clicking behaviors. [37] formalizes
the interactively optimizing of information retrieval systems as
a dueling bandit problem and [16] proposes cascading bandits to
identify K most attractive document for users. See also [12]

Reinforcement learning models are also used for building rec-
ommender systems. For example, [26] designs an MDP-based rec-
ommendation model for taking both the long-term eects of each
recommendation and the expected value of each recommendation
into account. Lu and Yang [19] proposes POMDP-Rec, a neural-
optimized POMDP algorithm, for building a collaborative ltering
recommender system.

In this paper, we also adopt the reinforcement learning model
of MDP to formalize the diverse ranking process in search result
diversication.

3 MDP AND MCTS
We employ Markov decision process and Monte Carlo tree search
to model diverse ranking process.

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

126

3.1 Markov decision process
MDP provides a mathematical framework for modeling the sequen-
tial decision making process with the agent-environment interface.
The key components of an MDP include:

States S is a set of states. For instance, in this paper we dene
the state as a tuple consists of the query, the preceding document
ranking, and the candidate documents.

Actions A is a discrete set of actions that an agent can take.
The actions available may depend on the state s , denoted as A(s).

Policy p describes the behaviors of an agent, which is a proba-
bilistic distribution over the possible actions. p is usually optimized
to maximize the long term return.

Transition T is the state transition function st+1 = T (st ,at)
which species a function that maps a state st into a new state st+1
in response to the action selected at .

Value: state value functionV : S → R is a function that predicts
the long term return of the whole episode, on the basis of the current
state s under the policy p.

An MDPmodel is running as follows: the agent and environment
interact at each of a sequence of discrete time steps, t = 0, 1, 2, · · · .
At each time step t the agent receives some representation of the
environment’s state, st ∈ S, and on that basis selects an action
at ∈ A(st). One time step later, in part as a consequence of its
action, the agent nds itself in a new state st+1 = T (st ,at). Usually
the goal of reinforcement learning is to achieve maximum long
term return, that is, to maximize the value V (s0).

3.2 Monte Carlo tree search
The decisions made by an MDP (e.g., selecting the most condent
actions according to the policy) may get suboptimal results. The-
oretically the system has to explore the whole space of decision
sequences to get a global optimal result. However, this is usually
not feasible. MCTS is a tool to conduct heuristic search inside the
whole space, more likely to produce a better decision sequence than
that of produced by the greedy decisions.

Given the time step t , the policy function p, and the state value
functionV , MCTS aims at searching a strengthened policy for mak-
ing better decisions. The MCTS consists of four phases: selection,
expansion, simulation, and back-propagation:

Selection: Starting at the root node R, MCTS recursively selects
the optimal child nodes until a leaf node L is reached.

Expansion: If L is not a terminal node (i.e. it does not end the
episode) then create one ormore child nodes for L (each corresponds
a possible action) and select one child node C according to the
predicted policy.

Simulation/Evaluation: MCTS runs a simulation from C until
a result is achieved. In the AlphaGo Zero [28] the simulation is
replaced with the value function for accelerating the tree search.
That is, the result of simulation is estimated by the value function.

Back-propagation: Update the statistics stored in the current
move sequence with the simulation or estimated result.

The MCTS outputs a search policy π over the actions, which is
utilized to choose the action at time step t . The iteration is continued
until the whole episode is generated.

MCTS

Environment

raw policy ! value function "
search policy #

action $%~#
'%()

state '%

Policy-Value network

LSTM

*($|'%) "('%)

Figure 1: The agent-environment interaction of M2Div.

4 DIVERSE RANKINGWITH POLICY-VALUE
NETWORKS

In this section, we introduce the proposed M2Div model, which
makes use of MDP and MCTS for modeling the diverse ranking
process and for strengthening the policy for selecting documents
at each of the MDP iteration, respectively. The agent-environment
interaction of M2Div is illustrated in Figure 1. Each of the MDP time
step corresponds to a ranking position. At time step t (t = 0, 1, · · ·),
the policy-value network receives the environment state st and
makes use of an LSTM to produce the representation of the state
st . After that, guided by the current policy function p and value
function V , an MCTS search is executed. The output of MCTS is a
strengthened new search policy π . The action at is then selected
according to the strengthened policy π , which chooses a document
from the candidate set and places it to the ranking position t + 1.
Moving to the next time step t + 1, the system nds itself in a new
state st+1 and the process is repeated until all of the documents are
ranked.

4.1 MDP formulation of diverse ranking
Suppose we are given a query q, which is associated with a set of
retrieved documentsX = {x1, · · · , xM } ⊆ X, where both the query
q and the documents xi are represented with their preliminary
representations, i.e., the vectors learned by the doc2vec model [17],
and X is the set of all possible documents. The goal of diverse
ranking is to construct a model that can rank the documents so
that the top ranked documents cover a wide range of subtopics of
a search query.

The construction of a diverse ranking can be considered as a
process of sequential decision making with an MDP in which each
time step corresponds to a ranking position. The states, actions,
transition function, value function, and policy function of the MDP
are set as:

States S: We design the state at time step t as a triple st =
[q,Zt ,Xt], where q is the preliminary representation of the user
issued query;Zt = {x(n)}tn=1 is the sequence of t preceding docu-
ments, where x(n) is the document ranked at position n; Xt is the
set of candidate documents. At the beginning (t = 0), the state is
initialized as s0 = [q, ∅,X], where ∅ is the empty sequence and X
contains all of theM retrieved candidate documents.

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

127

Actions A: At each time step t , the A(st) is the set of actions
the agent can choose, each corresponds to a document from Xt .
That is, the action at ∈ A(st) at the time step t selects a document
xm(at) ∈ Xt for the ranking position t + 1, wherem(at) is the index
of the document selected by at .

TransitionT : The transition functionT : S×A → S is dened
as follows:

st+1 = T (st ,at) = T ([q,Zt ,Xt],at)

=
[
q,Zt ⊕ {xm(at)},Xt \ {xm(at)}

]
,

(1)

where ⊕ appends xm(at) toZt and \ removes xm(at) from Xt . At
each time step t , based on state st the system chooses an action at .
Then, the system moves to time step t + 1 and the system transits
to a new state st+1: rst, the query q is kept unchanged; second,
the selected document is appended to the end ofZt , generating a
new document sequence; nally, the selected document at step t is
removed from the candidate set: Xt+1 = Xt \ {xm(at)}. Thus, the
number of actions the agent can choose at t + 1 is reduced by one.

Value function V : The state value function V : S → R is a
scalar evaluation, estimating the quality of the whole document
ranking (an episode) based on the input state. The value function
is learned so as to approximate a predened evaluation measure
(e.g., α-NDCG@M).

In this paper, wemake use of the long short termmemory (LSTM)
to summarize the input state s as a real vector, and then dene the
value function as nonlinear transformation of the weighted sum of
the LSTM outputs:

V (s) = σ (〈w, LSTM(s)〉 + bv) , (2)

where w and bv are the weight vector and the bias to be learned
during training, and σ (x) = 1

1+e−x is the nonlinear sigmoid func-
tion. The deep neural network model LSTM: S → RL maps a
state to a real vector where L is the number of dimensions. Given
s = [q,Z = {x1, x2, · · · , xt },Xt], where xk (k = 1, · · · , t) is the
document ranked at k-th position and represented with its doc2vec
embedding. LSTM outputs a representation hk for position k as:

fk =σ (Wf xk + Uf hk−1 + bf),

ik =σ (Wixk + Uihk−1 + bi),

ok =σ (Woxk + Uohk−1 + bo),

ck =fk ◦ ck−1 + ik ◦ tanh(Wcxk + Uchk−1 + bc),

hk =ok ◦ tanh(ck),

where h and c are initialized with the query q:

[h0, c0] = [σ (Vhq),σ (Vcq)],

operator “◦” denotes the element-wise product and “σ ” is applied
to each of the entries; the variables fk , ik , ok , ck and hk denote the
forget gate’s activation vector, input gate’s activation vector, output
gate’s activation vector, cell state vector, and output vector of the
LSTMblock, respectively.Wf ,Wi ,Wo ,Uf ,Ui ,Uo ,Vh ,Vc , bf , bi , bo
are weight matrices and bias vectors need to be learned during
training. The output vector and cell state vector at the t-th cell are
concatenated as the output of LSTM:

LSTM(s) =
[
htT , ctT

]T
. (3)

Policy function p: The policy p(s) denes a function that takes
the state as input and output a distribution over all of the possible
actions a ∈ A(s). Specically, each probability in the distribution is
a normalized soft-max function whose input is the bilinear product
of the LSTM dened in Equation (3) and the selected document:

p(a |s) =
exp

{
xTm(a)Up LSTM(s)

}
∑
a′∈A(s) exp

{
xTm(a′)Up LSTM(s)

} ,
where Up is the parameter in the bilinear product. Thus, the policy
function p(s) is:

p(s) = 〈p(a1 |s), · · · ,p(a |A(s) | |s)〉. (4)

4.2 Strengthening policy with MCTS
Selecting documents greedily with the predicted raw policy p in

Equation (4) may lead to suboptimal rankings because the policy
only summarizes the historical information and has no idea on
how the action at will inuent the future decisions. Let’s use an
example to show the limitation of greedy selection. Suppose that the
query q has 6 subtopics, and the 3 retrieved candidate documentsd1,
d2, and d3 cover the subtopics of {1, 2, 3, 6}, {1, 2, 5}, and {1, 2, 6},
respectively. The greedy selection with raw policy prefers d1 for
the rst position, as it covers the most number of subtopics. Thus,
the document ranking constructed with the greedy policy could be
[d1,d2,d3] and S-recall@2 = 5

6 . However, if the ranking algorithm
could explore (part of) the whole ranking space, it will found a
better document ranking in terms of S-recall@2: [d2,d3,d1] with
S-recall@2 = 1. The example clearly indicate that greedy selection
could lead to suboptimal rankings.

To alleviate the issue, following the practices in AlphaGo [27]
and AlphaGo Zero [28], we propose to conduct lookahead searches
in the ranking space with MCTS. Specically, at each ranking posi-
tion t , an MCTS search is executed, guided by the current policy
function p and value function V , and output a strengthened new
search policy π . It is believed that the search policy π will select a
much better action (document) for the ranking position than that
of selected by the raw policy p in Equation (4). This is because the
lookahead MCTS tries to explore the whole ranking space and can
partially alleviate the suboptimal ranking problem.

Figure 2 illustrates the MCTS process and Algorithm 1 shows
the details. Each node of the tree corresponds to an MDP state. The
tree search algorithm takes a root node sR , number of search times
K , value function V , policy function p, human labels J , and the
evaluation measure R as inputs. Note that J and R are only used
at the training time. The algorithm iterate K times and outputs
a strengthened search policy π for selecting a document for root
node sR . Suppose that each edge e(s,a) (the edge from state s to the
state T (s,a)) of the MCTS tree stores an action value Q(s,a), visit
count N (s,a), and prior probability P(s,a). The raw policy p(sR) at
the root state sR is strengthened with the following steps:

Selection (line 3 to line 7 of Algorithm 1): Each of the K it-
erations starts from the root state sR and iteratively selects the
documents that maximize an upper condence bound. Specically,
at each time step t of each simulation, an action at is selected from

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

128

Selection Evaluation Expansion Back-propagation

Repeat K times

!, # = 	&
' = {)*,)+,), … }

!, # = {)*}
' = {)+,), … }

!, # = {)+}
' = {)*,),, … }

!, #, ' !, #, '!, #, ' !, #, '

/ + 1 2 + 3
max

max
/ + 12 + 3/ + 1/ + 1

!, # = 	&
' = {)*,)+,), … }

!, # = {)*}
' = {)+,), … }

!, # = {)+}
' = {)*,),, … }

!, #, ' !, #, '!, #, ' !, #, '

4 = 5(7)

!, # = 	&
' = {)*,)+,), … }

!, # = {)*}
' = {)+,), … }

!, # = {)+}
' = {)*,),, … }

!, #, ' !, #, '!, #, ' !, #, '

!, #, ' !, #, '

2 = 9
: = 9

; = <(=>|7)

2 = 9
: = 9

; = <(=@|7)

!, # = 	&
' = {)*,)+,), … }

!, # = {)*}
' = {)+,), … }

!, # = {)+}
' = {)*,),, … }

!, #, ' !, #, '!, #, ' !, #, '

!, #, ' !, #, '

2 =	2	 ∗ : + 4: + >

2 = 	2	 ∗ : + 4: + > 4

4

Figure 2: The MCTS process for calculating the strengthened search policy π .

state st so as to maximize action value plus a bonus:

at = argmax
a
(Q(st ,a) + λU (st ,a)), (5)

where λ ≥ 0 is the tradeo coecient, and the bonus U (st ,a) is
dened as

U (st ,a) = p(a |st)

√∑
a′∈A(st) N (st ,a

′)

1 + N (st ,a)
,

where p(a |st) is the predicted probability by the policy function
p(st), A(st) is the set of available actions (documents) at state st .
U (st ,a) is proportional to the prior probability but decays with
repeated visits to encourage exploration.

Evaluation and expansion (line 8 to line 19 of Algorithm 1):
When the traversal reaches a leaf node sL , the node is evaluated
either with the value function V (sL) or with the predened per-
formance measure if the node is the end of an episode and the
human labels are available. Specically, at the test phase or online
ranking phase, there is no human label information available. sL
will be evaluated with the value function V (sL). At the training
phase, if sL is not the end of the episode, V (sL) is used to conduct
the evaluation. If sL is the last node of the episode (cannot be ex-
panded), it is evaluated with the true performance measure (e.g.,
α-NDCG@M) at the position. Line 10 and line 18 of Algorithm 1
shows the evaluation details. Please note that following the practice
in AlphaGo Zero program, we use the value function instead of
rollouts for evaluating a node.

Then, the leaf node sL may be expanded (line 11 to line 16 of
Algorithm 1). Each edge from the leaf position sL (corresponds to
each action a ∈ A(sL)) is initialized as: P(sL ,a) = p(a |sL) (Equa-
tion (4)), Q(sL ,a) = 0, and N (sL ,a) = 0. In this paper all of the
available actions of sL are expanded.

Back-propagation and update (line 20 to line 28 of Algo-
rithm 1): At the end of evaluation, the action values and visit counts
of all traversed edges are updated. For each edge e(s,a), the prior

probability P(s,a) is kept unchanged, and Q(s,a) and N (s,a) are
updated:

Q(s,a) ←
Q (s,a)×N (s,a)+V (sL)

N (s,a)+1 ,

N (s,a) ← N (s,a) + 1.
(6)

Calculate the strengthened search policy (line 29 to line 32
of Algorithm 1): After iterating K times, the strengthened search
policy π for the root node sR can be calculated according to the
visit counts N (sR ,a) of the edges starting from sR :

π (a |sR) =
N (sR ,a)∑

a′∈A(sR) N (sR ,a
′)
, (7)

for all a ∈ A(sR).

4.3 Training with reinforcement learning
The model has parameters Θ = {Wf ,Wi ,Wo ,Uf ,Ui ,Uo ,Up , bf ,
bi , bo ,Vh ,Vc ,w} to learn. In the training phase, suppose we are
given N labeled training queries {(q(n),X (n), J (n))}Nn=1, where J

(n)

denotes the human labels on the documents, in the form of a binary
matrix. J (n)(i, j) = 1 if document x(n)i contains the j-th subtopic of
q(n) and 0 otherwise.

Algorithm (2) shows the training procedure. First, the parameters
Θ is initialized to random weights in [−1, 1]. At each subsequent
iteration, for each query, a ranking of documents is generated with
current parameter setting. At each ranking position t , an MCTS
search is executed, using previous iteration of value function and
policy function, and a document xm(at) is selected according to the
search probabilities πt .

The ranking terminates when the candidate is empty or the
ranking exceeds the maximum length dened by the predened
evaluation measure R. These sampled documents consist a permu-
tation of documents τ , which is then evaluated with the evaluation
measure to give a ground-truth return:

r = R(τ , J).

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

129

Algorithm 1 TreeSearch
Input: root state sR , value functionV , and policy function p, num-

ber of search times K , trade-o parameter λ, human labels J ,
and performance evaluation function R

Output: Tree search probabilities π
1: for k = 0 to K − 1 do
2: sL ← sR
3: {Selection}
4: while sL is not a leaf node do
5: a ← argmaxa∈A(sL)Q(sL ,a) + λ · U (sL ,a){Equation (5),

using the P ,Q , and N stored in the corresponding edges}
6: sL ← child node pointed by edge (sL ,a)
7: end while
8: {Evaluation and expansion}
9: if sL can be expanded then
10: v ← V (sL) {simulate v with value function V }
11: for all a ∈ A(sL) do
12: Expand a new edge e which connects to a new node

s = [q, sL .Z ⊕ {xm(a)}, sL .X \ {xm(a)}]
13: e .P ← p(a |sL) {initialize the prior probability}
14: e .Q ← 0
15: e .N ← 0
16: end for
17: else

18: v ←

{
V (sL) R = NULL or J = ∅

R(sL .Z, J) otherwise {Case 1: predict

with V at test phase (R =NULL or J = ∅); Case 2: directly
set to the ground truth (e.g., α-NDCG@M) at the training
phase}

19: end if
20: {Back-propagation}
21: while sL , sR do
22: s ← parent of sL
23: e ← edge from s to sL
24: e .Q ←

e .Q×e .N+v
e .N+1 {Equation (6)}

25: e .N ← e .N + 1
26: sL ← s
27: end while
28: end for
29: {calculate tree search probabilities}
30: for all a ∈ A(sR) do
31: π (a |sR) ←

e(sR,a).N∑
a′∈A(sR) e(sR,a

′).N {e(s,a) is the edge from s to
the state by taking action a}

32: end for
33: return π

Here R can be any diverse ranking evaluation measure such as α-
NDCG@Metc. The data generated at each time step E = {(st ,πt)}Tt=1
and the nal evaluation r are utilized as the ground-truth signals
in training for adjusting the value function. The model parameters
are adjusted to minimize the error between the predicted value
V (st) and the evaluation of the ranking in terms of the chosen eval-
uation measure, and to maximize the similarity of the raw policy
p(st) to the search policy πt . Specically, the parameters Θ are
adjusted by gradient descent on a loss function ` that sums over

Algorithm 2 Train diverse ranking model

Input: Labeled training set D = {(q(n),X (n), J (n))}Nn=1, learning
rate η, number of search steps K , MCTS trade-o parameter λ,
and evaluation measure R

Output: Θ
1: Initialize Θ← random values in [−1, 1]
2: repeat
3: for all (q,X , J) ∈ D do
4: s ← [q, ∅,X]
5: M ← |X |
6: E = (){empty episode}
7: for t = 0 toM − 1 do
8: π ← TreeSearch(s,V , p,K , λ, J ,R) {Algorithm (1): tree

search using s as root, with current Θ}
9: a = argmaxa∈A(s) π (a |s) {select the best document}
10: τ (t + 1) ←m(a){document xm(a) is ranked at t + 1}
11: E ← E ⊕ {(s,π)}
12: s ← [q, s .Z ⊕ {xm(a)}, s .X \ {xm(a)}]
13: end for
14: r ← R(τ , J){evaluating the generalized ranking}
15: Θ ← Θ − η ∂`(E,r)

∂Θ {Update parameters. ` is dened in
Equation (8)}

16: end for
17: until converge
18: return Θ

the mean-squared error and cross-entropy losses, respectively:

`(E, r) =

|E |∑
t=1

©«(V (st) − r)2 +
∑

a∈A(st)

πt (a |st) log
1

p(a |st)

ª®¬ . (8)

Figure 3 illustrates the construction of the loss given a training
query. The model parameters are trained by back propagation and
stochastic gradient descent. Specically, we use AdaGrad [8] on all
parameters in the training process.

Please note that following the practices in [28], the search tree
constructed at the t-th iteration (line 8 to line 12 of Algorithm 2)
is reused at subsequent steps: the child node corresponding to the
selected document (chosen action) becomes the new root node; the
subtree below this child is retained along with all its statistics, while
the remainder of the tree is discarded.

4.4 Online ranking
The construction of a diverse ranking for an online query is shown
in Algorithm 3. Given a user query q, a set ofM retrieved documents
X , the system state is initialized as s0 = [q,Z0 = ∅,X0 = X]. Then,
at each of the time steps t = 0, · · · ,M − 1, the agent receives the
state st = [q,Zt ,Xt] and searches the policy π with MCTS, on
the basis of the value function V and policy function p. Then, it
chooses an action a according π , selects the document xm(a) from
the candidate set, and places it to the rank t + 1. Moving to the next
step t + 1, the state becomes st+1 = [q,Zt+1,Xt+1]. The process is
repeated until the candidate set becomes empty.

Considering that the MCTS is time consuming and may be in-
feasible in some online ranking tasks, the online ranking algorithm
can also skip the tree search and directly use the raw policy for

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

130

!" !# !$

LSTM

%('|)*) V()*)

%" -"≈ ≈ ≈≈ ≈ ≈

/, 1* = 3 /, 1" = {5"} /, 1# = {5", 5#}

LSTM

%('|)") V()")

%# -#

LSTM

%('|)#) V()#)

%$ -$

!" !# !$

7 = 	9�NDCG

5"~!" 5#~!# 5?~!?/, 1* = 	3
@* = {5", 5#, 5$ … }

/, 1" = {5"}
@" = {5#, 5$, 5B … }

/, 1# = {5", 5#}
@# = {5$, 5B, 5C … }

/, 1? = {5", 5# … }
@? = {… }

777

Figure 3: Construction of loss function for a training query.

Algorithm 3 Diverse ranking with Monte Carlo tree search
Input: query q, documents X = {x1, · · · , xM }, number of search

steps K , MCTS trade-o parameter λ, value function V , and
policy function p

Output: Permutation of documents τ
1: s ← [q,Φ,X]
2: M ← |X |
3: for t = 0 toM − 1 do
4: π ←

{
TreeSearch(s,V , p,K , λ, ∅,NULL) with MCTS,

p(s) without MCTS
{Case 1: ranking with search policy. No human labels and
evaluation function are available at the test/online ranking
phase; Case 2: ranking with raw policy for accelerating
online ranking speeds.}

5: a ← argmaxa∈A(s) π (a |s)
6: τ (t + 1) ←m(a){document xm(a) is ranked at t + 1}
7: [q,Z,X] ← s
8: s ← [q,Z ⊕ {xm(a)},X \ {xm(a)}]
9: end for
10: return τ

ranking, denoted with “without MCTS” in the line 4 of Algorithm 3.
In the experiments, we observed that the M2Div without MCTS can
still outperform the baselines. This is because the training process
of M2Div can generate high quality episodes to train the model
parameters with the help of MCTS, which leads to more accurate
policy function p.

4.5 Dierence with AlphaGo Zero
M2Div is inspired by the AlphaGo Zero program. It enjoys a number
of merits from AlphaGo Zero, including the shared neural network
for estimating policies and values, lookahead MCTS for strengthen-
ing the raw policy, and the compounded loss that simultaneously
optimizes the value function and the policy function etc. However,
M2Div has made a number of fundamental modications for search
result diversication.

First, the formalizations of the tasks are dierent. AlphaGo Zero
formalizes the playing of Go as an alternating Markov game where

each action corresponds a move, the states are the raw board posi-
tions, the value function approximates the probability of winning,
and the next state depends not only on the chosen action but also
on the move by the opponent. M2Div, on the other hand, formalizes
the ranking of documents as planning with an MDP where each ac-
tion corresponds to a document selection. The MDP states consists
of the query, the preceding document ranking, and the remaining
candidates. The value function approximates a diverse ranking eval-
uation measure (e.g., α-NDCG@M). The state transition is fully
determined by the current state and the chosen action.

Second, the supervision signals for learning the model parame-
ters are dierent. AlphaGo Zero uses the results of self-play (-1 for
loss, 0 for draw, and 1 for win) as the supervision signals and the
value function is tted to the results. The task of diverse ranking,
however, is not a Markov game. It is dicult (also unnecessary) to
execute the self-play. In the training phase, M2Div resorts to the
human labels and the predened evaluation measure to generate
supervision information. Specically, the α-NDCG@M of each gen-
erated episode is calculated and used as the ground-truth to t the
value function (the rst part of Equation (8)). In this way, M2Div
drives the training process so as to directly optimize the evaluation
measure of α-NDCG@M. Note that α-NDCG@M can be replaced
with any other diverse ranking evaluation measures.

Third, the shared deep neural networks for calculating the poli-
cies and values are dierent. AlphaGo Zero makes use of a residual
network which takes the raw board position as its inputs and out-
puts the a probability distribution over moves, and a probability
of the current player winning in position. The raw boards can be
considered as some xed sized images. In M2Div, the MDP states
consist of the queries and sequences of documents etc. Residual
network cannot handle the state data as the queries/documents
are raw texts, and the lengths of the document sequences vary in
dierent time steps. To address the issue, M2Div rst represents
the query and document sequence as the state vector of an LSTM
(Equation 3). The policy and the value are then calculated on the
basis of the representations outputted by the LSTM.

5 EXPERIMENTS
We conducted experiments to test the performances of M2Div using
a combination of four TREC benchmark datasets: TREC 2009 ∼ 2012
Web Track datasets (WT2009, WT2010, WT2011, and WT2012).

5.1 Experimental settings
In our experiments, for eective training of the model parameters
and following the practices in [33], we combined four TREC datasets
and constructed a new dataset with 200 queries and in total about
45,000 labeled documents. Each query includes several subtopics
identied by the TREC assessors. The document relevance labels
are made at the subtopic level and the labels are binary1.

All the experiments were carried out on the ClueWeb09 Cate-
gory B data collection2, which is comprised of 50 million English
web documents. Porter stemming, tokenization, and stop-words
removal (using the INQUERY list) were applied to the documents as
preprocessing. We conducted 5-fold cross-validation experiments.

1WT2011 has graded judgements and we treat them as binary in the experiments.
2http://boston.lti.cs.cmu.edu/data/clueweb09

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

131

We randomly split the queries into ve even subsets. At each fold,
three subsets were used for training, one was used for validation,
and one was used for testing. The results reported were the average
over the ve trials.

The TREC ocial diversity evaluation metrics of α-NDCG [6]
and ERR-IA [5] were used in the experiments, including. They mea-
sure the diversity of a result list by explicitly rewarding diversity
and penalizing redundancy observed at every rank. Following the
default settings in ocial TREC evaluation program, the parameter
α in these evaluation measures are set to 0.5.

We compared M2Div with several state-of-the-art baselines in
search result diversication:

MMR [3]: a heuristic approach inwhich the document is selected
according to maximal marginal relevance.

xQuAD [24]: a representative method which explicitly models
dierent aspects underlying original query in form of subqueries.

PM-2 [7]: a method of optimizing proportionality for search
result diversication.

We also compared MDP-DIV with the learning methods:
SVM-DIV [36]: a learning approach which utilizes structural

SVMs to optimize the subtopic coverage.
R-LTR [39]: a learning approach developed in the relational

learning to rank framework.
PAMM [31]: a learning approach that directly optimizes diver-

sity evaluation measure using structured Perceptron.
NTN-DIV [32]: a learning approach which automatically learns

novelty features based on neural tensor networks.
MDP-DIV [33]: a state-of-the-art learning approach which uses

an MDP for modeling the diverse ranking process. Following the
practice in [33], we congured the reward function in MDP-DIV as
α-DCG and the discounting parameter γ = 1.

M2Div, and the baselines ofMDP-DIV andNTN-DIV need prelim-
inary representations of the queries and the documents as their in-
puts. Following the practices in [33], in the experiments we used the
query vector and document vector generated by the doc2vec [17]
to represent the document. Doc2vec model was trained on all of
the documents in Web Track dataset and the number of vector
dimensions were set to 100. For training the model, we used the
distributed bag of words model3. The learning rate was set to 0.025
and the window size was set to 8.

The M2Div also has some parameters to tune: the training evalu-
ation measure function R was set to α-NDCG@5, making the value
function V to approximate α-NDCG@5. In the training phrase, the
MCTS also was set to control the maximal length of the search
depth less than 5. That is, the condition at line 9 of Algorithm 1 is
true if the length of the tree depth is less than 5 and the candidate
set is not empty. In all of the experiments, the learning rate η, the
number of search times K , the tree search trade-o parameter λ,
and the number of LSTM hidden units h were tuned based on the
validation set and set to η = 0.01,K = 5000, λ = 3.0, and h = 5.

In online ranking phase, M2Div has two versions: selecting the
documents with the raw policy p or with the MCTS strength-
ened policy π . These two versions are respectively denoted as
“M2Div(withoutMCTS)” and “M2Div(withMCTS)”. The source code
of M2Div is available at https://github.com/sweetalyssum/M2DIV.

3http://radimrehurek.com/gensim/tutorial.html

Table 1: Performance comparison of all methods on TREC
web track datasets.

Method α-NDCG@5 α-NDCG@10 ERR-IA@5 ERR-IA@10
MMR 0.2753 0.2979 0.2005 0.2309
xQuAD 0.3165 0.3941 0.2314 0.2890
PM-2 0.3047 0.3730 0.2298 0.2814
SVM-DIV 0.3030 0.3699 0.2268 0.2726
R-LTR 0.3498 0.4132 0.2521 0.3011
PAMM(α-NDCG) 0.3712 0.4327 0.2619 0.3029
NTN-DIV(α-NDCG) 0.3962 0.4577 0.2773 0.3285
MDP-DIV(α-DCG) 0.4189 0.4762 0.2988 0.3494
M2Div(without
MCTS) 0.4386∗ 0.4835 0.3435∗ 0.3668∗
M2Div(with MCTS) 0.4424∗ 0.4852 0.3459∗ 0.3686∗

5.2 Experimental results
Table 1 reports the performances of our approach and all of the base-
line methods in terms of diversity performance metrics including
α-NDCG@5, α-NDCG@10, ERR-IA@5, and ERR-IA@10. Boldface
indicates the highest scores among all runs. From the results we can
see that, in terms of the four diversity evaluation metrics, “M2Div
(with MCTS)” and “M2Div (without MCTS)” outperformed all of the
baseline methods, including the heuristic method of MMR, xQuAD,
PM-2 and learning methods of SVM-DIV, R-LTR, PAMM(α-NDCG),
NTN-DIV(α-NDCG), and MDP-DIV(α-DCG). We conducted signif-
icant testing (t-test) on the improvements of our approaches over
the best baseline MDP-DIV(α-DCG). The results indicate that most
of the improvements are signicant (p-value < 0.05 and denoted
with ‘*’ in Table 1).

From the results we can see that “M2Div (without MCTS)”, which
did not conduct MCTS at the online time, still outperformed all
of the baselines including “MDP-DIV(α-DCG)”, indicating that the
MCTS conducted at the training time can generate better episodes
to estimate the model parameters, achieving better raw policy p for
ranking. Note that “M2Div(with MCTS)”, which conducted MCTS
at the online time, further improved the ranking accuracies and
performed the best among all of the methods. The results indicate
that the MCTS can improve the raw policies p at both the training
and the online ranking.

5.3 Discussion
In this section, we conducted experiments to investigate howM2Div
works and why it can outperform the baselines, using the experi-
mental results on the rst fold of the data as example.

5.3.1 Eects of Monte Carlo tree search. One key step in M2Div
is the MCTS which outputs the search policy π . It is very likely
that the search policy π (s) are better than raw policy p(s) in terms
of choosing optimal documents.

We conducted experiments to show the eectiveness of the
MCTS in online ranking. Specically, based on the trained M2Div
model, we tracked the online ranking process for query number
148 (“martha stewart and imclone”). The red real curve in Figure 4
shows the α-NDCG values of the document ranking generated by
π . The blue dashed lines in Figure 4 show the α-NDCG values at

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

132

https://github.com/sweetalyssum/M2DIV
http://radimrehurek.com/gensim/tutorial.html

0 1 2 3 4 5
position

0.0

0.2

0.4

0.6

0.8

1.0

®
-N

D
C

G

search policy
raw policy

Figure 4: α-NDCG at the top 5 positions for the ranking gen-
erated by the search policy π (red real curve) for query num-
ber 148. Blue dashed lines show the α-NDCG values if the
documents were selected by the raw policy p.

these 5 positions if the corresponding document was chosen by the
raw policy p (note the preceding documents are still selected by π).
From the results, we can see that π improved p at the positions of 1,
3, and 5, showing the eectiveness of MCTS at the online ranking.

We also conducted experiments to show the eectiveness of the
MCTS in oine training. Specically, at the end of each training
iteration, based on current ranking model, we tested the perfor-
mances of the document ranking constructed with the raw policy p
and with the MCTS search policy π , in term of α-NDCG@5 on the
training queries. Figure 5 shows the averaged α-NDCG@5 scores
among all of the training queries at each training iterations. It is not
surprise that the document rankings generated by the search policy
π are superior to that of generated by the raw policy p, at all of the
training iterations. The results indicate that the lookahead MCTS
can generate better diverse document rankings for training the
model parameters, at all of the training iterations. The results also
partially explained why “M2Div(without MCTS)”, which did not
conduct MCTS at the online time, can still outperform the baselines.
The MCTS conducted at the training time produced better diverse
document rankings for training the model parameters.

5.3.2 Ranking with policy or with value? In “M2Div(without
MCTS)”, we rely on the raw policy p for ranking the documents.
In principle, the value function V can also be used for ranking,
that is, at each state s a document (action) â is selected if â =
argmaxa∈A(s)V (T (s,a)). We conducted experiments to show the
performances of these two approaches and Figure 6 shows the
test performance curves of the document rankings with the policy
function and with the value function. From the results, we can
see that the document rankings generated by the raw policy p
are more stable and better than that of generated by the value
function V . One possible reason for the phenomenon is that the
ranking performance measure α-NDCG@5 are not easy to estimate
accurately, especially at the early stages of the ranking procedure.
This is why p in stead of V is adopted in “M2Div(without MCTS)”.

0 20 40 60 80 100 120 140
iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

®
-N

D
C

G
@

5

search policy
raw policy

Figure 5: Performance curves of the document rankings gen-
erated with the raw policy p and with the search policy π ,
w.r.t. the training iterations. The curves illustrate the aver-
aged performances over all of the training queries.

0 20 40 60 80 100 120 140
iteration

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
®
-N
D
C
G
@
5

policy
value

Figure 6: Performance curves of the document rankings gen-
erated with the policy function and with the value function,
w.r.t. training iterations. The curves illustrates the averaged
performances over all of the test queries.

6 CONCLUSION
In this paper we have proposed a novel approach to learning diverse
ranking model for search result diversication, referred to as M2Div.
In contrast to existing methods that greedily select a locally optimal
document at each of the ranking positions, M2Div conducts an
exploratory decision making with the lookahead MCTS and thus
can select a better document. MDP is used to model the ranking
process and reinforcement learning is utilized to train the model
parameters. M2Div oers several advantages: ranking with both
the shared policy function and the value function, high accuracy in
ranking, and exibility of trading-o between accuracy and online
ranking speed. Experimental results based on the TREC benchmark

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

133

datasets show that M2Div can signicantly outperform the state-of-
the-art baselines including the heuristic methods of MMR, xQuAD
and learning methods of R-LTR, PAMM, and MDP-DIV.

7 ACKNOWLEDGMENTS
This work was funded by the 973 Program of China under Grant
No. 2014CB340401, the National Key R&D Program of China under
Grants No. 2016QY02D0405, the National Natural Science Foun-
dation of China (NSFC) under Grants No. 61773362, 61425016,
61472401, 61722211, and 20180290, and the Youth Innovation Pro-
motion Association CAS under Grants No. 20144310, and 2016102.

REFERENCES
[1] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. 2009.

Diversifying Search Results. In Proceedings of the Second ACM International
Conference on Web Search and Data Mining (WSDM ’09). 5–14.

[2] Sumit Bhatia. 2011. Multidimensional Search Result Diversication: Diverse
Search Results for Diverse Users. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’11). ACM, New York, NY, USA, 1331–1332.

[3] Jaime Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-based
Reranking for Reordering Documents and Producing Summaries. In Proceedings of
the 21st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’98). 335–336.

[4] Ben Carterette and Praveen Chandar. 2009. Probabilistic Models of Ranking
Novel Documents for Faceted Topic Retrieval. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM ’09). 1287–1296.

[5] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
Reciprocal Rank for Graded Relevance. In Proceedings of the 18th ACM Conference
on Information and Knowledge Management (CIKM ’09). 621–630.

[6] Charles L.A. Clarke, Maheedhar Kolla, Gordon V. Cormack, Olga Vechtomova,
Azin Ashkan, Stefan Büttcher, and IanMacKinnon. 2008. Novelty and Diversity in
Information Retrieval Evaluation. In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’08). ACM, New York, NY, USA, 659–666.

[7] Van Dang and W. Bruce Croft. 2012. Diversity by Proportionality: An Election-
based Approach to Search Result Diversication. In Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’12). ACM, New York, NY, USA, 65–74.

[8] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. J. Mach. Learn. Res. 12 (July
2011), 2121–2159.

[9] Sreenivas Gollapudi and Aneesh Sharma. 2009. An Axiomatic Approach for
Result Diversication. In Proceedings of the 18th International Conference on
World Wide Web (WWW ’09). 381–390.

[10] Shengbo Guo and Scott Sanner. 2010. Probabilistic Latent Maximal Marginal
Relevance. In Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’10). ACM, 833–834.

[11] Jiyin He, Vera Hollink, and Arjen de Vries. 2012. Combining Implicit and Explicit
Topic Representations for Result Diversication. In Proceedings of the 35th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’12). ACM, New York, NY, USA, 851–860.

[12] Katja Hofmann, Shimon Whiteson, and Maarten Rijke. 2013. Balancing Explo-
ration and Exploitation in Listwise and Pairwise Online Learning to Rank for
Information Retrieval. Inf. Retr. 16, 1 (Feb. 2013), 63–90.

[13] Sha Hu, Zhicheng Dou, Xiaojie Wang, Tetsuya Sakai, and Ji-Rong Wen. 2015.
Search Result Diversication Based on Hierarchical Intents. In Proceedings of the
24th ACM International on Conference on Information and Knowledge Management
(CIKM ’15). ACM, New York, NY, USA, 63–72.

[14] Zhengbao Jiang, Zhicheng Dou, Xin Zhao, Jian-Yun Nie, Ming Yue, and Ji-Rong
Wen. 2018. Supervised Search Result Diversication via Subtopic Attention. IEEE
Transactions on Knowledge and Data Engineering (2018).

[15] Zhengbao Jiang, Ji-Rong Wen, Zhicheng Dou, Wayne Xin Zhao, Jian-Yun Nie,
and Ming Yue. 2017. Learning to Diversify Search Results via Subtopic Attention.
In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 545–554.

[16] Branislav Kveton, Csaba Szepesvári, Zheng Wen, and Azin Ashkan. 2015. Cas-
cading Bandits: Learning to Rank in the Cascade Model. CoRR abs/1502.02763
(2015).

[17] Quoc V. Le and Tomas Mikolov. 2014. Distributed Representations of Sentences
and Documents. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014. 1188–1196.

[18] Liangda Li, Ke Zhou, Gui-Rong Xue, Hongyuan Zha, and Yong Yu. 2009. En-
hancing Diversity, Coverage and Balance for Summarization Through Structure
Learning. In Proceedings of the 18th International Conference on World Wide Web
(WWW ’09). ACM, New York, NY, USA, 71–80.

[19] Zhongqi Lu and Qiang Yang. 2016. Partially Observable Markov Decision Process
for Recommender Systems. CoRR abs/1608.07793 (2016).

[20] Jiyun Luo, Sicong Zhang, and Hui Yang. 2014. Win-win Search: Dual-agent
Stochastic Game in Session Search. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR
’14). ACM, New York, NY, USA, 587–596.

[21] LilyanaMihalkova and RaymondMooney. 2009. Learning to Disambiguate Search
Queries from Short Sessions. In Machine Learning and Knowledge Discovery in
Databases. Lecture Notes in Computer Science, Vol. 5782. Springer.

[22] Filip Radlinski and Susan Dumais. 2006. Improving Personalized Web Search
Using Result Diversication. In Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
’06). ACM, New York, NY, USA, 691–692.

[23] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning Diverse
Rankings with Multi-armed Bandits. In Proceedings of the 25th International
Conference on Machine Learning (ICML ’08). ACM, New York, NY, USA, 784–791.

[24] Rodrygo L.T. Santos, Craig Macdonald, and Iadh Ounis. 2010. Exploiting Query
Reformulations for Web Search Result Diversication. In Proceedings of the 19th
International Conference on World Wide Web (WWW ’10). 881–890.

[25] Rodrygo L. T. Santos, Jie Peng, Craig Macdonald, and Iadh Ounis. 2010. Explicit
Search Result Diversication through Sub-queries.

[26] Guy Shani, David Heckerman, and Ronen I. Brafman. 2005. An MDP-Based
Recommender System. J. Mach. Learn. Res. 6 (Dec. 2005), 1265–1295.

[27] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587 (2016), 484–489.

[28] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of go without human knowledge. Nature 550,
7676 (2017), 354.

[29] Xiaojie Wang, Zhicheng Dou, Tetsuya Sakai, and Ji-Rong Wen. 2016. Evaluating
Search Result Diversity Using Intent Hierarchies. In Proceedings of the 39th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’16). ACM, New York, NY, USA, 415–424.

[30] Zeng Wei, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Reinforce-
ment Learning to Rank with Markov Decision Process. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’17). 945–948.

[31] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2015. Learning
Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation
Measures. In Proceedings of the 38th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’15). 113–122.

[32] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2016. Modeling
Document Novelty with Neural Tensor Network for Search Result Diversication.
In Proceedings of the 39th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR ’16). 395–404.

[33] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.
Adapting Markov Decision Process for Search Result Diversication. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’17). 535–544.

[34] Jun Xu, Long Xia, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. 2017. Directly
Optimize Diversity Evaluation Measures: A New Approach to Search Result
Diversication. ACM Trans. Intell. Syst. Technol. 8, 3, Article 41 (Jan. 2017),
26 pages.

[35] Hai-Tao Yu, Adam Jatowt, Roi Blanco, Hideo Joho, Joemon Jose, Long Chen,
and Fajie Yuan. 2017. A concise integer linear programming formulation for
implicit search result diversication. In Proceedings of the Tenth ACM International
Conference on Web Search and Data Mining. ACM, 191–200.

[36] Yisong Yue and Thorsten Joachims. 2008. Predicting Diverse Subsets Using
Structural SVMs. In Proceedings of the 25th International Conference on Machine
Learning (ICML ’08). ACM, New York, NY, USA, 1224–1231.

[37] Yisong Yue and Thorsten Joachims. 2009. Interactively Optimizing Information
Retrieval Systems As a Dueling Bandits Problem. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML ’09). 1201–1208.

[38] Sicong Zhang, Jiyun Luo, and Hui Yang. 2014. A POMDP Model for Content-
free Document Re-ranking. In Proceedings of the 37th International ACM SIGIR
Conference on Research & Development in Information Retrieval (SIGIR ’14).
ACM, New York, NY, USA, 1139–1142.

[39] Yadong Zhu, Yanyan Lan, Jiafeng Guo, Xueqi Cheng, and Shuzi Niu. 2014. Learn-
ing for Search Result Diversication. In Proceedings of the 37th International ACM
SIGIR Conference on Research & Development in Information Retrieval (SIGIR ’14).
ACM, New York, NY, USA, 293–302.

Session 1D: Learning to Rank I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

134

	Abstract
	1 Introduction
	2 Related work
	2.1 Search result diversification
	2.2 Reinforcement learning for IR

	3 MDP and MCTS
	3.1 Markov decision process
	3.2 Monte Carlo tree search

	4 Diverse ranking with policy-value networks
	4.1 MDP formulation of diverse ranking
	4.2 Strengthening policy with MCTS
	4.3 Training with reinforcement learning
	4.4 Online ranking
	4.5 Difference with AlphaGo Zero

	5 Experiments
	5.1 Experimental settings
	5.2 Experimental results
	5.3 Discussion

	6 Conclusion
	7 Acknowledgments
	References

