
Learning a Deep Listwise Context Model for Ranking
Refinement

Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1
1College of Information and Computer Sciences, University of Massachusetts Amherst

Amherst, MA, USA
{aiqy,kbi,croft}@cs.umass.edu

2CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology,
Chinese Academy of Sciences

Beijing, China
guojiafeng@ict.ac.cn

ABSTRACT
Learning to rank has been intensively studied and widely applied in
information retrieval. Typically, a global ranking function is learned
from a set of labeled data, which can achieve good performance on
average but may be suboptimal for individual queries by ignoring
the fact that relevant documents for different queries may have
different distributions in the feature space. Inspired by the idea of
pseudo relevance feedback where top ranked documents, which we
refer as the local ranking context, can provide important information
about the query’s characteristics, we propose to use the inherent
feature distributions of the top results to learn a Deep Listwise Con-
text Model that helps us fine tune the initial ranked list. Specifically,
we employ a recurrent neural network to sequentially encode the
top results using their feature vectors, learn a local context model
and use it to re-rank the top results. There are three merits with our
model: (1) Our model can capture the local ranking context based
on the complex interactions between top results using a deep neural
network; (2) Our model can be built upon existing learning-to-rank
methods by directly using their extracted feature vectors; (3) Our
model is trained with an attention-based loss function, which is
more effective and efficient than many existing listwise methods.
Experimental results show that the proposed model can signifi-
cantly improve the state-of-the-art learning to rank methods on
benchmark retrieval corpora.

KEYWORDS
Learning to rank; local ranking context; deep neural network

ACM Reference Format:
Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1. 2018. Learning a
Deep Listwise Context Model for Ranking Refinement. In SIGIR ’18: The
41st International ACM SIGIR Conference on Research and Development in
Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3209978.3209985

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5657-2/18/07. . . $15.00
https://doi.org/10.1145/3209978.3209985

1 INTRODUCTION
Ranking is a core problem of information retrieval (IR). Many IR
applications such as ad-hoc retrieval, summarization and recom-
mendations are ranking problems by nature [23]. Among all the
ranking paradigms, learning to rank is the most widely used tech-
nology in modern search systems. The idea of learning to rank is
to represent each object with a manually designed feature vector
and learn a ranking function with machine learning techniques.
In document retrieval, for example, the ranking objects are query-
document pairs and the vector representation of a query-document
pair usually consists of multiple document or query features such
as BM25 scores, click through rates, query quality scores etc. The
ranking functions are typically learned globally on labeled query-
document pairs from a separate training dataset [3, 6, 21, 23, 27].

Such a global ranking function, however, may not be optimal
for document retrieval as it ignores the differences between feature
distributions for each query. Depending on the query characteristics
and user intents, relevant documents for different queries often have
different distributions in feature space. Considering two features
such as word matching and freshness, relevant pages for a query
like “friends season 1 online watch" often have high scores on word
matching but freshness is a lower priority; relevant documents for a
query such as “political news", on the other hand, should have high
values of freshness but word matching scores are less important.
No matter how we design the feature vectors, these differences are
inevitable and hard to solve with a global ranking function.

A better paradigm for learning to rank is to learn a rankingmodel
that can take into account the query-specific feature distributions.
Ideally, ranking functions would be constructed for each query
separately [5, 16], but this would lead to unreasonable cost and low
generalization ability because the number of possible queries is
almost infinite and we do not know the feature distribution of an
unseen query in advance. As a compromise, amore practical method
is to learn a local model for each query on the fly and use it to refine
the ranking results. For example, a well-studied framework is to
represent each query with the top retrieved documents, namely
the local ranking context. Previous studies [22, 28, 29, 39] have
shown that pseudo relevance models learned from the local ranking
context can significantly improve the performance of many text-
based retrieval models.

Given previous observations [22, 26, 39], it seems intuitive to
assume that the local context information from top ranked docu-
ments would benefit the performance of learning-to-rank systems.

ar
X

iv
:1

80
4.

05
93

6v
2

 [
cs

.I
R

]
 2

3
A

pr
 2

01
8

https://doi.org/10.1145/3209978.3209985
https://doi.org/10.1145/3209978.3209985

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1

Nonetheless, the utility of this information has not been fully stud-
ied. One of the key challenges is how to develop a ranking model
by using the feature representations of top results effectively and
efficiently. On the one hand, there is no trivial solution to extract
patterns from a group of feature vectors with hundreds of dimen-
sions (which is common in modern search engines). Instead, most
previous studies focus on constructing models using the text of
documents alone [22, 38] and ignore other ranking signals. Those
methods usually require an additional feature extraction (e.g. term
extractions from top documents) and retrieval process in order to
generate the final ranked list. On the other hand, re-ranking re-
trieved documents without considering their inherent structure
could be risky. Global information from the initial retrieval, namely
the ranking positions of top results, is a strong indicator of doc-
ument relevance and should be considered when we encode and
fine-tune the ranked list for each query.

To tackle these challenges, we propose a Deep Listwise Context
Model (DLCM) that directly encodes the feature vectors of top
retrieved documents to learn a local context embedding and use it to
improve the learning-to-rank systems. Specifically, we sequentially
feed the original features of the top ranked results from a global
learning-to-rank model into a recurrent neural network (RNN). The
network state and the hidden outputs of the RNN are then used
to re-rank the results from the initial retrieval. There are several
properties of our model that make it novel compared to previous
studies. First, to the best of our knowledge, our model is the first
model that directly incorporates the local ranking context from
top results into a learning-to-rank framework. Second, our model
uses the original feature representations and ranked lists from an
existing system, which means that it can be directly deployed with
most learning-to-rank models without additional term or feature
extraction from the top retrieved documents. We adopt a re-ranking
framework and require no additional retrieval process on document
corpus after the initial run. Last, we propose an attention-based
listwise loss for the training of our model. Models trained with
our attention-based loss are more efficient and effective than those
trained with traditional listwise loss functions such as ListMLE [36].

To demonstrate and understand the effectiveness of our model,
we conducted empirical experiments on large-scale learning-to-
rank corpora. Experimental results show that our model outper-
formed the state-of-the-art learning-to-rank algorithms signifi-
cantly and consistently. In addition, our analysis shows that our
model was particularly good at finding the best document from
a group of results, which potentially makes it useful for ranking
scenarios where performance at high ranks is extremely important.

2 RELATEDWORK
There are two lines of previous studies related to our work: the
research on learning-to-rank algorithms and the study of query-
specific ranking.

Learning to rank refers to a group of techniques that attempts
to solve ranking problems by using machine learning algorithms
with the feature representations of query-document pairs. The
framework of learning to rank has been successfully applied in mul-
tiple areas such as question answering [37], recommendation [14],
and document retrieval [20, 23].

In document retrieval, the output of a learning-to-rank model
is a score which indicates the relevance of a document for a query.
Depending on how training losses are computed, learning-to-rank
algorithms can be broadly categorized as pointwise, pairwise or
listwise methods. The pointwise methods treat the ranking prob-
lem as a classification or regression problem by taking one query-
document pair a time and directly predicting its relevance score [15].
The pairwise methods transform the document ranking into a pair-
wise classification task by taking two documents a time and opti-
mizing their relative positions in the final ranked list [3, 21]. The
listwise methods further extend the above methods by taking mul-
tiple documents together and directly maximizing the ranking met-
rics [4, 6, 34, 36]. For example, Taylor et al. [34] trained models by
optimizing the expected rankingmetric computedwith the expected
rank of each document given a predefined Gaussian distribution.

Recently, a couple of deep models have been proposed to extract
features from raw data and predict the relevance of documents with
neural networks [9, 12, 17, 18]. For example, Guo et al. [17] built
matching histograms for each query-document pair and train a deep
neural network to predict their relevance. Despite the differences
in loss functions and model structures, all these models try to
learn a global ranking function that predicts the relevance score
of a document purely based on its own feature representation.
They assume that the feature vectors of relevant query-document
pairs are sampled from a global distribution and ignore the fact
that documents for different queries may have different feature
distributions. As a contrast, we propose to use the local context from
the top retrieved documents to model the query-specific feature
distributions and conduct re-ranking accordingly.

Query-specific ranking. The best way to do query-specific
ranking is to build ranking schema for each query independently.
Training models for each query separately, however, is not feasible
in practice because we do not have labeled data for unseen queries.
As a compromise, previous studies learned multiple ranking models
on training sets and rank documents for test queries by using the
pre-constructed models for similar training queries [5, 16]. For
example, Can et al. [5] constructed individual ranking models for
each training query and aggregated the model scores according
to the similarity between training queries and the test query. In
contrast to these studies, the core of our work is not to find similar
queries in the training set but to directly model and use the local
ranking context of each test query on the fly.

Another research direction focuses on extracting features from
the top retrieved documents to improve the initial ranking. A well-
known technique is pseudo relevance feedback [22, 38]. For exam-
ple, Lavrenko and Croft [22] treated each document in the top re-
sults as a unigram distribution and sum over the joint probability of
observing a word together with the query to form a relevance model
for query expansion. Zhai and Lafferty [38] extracted a topic model
from the words in feedback documents and interpolated it into
the original query model. Compared to text-based retrieval models,
there has not beenmuchwork on using the top retrieved documents
for learning-to-rank algorithms. To the best of our knowledge, the
only studies in this area are the CRF-based ranking model [26] and
the score regularization technique [13]. Different from our work,
both of them focus on utilizing the document similarity features
computed with word distributions but not the modeling of local

Learning a Deep Listwise Context Model for Ranking Refinement SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

ranking context. They are expensive and limited because they re-
quire accessing the raw text of documents after the initial retrieval
for feature extraction and ignore document relationships based on
ranking features other than term vectors.

3 LEARNING TO RANKWITH THE LOCAL
RANKING CONTEXT

In this section, we formalize the problem of how to adapt the
learning-to-rank frameworks with the local ranking context from
top retrieved documents. Given a specific query q, a vector x(q,d)
can be extracted and used as the feature representation for a docu-
ment d . Traditional learning-to-rank algorithms assume that there
exists an optimal global ranking function f which takes x(q,d) as
its input and outputs a ranking score for the document. The way to
find this optimal f is to minimize a loss function L defined as

L =
∑
q∈Q
ℓ
({
y(q,d), f (x(q,d))

��d ∈ D
})

(1)

where Q is the set of all possible queries, D is the set of candidate
documents, ℓ is the local loss computed with the document score
f (x(q,d)) and corresponding relevance judgment y(q,d). Now, sup-
pose that we can capture the local ranking context of q with a local
context model I (Rq ,Xq) where Rq = {d sorted by f (x(q,d))} and
Xq = {x(q,d) |d ∈ Rq }, then the loss of learning to rank with local
context can be formulated as:

L =
∑
q∈Q
ℓ

({
y(q,d),ϕ

(
x(q,d), I (Rq ,Xq)

) ��d ∈ D
})

(2)

where ϕ is a scoring function that ranks documents based on both
their features and the local context model I (Rq ,Xq). The goal is to
find the optimal I and ϕ that minimize the loss function L.

To effectively utilize the local ranking context, the design of
the listwise context model I should satisfy two requirements. First,
it should be able to process scalar features directly. Most of the
learning-to-rank systems convert ranking signals, whether discrete
or continuous, to a vector of scalar numbers. If the listwise con-
text model I cannot deal with these scalar numbers directly, we
need to extract the raw data from documents and manually develop
heuristics to model the local ranking context, which is difficult and
inefficient. Second, it should consider the position effect of top re-
trieved documents. The value of documents in the top results is not
the same and their positions ranked by the global ranking function
are strong indicators of their relevance.Without explicitly modeling
the position effect, we would lose the global ranking information
and harm the generalization ability of the whole system.

4 DEEP LISTWISE CONTEXT MODEL
In this paper, we propose a deep neural model to incorporate the
local ranking context into the learning-to-rank framework. The
overall idea of our model is to encode the top retrieved documents
of each query with a recurrent neural network and refine the ranked
list based on the encoded local context model. We refer our model
as the Deep Listwise Context Model (DLCM).

The pipeline of document ranking with DLCM includes three
steps. The first step is an initial retrieval with a standard learning-
to-rank algorithm. In this step, each query-document pair (q,d) is

converted into a feature vector x(q,d) and a ranked list Rnq with
size n is generated for query q based on a global ranking function
f . The second step is an encoding process that uses a recurrent
neural network (RNN) with gated recurrent unit (GRU) to encode
the feature vectors Xn

q of top retrieved documents. The RNN takes
documents one by one from the lowest position to the highest,
and produces a latent vector sn to represent the encoded local con-
text model I (Rnq ,Xn

q). The third step is a re-ranking process where
the top documents are re-ranked with a local ranking function ϕ
based on both sn and the hidden outputs o of the RNN. The overall
structure of DLCM is shown in Figure 1.

4.1 Input Document Representations
As discussed in Section 3, most learning-to-rank algorithms use a
feature vector to represent each query-document pair. In our pro-
posed framework, the DLCM uses the same feature vectors as those
used in previous learning-to-rank challenges [7, 25], which include
both document and query related features. We do not incorporate
any additional features in the model inputs.

Directly feeding the original feature vectors into our model, how-
ever, may not be the best method to use the full strength of the
neural network. On one hand, the dimensionality of the original
features may be limited and using low-dimensional representations
would restrict the expressive ability of neural encoders. On the
other hand, high-level feature abstractions could be beneficial for
the robustness of neural models especially when the original input
features are noisy. Inspired by the Wide&Deep neural network [9],
we apply a two-step method to obtain high-dimensional input rep-
resentations for the DLCMs. We first use a two-layer feed-forward
network to learn an abstraction of the original features:

z
(0)
i = x(q,di)

z
(l)
i = elu(W (l−1)

z · z(l−1)i + b(l−1)z), l = 1, 2
(3)

whereW (l)
z and b(l)z are the weight matrix and bias in the lth layer

and elu is a non-linear activation function that equals to x when
x ≥ 0 and ex − 1 otherwise. We then concatenate z(2)i with the
original feature vector x(q,di) to form a new input vector x ′

(q,di).

Let α and β be the dimension of x(q,di) and z(2)i . Because x ′
(q,di)

could be reduced to x(q,di) when β is equal to zero, we do not
differentiate them in further discussions.

4.2 Encoding the Listwise Local Context
Given the top n results retrieved by a global ranking function f
and their corresponding feature vectors Xn

q = {x(q,di) |di ∈ Rnq },
the local context model I in DLCM is implemented with a recurrent
neural network (RNN). The RNN is a type of deep network widely
used for the modeling of sequential data [11, 33, 35]. A standard
RNN consists of an input sequence, an output sequence and a state
vector. As we feed the input instances one by one (each instance is
represented with a feature vector), the RNN updates its state vector
according to current input and generates a new output vector in
each step. The final state vector can be viewed as an encoding of
all the information that has been fed into the network.

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1

x(q,d1)

x(q,d2)

x(q,d3)

x(q,dn)

…

GRU

sn

…

on

on�1

on�2

o1

d1

d2

d3

dn

…

Score(d1)

Score(d2)

Score(d3)

Score(dn)

Rn
q

…… …

�(o, sn)I(Rn
q , Xn

q)

o s

o

x

u

r

GRU

Figure 1: The overall structure of the Deep Listwise Context Model (DLCM). Rnq is a ranked list provided by a global ranking
function f for query q; x(q,di) is the feature vector for document di ; sn and oi is the final network state and hidden outputs of
the RNN with GRU in I (Rnq ,Xn

q); and Score(di) is the final ranking score of di computed with ϕ(on+1−i , sn)

In our DLCM, we use a RNN with gated recurrent unit (GRU).
The GRU network is a technique proposed by Cho et al. [10] which
aims to solve the problem of gradient vanishing in RNN. Its basic
idea is to control the update of network states with an update gate
and a reset gate. Formally, let xt ∈ Rα be the input vector in the t
step and α is the dimensionality of xt . The output vector (also the
activation vector in GRU) ot ∈ Rα and the network state st ∈ Rα
is computed as:

ot = (1 −ut) ⊙ ot−1 +ut ⊙ st

ut = σ (W x
u · xt +W s

u · ot−1)
st = tanh

(
W x · xt +W s · (rt ⊙ ot−1)

)
rt = σ (W x

r · xt +W s
r · ot−1)

(4)

where ⊙ is the element-wise product, σ (x) = 1
1+e−x is a sigmoid

function, ut ∈ Rα is the update gate and rt ∈ Rα is the reset
gate. All weight matricesW x ,W s ,W x

u ,W
s
u ,W

x
r ,W

s
r ∈ Rα×α are

learned in the training process. The encoded local context model
I (Rnq ,Xn

q) is the final network state sn .
The RNN with GRU in the DLCM naturally satisfies the two

requirements of a local context model as discussed in Section 3. The
inputs of RNN are a sequence of vectors, which could be the scalar
features from learning-to-rank systems. Because the RNN automat-
ically learns to combine the current input with previous inputs
encoded in the network state, we do not need to manually define
heuristics to model the local ranking context. Also, the structure of
the RNN enables it to capture the position effect in the encoding
process. When we feed the network with input data one by one, the
current input tends to have more influence on the current network
state than previous inputs. Since we input the sorted top results
from the lowest position to the highest, documents in the high
positions will have more impact on the final network state.

As an alternative to the uni-directional RNN shown in Figure 1,
we also tested the bi-directional RNN [30]. Although it is considered
to be more advanced in NLP tasks [2], we observed no improvement
in our retrieval experiments when replacing the uni-directional
RNNwith the bi-directional one. This indicates that the information
encoded from the reversed direction is not useful. In fact, if we
only used the uni-directional RNN on the reversed direction, the
performance of the DLCM would be significantly worse.

4.3 Re-ranking with the Local Context
The final step of ranking in our DLCM is to produce a new ranked
list by sorting documents with a local ranking function ϕ. When
predicting a ranking score, the function ϕ considers both the hid-
den outputs of RNN and the encoded latent representation of the
local ranking context. Let on+1−i be the output representation of
document di ∈ Rnq , we define the local ranking function ϕ as

ϕ(on+1−i , sn) = Vϕ ·
(
on+1−i · tanh(Wϕ · sn + bϕ)

)
(5)

whereWϕ ∈ Rα×k×α , bϕ ∈ Rα×k , and Vϕ ∈ Rk and k is a hyper-
parameter that controls the number of hidden units.

Our definition of the local ranking function is similar to the
attention function widely used in RNN research [11, 24, 35]. In
many machine learning applications (i.e. machine translation), a
RNN decoder needs to pay attention to different part of the input
data in different steps. For example, we need to focus on different
parts of a sentence when we generate a translation word by word.
Attention functions are commonly used to compute an attention
distribution over the input data and generate an attention vector
to guide the decoding process of a RNN. In the DLCM, we directly
use the output values of ϕ to rank input documents.

We tried other settings like replacing o with x and implement-
ing ϕ with a three-layer feed forward network or a neural tensor
network [32]. However, their performance were either worse or
not significantly better than our method in the experiments, so we
only report the results of ϕ defined as Equation 5 in this paper.

4.4 Loss Function
To train our DLCM, we implemented two existing listwise loss
functions (ListMLE [36] and SoftRank [34]) and also proposed a
new listwise loss function called Attention Rank.

ListMLE is a listwise loss function that formulates learning to
rank as a problem of minimizing the likelihood loss [36]. It treats
ranking as a sequential selection process and defines the probability
to select document di from documents πnm = {dj |j ∈ [m,n]} as

P(di |πnm) = eSi∑n
j=m eSj

(6)

Learning a Deep Listwise Context Model for Ranking Refinement SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

where Si and Sj are the ranking scores of di and dj . If we start
the selection from the top of a ranked list Rnq and remove the se-
lected document from the candidate set after each step, we have
the probability of observing Rnq given the ranking scores S as

P(Rnq |S) =
n∏
i=1

P(di |πni) =
n∏
i=1

eSi∑n
j=i e

Sj
(7)

Let R∗
q be the best possible ranked list for query q, then the ListMLE

loss is defined as the minus of the log likelihood of R∗
q given S .

SoftRank, firstly proposed by Taylor et al. [34], is a listwise loss
function that directly optimizes the ranking metrics of information
retrieval such as NDCG. Let Si and Sj be the ranking scores of
document di and dj for query q. The SoftRank function assumes
that the “real" score S ′i of document di is drawn from a Gaussian
distribution defined as N(Si ,σ 2s) where σs is a shared smoothing
variance. Given this assumption, the probability that di is ranked
higher than dj can be computed as:

πi j ≡ Pr(S ′i − S ′j > 0) =
∫ ∞

0
N(S |Si − Sj , 2σ 2s)dS (8)

Let p(1)j (r) be the initial rank distribution for dj when dj is the

only document in the ranked list, then p(i)j (r) after adding the ith
document is computed as:

p
(i)
j (r) = p(i−1)j (r − 1)πi j + p(i−1)j (r)(1 − πi j) (9)

With the final rank distribution p(n)j (r) and the label of all n docu-
ments, we can compute the expected relevance value on each rank
and define a loss function as the minus of an expected metric score.

In this paper, we use NDCG as the objective metric for SoftRank.
The only hyper-parameter in SoftRank is the shared smoothing
variance σs . We tried 0.1, 1.0 for σs and observed no significant
difference in respect of the retrieval performance. Therefore, we
only report the results with σs equal to 0.1.

Attention Rank. Inspired by previous work on attention-based
neural networks, we propose an Attention Rank loss function that
formulates the evaluation of a ranked list as a process of attention
allocation. Assuming that the information contained in documents
is mutually exclusive, the total information gain of a ranked list is
the accumulation of each document’s gain. If we further assume
that the relevance judgment scores of a document directly reflect
its information gain, the best strategy to maximize the total infor-
mation gain in a limited time is to allocate more attention to the
best results, less attention to the fair results and no attention to
the irrelevant results. The idea of Attention Rank is to compute an
attention distribution with the ranking scores of our models and
compare it with the attention strategy computed with the relevance
judgments. Let the relevance label y(q,di) represent the informa-
tion gain of document di for query q. The best attention allocation
strategy on a ranked list Rnq is defined as

a
y
i =

ψ (y(q,di))∑
dk ∈Rnq ψ (y(q,dk))

(10)

where ψ (x) is a rectified exponential function that equals to ex

when x > 0 and equals to 0 otherwise. Similarly, we compute the
attention distribution of our model aSi with the ranking score Si

Table 1: The characteristics of learning-to-rank datasets
used in our experiments: number of queries, documents, rel-
evance levels, features and year of release.

Queries Doc. Rel. Feat. Year
Micrsoft 30K 31,531 3,771k 5 136 2010
Micrsoft 10K 10,000 1,200k 5 136 2010
Yahoo! set 1 29,921 710k 5 700 2010

and use the cross entropy between our attention strategy and the
best attention strategy as the loss of Rnq :

ℓ(Rnq) = −
∑

di ∈Rnq

(
a
y
i log(a

S
i) + (1 − a

y
i) log(1 − aSi)

)
(11)

Attention Rank does not directly predict the relevance labels of
documents but focuses on the relative importance of each result in
the ranked list. For example, a fair document in a list of irrelevant
results could receive more attention than an excellent document
in a list of perfect results. Because it computes ranking loss based
on ranked lists, Attention Rank is a listwise function rather than a
pointwise function. The main advantages of Attention Rank are its
simplicity and efficiency. By using the rectified exponential function
ψ (x), we explicitly allocate more effort to optimize high-relevance
results in the training process. The training of the DLCM with
Attention Rank was 2 and 20 times faster than the DLCM with
ListMLE and SoftRank in our experiments. Also, it can be directly
applied in the unbiased learning to rank framework [1].

5 EXPERIMENTAL SETUP
In our experiments, we used three benchmark datasets, Microsoft
30k, Microsoft 10k [25]1 and Yahoo! Webscope v2.0 set 12. As far
as we know, these are the largest public learning-to-rank datasets
from commercial English search engines. The statistics of corpora
are listed in Table 1. Due to privacy concerns, these datasets do not
disclose any text information and only provide feature vectors for
each query-document pair. The Microsoft datasets are partitioned
into five folds and define cross validation by using three folds for
training, one fold for validation and one fold for testing. The Yahoo!
set 1 splits the queries arbitrarily and uses 19,944 for training, 2,994
for validation and 6,983 for testing.

Baselines. We used two types of global learning-to-rank models
as our baselines: SVMrank and LambdaMART. SVMrank [21] is
a well-known ranking model trained with pairwise losses while
LambdaMART [4] is the state-of-the-art learning-to-rank algorithm
trained with listwise losses. In this paper, we used the implementa-
tion of SVMrank3 from Joachims [21] and the implementations of
LambdaMART from RankLib4.

We used global ranking algorithms to do the initial retrieval and
showed the results of the DLCMs with three loss functions, the
ListMLE, the SoftRank and the Attention Rank function (AttRank).
To demonstrate the effectiveness of the DLCM as a re-ranking
model, we include three baselines that use global ranking models to
re-rank the initial results. They are the original ListMLE model [36],
the original SoftRank model [34] and the model trained with our
1https://www.microsoft.com/en-us/research/project/mslr/
2http://webscope.sandbox.yahoo.com
3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
4https://sourceforge.net/p/lemur/wiki/RankLib/

https://www.microsoft.com/en-us/research/project/mslr/
http://webscope.sandbox.yahoo.com
https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
https://sourceforge.net/p/lemur/wiki/RankLib/

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1

proposed AttRank loss (AttRank). Because they all implement the
ranking function with feed-forward Deep Neural Network (DNN),
we refer to these three baselines as DNN with ListMLE, SoftRank
and AttRank respectively.

As an initial attempt to use the local ranking context for learning
to rank, we are interested to see how the DLCM performs compared
to simple models that directly uses all the features from a ranked
list. Therefore, we incorporate a new baseline that concatenates
the features of all documents as the inputs to a feed-forward neural
network and predicts their ranking scores together. For example,
suppose that the input ranked list Rnq has 40 documents (n = 40)
and each document has 700 features (α = 700), then the model takes
a 28,000-dimension vector as its inputs and outputs a 40-dimension
score vector. To differentiate it from models that score one docu-
ment a time, we call this new baseline as the Listwise Input Deep
Neural Network (LIDNN). Similar to the DLCM, we implemented
LIDNN with ListMLE, SoftRank and AttRank respectively.

Due to the limitations of the datasets, we cannot access the
text data of queries and documents, which makes it impossible to
construct relevance models, extract document relationship features
or compute query similarities. The goal of our work is to improve
learning-to-rank systems with the local ranking context but not to
extract new features or design new models for query expansion.
Therefore, we did not includemodels that use the raw text of queries
or documents as baselines in our experiments [5, 13, 16, 22, 26].

Evaluation. Our datasets have five-level relevance judgments,
from 0 (irrelevant) to 4 (perfectly relevant), so we use two types
of multi-label ranking metrics. The first one is the Normalized
Discounted Cumulative Gain (NDCG) [19], and the second one is
Expected Reciprocal Rank (ERR) [8]. For both NDCG and ERR, we
reported results at rank 1,3,5 and 10 to show the performance of our
models on different positions. Statistical differences are computed
with the Fisher randomization test [31] (p ≤ 0.01).

Model training. The training of the DLCMs and the baselines
includes two parts: the training of global ranking functions for the
initial retrieval, and the training of ranking models for re-ranking.
We tuned the global ranking model on the validation set based on
NDCG@10 and select the best one as our initial ranking function
(which is also the baseline reported in this paper). For SVMrank,
we tuned parameter c from 20 to 200; for LambdaMART, we tuned
tree number from 100 to 1000. For the re-ranking baselines and
the LIDNNs, we tried both two-layer and three-layer feedforward
neural networks with hidden layer units from 64 to 1024. We only
reported the best results for each baseline.

For the training of RNN and local ranking functions, we used
stochastic gradient descent with batch size 256. The initial learning
rate is 1.0, and it decays by 0.8 each time when the training loss in-
creases. For each iteration, we randomly sampled a batch of queries
to feed the model and clip the global gradient norm with 5 before
update. We trained our models on one Nvidia Titan X GPU with 12
GB memory. The training of the DLCMs with AttRank and ListMLE
(10,000 iterations) takes about 2 to 4 hours while the training of the
DLCMs with SoftRank usually takes 2 to 3 days. The re-ranking
process usually takes about 2 to 3 ms for each test query.

There are three hyper-parameters for our DLCMs: the size of in-
put ranked list n, the dimensions of input abstraction β (Section 4.1),

and the hidden unit number k (Equation 5). We tuned n from 10
to 60, β from 0 to 200, and k from 1 to 15. The source code can be
found in the link below5.

6 RESULTS AND ANALYSIS
In this section, we describe our results and conduct detailed analysis
on the DLCM to show how it improves the ranking of existing
learning-to-rank systems.

6.1 Overall performance
The overall retrieval performance of our baselines and correspond-
ing DLCMs are shown in Table 2, 3 and 4. For each dataset, we split
the baselines and our models into two groups. Each group showed
the results of one global ranking algorithm, three re-ranking base-
lines (ListMLE, SoftRank andAttRank), and the LIDNNs andDLCMs
trained with different loss functions.

As shown in Table 2, re-ranking initial results using global rank-
ing algorithms does not necessarily improve the performance of
learning to rank systems. When the initial ranker was weak (e.g.
SVMrank), the re-ranking baselines (ListMLE, SoftRank and At-
tRank) produced better rankings for the initial results; when the
initial ranker was strong (e.g. LambdaMART), however, the re-
ranking baselines actually hurt the performance of the whole sys-
tem. Although the re-ranking baselines in our experiments adapted
listwise loss functions, they share the same global assumption with
the global ranking algorithms used in the initial retrieval but were
trained only with the top results, which is a limited subset of the
training corpora. Therefore, the re-ranking baselines do not incor-
porate any new information and could harm the ranking systems.

According to our experiments, directly applying deep models
on the concatenation of all document features did not work well.
None of the LIDNN models consistently outperformed their cor-
responding initial rankers. In fact, the results of the LIDNNs were
highly correlated with the performance of their initial rankers. In
Table 2, the LIDNN with SVMrank performed even worse than
the re-ranking baselines. The number of parameters in LIDNN is
usually large (more than 1 million) due to the large amount of input
features, but this doesn’t make it powerful empirically. One possible
explanation is that concatenating all document features together
makes it difficult to discriminate the relevance of individual docu-
ments in fine granularity. As a result, the LIDNNs just learned to
fit the initial ranking of the inputs.

In contrast to the baseline models, re-ranking with the DLCMs
brought stable and significant improvements to all of the global
ranking algorithms. On SVMrank in Microsoft 30K, the DLCM
with SoftRank achieved 40.9%, 80.6% improvements on NDCG@1,
ERR@1 and 15.9%, 35.8% improvements on NDCG@10, ERR@10.
On LambdaMART, which is considered to be one of the state-of-the-
art learning-to-rankmodels, the DLCMwith AttRank achieved 1.3%,
4.7% improvements on NDCG@1, ERR@1 and 1.1%, 2.0% improve-
ments on NDCG@10, ERR@10. Although the number of trainable
parameters in DLCMs is close to the re-ranking baselines and much
lower than LIDNNs, the DCLMs significantly outperformed them
in our experiments. This indicates that incorporating local ranking
context with the DLCM is beneficial for global ranking algorithms.
5https://github.com/QingyaoAi/Deep-Listwise-Context-Model-for-Ranking-Refinement

https://github.com/QingyaoAi/Deep-Listwise-Context-Model-for-Ranking-Refinement

Learning a Deep Listwise Context Model for Ranking Refinement SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

Table 2: Comparison of baselines and the DLCMs onMicrsoft 30K. ∗, + and ‡ denotes significant improvements over the global
ranking algorithm and the best corresponding re-ranking baseline (DNN) and LIDNN.

Microsoft Letor Dataset 30K
Initial List Model Loss Function nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

SVMrank 0.301 0.124 0.318 0.197 0.335 0.223 0.365 0.246

SVMrank

DNN
ListMLE 0.337∗‡ 0.149∗‡ 0.345∗‡ 0.224∗‡ 0.356∗‡ 0.249∗‡ 0.382∗‡ 0.271∗‡
SoftRank 0.388∗‡ 0.208∗‡ 0.376∗‡ 0.279∗‡ 0.379∗‡ 0.300∗‡ 0.395∗‡ 0.318∗‡
AttRank 0.395∗‡ 0.198∗‡ 0.392∗‡ 0.274∗‡ 0.396∗‡ 0.297∗‡ 0.415∗‡ 0.316∗‡

LIDNN
ListMLE 0.291 0.122 0.312 0.196 0.331 0.222 0.362 0.245
SoftRank 0.315∗ 0.141∗ 0.326∗ 0.213∗ 0.341∗ 0.238∗ 0.367∗ 0.260∗
AttRank 0.306∗ 0.135∗ 0.318 0.206∗ 0.331 0.231∗ 0.361 0.253∗

DLCM
ListMLE 0.339∗‡ 0.149∗‡ 0.346∗‡ 0.223∗‡ 0.357∗‡ 0.248∗‡ 0.381∗‡ 0.269∗‡
SoftRank 0.424∗+‡ 0.224∗+‡ 0.404∗+‡ 0.294∗+‡ 0.408∗+‡ 0.316∗+‡ 0.423∗+‡ 0.334∗+‡

AttRank 0.407∗+‡ 0.206∗‡ 0.399∗+‡ 0.281∗+‡ 0.404∗+‡ 0.303∗+‡ 0.422∗+‡ 0.322∗+‡

LambdaMART 0.457+ 0.235+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+

LambdaMART

DNN
ListMLE 0.372 0.174 0.378 0.254 0.386 0.278 0.409 0.299
SoftRank 0.384 0.209 0.373 0.281 0.378 0.302 0.397 0.321
AttRank 0.388 0.199 0.386 0.274 0.393 0.297 0.416 0.317

LIDNN
ListMLE 0.427+ 0.219+ 0.427+ 0.301+ 0.435+ 0.325+ 0.455+ 0.344+
SoftRank 0.457+ 0.234+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+
AttRank 0.455+ 0.237+ 0.432+ 0.312+ 0.436+ 0.334+ 0.458+ 0.354+

DLCM
ListMLE 0.457+ 0.235+ 0.442+ 0.314+ 0.445+ 0.336+ 0.464+ 0.355+
SoftRank 0.463∗+‡ 0.243∗+‡ 0.444∗+‡ 0.320∗+‡ 0.447∗+‡ 0.342∗+‡ 0.465∗+‡ 0.360∗+‡
AttRank 0.463∗+‡ 0.246∗+‡ 0.445∗+‡ 0.322∗+‡ 0.450∗+‡ 0.344∗+‡ 0.469∗+‡ 0.362∗+‡

Table 3: Comparison of baselines and the DLCMs onMicrsoft 10K. ∗, + and ‡ denotes significant improvements over the global
ranking algorithm and the best corresponding re-ranking baseline (DNN) and LIDNN.

Microsoft Letor Dataset 10K
Initial List Model Loss Function nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

SVMrank 0.292 0.129 0.312 0.199 0.329 0.226 0.360 0.248

SVMrank

DNN
ListMLE 0.304∗‡ 0.134∗‡ 0.323∗‡ 0.208∗‡ 0.338∗‡ 0.234∗‡ 0.367∗‡ 0.256∗‡
SoftRank 0.378∗‡ 0.207∗‡ 0.366∗‡ 0.275∗‡ 0.368∗‡ 0.295∗‡ 0.386∗‡ 0.314∗‡
AttRank 0.383∗‡ 0.203∗‡ 0.381∗‡ 0.276∗‡ 0.388∗‡ 0.298∗‡ 0.410∗‡ 0.318∗‡

LIDNN
ListMLE 0.283 0.125 0.305 0.197 0.320 0.222 0.355 0.245
SoftRank 0.295∗ 0.130 0.311 0.201∗ 0.328 0.227 0.358 0.249
AttRank 0.291 0.125 0.305 0.196 0.323 0.222 0.354 0.244

DLCM
ListMLE 0.333∗‡ 0.152∗‡ 0.342∗‡ 0.225∗‡ 0.351∗‡ 0.249∗‡ 0.377∗‡ 0.271∗‡
SoftRank 0.393∗+‡ 0.205∗‡ 0.385∗+‡ 0.276∗‡ 0.388∗‡ 0.298∗‡ 0.408∗‡ 0.317∗‡
AttRank 0.390∗+‡ 0.206∗‡ 0.382∗‡ 0.275∗‡ 0.390∗+‡ 0.298∗‡ 0.411∗‡ 0.318∗‡

LambdaMART 0.419+ 0.223+ 0.417+ 0.302+ 0.425+ 0.325+ 0.446+ 0.344+

LambdaMART

DNN
ListMLE 0.370 0.180 0.375 0.259 0.385 0.283 0.406 0.303
SoftRank 0.368 0.202 0.358 0.273 0.361 0.294 0.382 0.313
AttRank 0.378 0.198 0.373 0.272 0.380 0.295 0.403 0.314

LIDNN
ListMLE 0.414+ 0.220+ 0.413+ 0.299+ 0.422+ 0.323+ 0.441+ 0.342+
SoftRank 0.420+ 0.223+ 0.415+ 0.301+ 0.425+ 0.325+ 0.445+ 0.344+
AttRank 0.415+ 0.222+ 0.409+ 0.299+ 0.419+ 0.322+ 0.441+ 0.341+

DLCM
ListMLE 0.419+ 0.223+ 0.417+‡ 0.302+ 0.425+ 0.325+ 0.446+ 0.344+
SoftRank 0.425∗+‡ 0.230∗+‡ 0.419∗+‡ 0.306∗+‡ 0.426+ 0.329∗+‡ 0.447+‡ 0.348∗+‡
AttRank 0.432∗+‡ 0.232∗+‡ 0.423∗+‡ 0.307∗+‡ 0.429∗+‡ 0.330∗+‡ 0.450∗+‡ 0.349∗+‡

For different variations, the DLCMs with AttRank consistently
produced better results than the DLCMs with ListMLE and out-
performed its SoftRank version on Microsoft 30K LambdaMART,
Microsoft 10K LambdaMART and Yahoo! SVMrank. Because the
Attention Rank loss is much simpler and more efficient than the

ListMLE (2 times faster) and the SoftRank (20 times faster) empiri-
cally, we believe that it has great potentials in real applications.

Compared to other datasets, we notice that the improvements
from the DLCMs are relatively small on Yahoo! Letor set 1. This,
however, is not surprising considering the special properties of the

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1

Table 4: Comparison of baselines and the DLCMs on Yahoo! set 1. ∗, + and ‡ denotes significant improvements over the global
ranking algorithm and the best corresponding re-ranking baseline (DNN) and LIDNN.

Yahoo! set 1
Initial List Model Loss Function nDCG@1 ERR@1 nDCG@3 ERR@3 nDCG@5 ERR@5 nDCG@10 ERR@10

SVMrank 0.637 0.312 0.650 0.395 0.674 0.416 0.726 0.432

SVMrank

DNN
ListMLE 0.629 0.305 0.643 0.389 0.67 0.411 0.721 0.427
SoftRank 0.659∗‡ 0.337∗‡ 0.666∗‡ 0.412∗‡ 0.685∗‡ 0.432∗‡ 0.729∗‡ 0.447∗‡
AttRank 0.667∗‡ 0.339∗‡ 0.675∗‡ 0.414∗‡ 0.695∗‡ 0.435∗‡ 0.740∗‡ 0.449∗‡

LIDNN
ListMLE 0.540 0.247 0.611 0.357 0.641 0.379 0.698 0.395
SoftRank 0.642∗ 0.319∗ 0.647 0.398∗ 0.670 0.419∗ 0.717 0.435∗
AttRank 0.630 0.319∗ 0.638 0.396∗ 0.660 0.417∗ 0.709 0.433∗

DLCM
ListMLE 0.637 0.312 0.649 0.395 0.673 0.417∗ 0.723 0.432
SoftRank 0.668∗+‡ 0.341∗+‡ 0.674∗‡ 0.416∗+‡ 0.694∗‡ 0.437∗+‡ 0.738∗‡ 0.451∗+‡
AttRank 0.671∗+‡ 0.342∗+‡ 0.680∗+‡ 0.417∗+‡ 0.699∗+‡ 0.438∗+‡ 0.745∗+‡ 0.452∗+‡

LambdaMART 0.677+ 0.343+ 0.676+ 0.417+ 0.696+ 0.438+ 0.738+ 0.452+

LambdaMART

DNN
ListMLE 0.640 0.314 0.653 0.398 0.678 0.419 0.727 0.434
SoftRank 0.641 0.330 0.643 0.404 0.663 0.425 0.711 0.440
AttRank 0.665 0.338 0.673 0.413 0.695 0.434 0.739 0.449

LIDNN
ListMLE 0.603 0.298 0.621 0.384 0.651 0.407 0.71 0.423
SoftRank 0.677+ 0.343+ 0.676+ 0.417+ 0.694+ 0.438+ 0.738+ 0.452+
AttRank 0.656 0.336 0.655 0.409 0.676 0.429 0.722 0.444

DLCM
ListMLE 0.667+ 0.334 0.673 0.412 0.692 0.433 0.736 0.447
SoftRank 0.678∗+‡ 0.344∗+‡ 0.678∗+‡ 0.418∗+‡ 0.697∗+‡ 0.439∗+‡ 0.739∗+ 0.453∗+‡

AttRank 0.676+ 0.343+ 0.681∗+‡ 0.418∗+‡ 0.699∗+‡ 0.438+ 0.743∗+‡ 0.453∗+‡

Table 5: The statistics of the test fold used for pairwise rank-
ing analysis in Microsoft 30k. Query denotes the number of
queries containing documentswith the corresponding label.

Rel. Label 0 1 2 3 4 All
Doc. 104k 79k 47k 8k 4k 241k
Query 6,285 6,069 5,605 3,209 1,612 6,306

Yahoo! data. First, Yahoo! Letor set 1 is a relatively easy dataset
and the ranked lists produced by the baseline methods are nearly
perfect (e.g. LambdaMART had 0.738 on NDCG@10). When we
input those nearly perfect ranked lists into the DLCM, it is less
likely to learn anything new other than producing the same ranking
from the initial ranked list. Second, every feature in Yahoo! Letor
set 1 is a high-quality ranking signal in itself. The 700 features
in Yahoo! data are the outputs of a feature selection where the
most predictive features for ranking are kept [7]. This means that
each feature already has a high correlation with the document’s
relevance label in global. The information from the local ranking
context is unlikely to be useful on Yahoo! letor set 1 given the fact
that all features are selected globally.

6.2 Pair-wise Ranking Analysis
In this section, we want to shed some light on how our DLCMs
improve the global ranking baselines. Our analysis focused on two
questions: (1) Compared to baselines, do all relevant documents
receive rank promotions in our DLCMs? (2) What queries received
more improvements from the use of local ranking context?

For analysis purposes, we used the ranked lists of LambdaMART
and its DLCM with AttRank from one test fold of Microsoft 30k and
analyzed the pairwise ranking changes on documents with different

perfect excellent good fair
Document Relevance Label

0.0

0.5

1.0

1.5

2.0

N
eg

P
ai

rr
ed

uc
tio

n

Average on documents
Average on queries

Figure 2: The NegPair reduction (NP(d,LambdaMART)-
NP(d,DLCM)) on documents with different relevance
labels.
relevance labels y(q,d). The statistics of the test fold are shown in
Table 5. We measured the improvement of the DLCM with AttRank
over LambdaMART on a document d by counting the reduction
of negative ranking pairs. A negative ranking pair (NegPair) is a
document pair (d,d ′) where d ′ is ranked higher than d in query
q while y(q,d ′) < y(q,d). In other words, the number of negative
pairs is the number of documents which have been incorrectly
placed in front of d . For simplicity, we use NP(d,LambdaMART)
and NP(d,DLCM) to denote the negative ranking pair of d in the
ranked lists of LambdaMART andDLCMwith AttRank. TheNegPair
reduction is defined as NP(d,LambdaMART) − NP(d,DLCM).

To answer the first question, we plotted the average NegPair
reduction for documents with different relevance labels in Figure 2.
The numbers are averaged both on document level and on query

Learning a Deep Listwise Context Model for Ranking Refinement SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA

1 (690) 2 (420) 3 (203) 4 (124) ≥5 (175)
Number of perfect Results in Each Query (Query Count)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

eg
P

ai
rr

ed
uc

tio
n

0%

5%

10%

15%

20%

25%

30%

N
eg

P
ai

rr
ed

uc
tio

n
/
N
P

(d
,L
a
m
bd
a
M
A
R
T

)

Figure 3: TheNegPair reduction and corresponding improve-
ment proportion for queries with different number of per-
fect documents.

level (average on documents within each query and then on all
the queries). As shown in Figure 2, the perfect results (documents
with label 4) received the largest promotions in rank. The average
NegPair reduction per document on perfect is 1.88, which means that
the positions of these documents have been effectively increased by
nearly 2 in their ranked lists. The NegPair reduction on excellent re-
sults (label 3) are smaller but still promising (0.43 per document). On
good and fair results (label 2 and label 1), however, there is almost
no improvement when comparing the DLCM with LambdaMART.
These observations indicate that our DLCMs are particularly good
at finding perfect and excellent results from the initial ranked list,
but not capable of discriminating fair results from irrelevant ones.

To answer the second question, we showed the distribution of
NegPair reduction for perfect documents by splitting queries accord-
ing to howmany perfect results they have. In Figure 3, the horizontal
axis represents the number of perfect results in each query (and the
count of queries within that category) and the vertical axises repre-
sent both the average NegPair reduction (NP(d,LambdaMART) −
NP(d,DLCM)) and corresponding improvement proportion (e.g.
NegPair reduction is 2.64 and NP(d,LambdaMART) is 11.57 on
queries with four perfect documents, so the improvement propor-
tion is 22.79%). The overall results in Figure 3 show that the NegPair
reduction gradually increases when the query has more perfect re-
sults. The NegPair reduction is 0.99 (13.5%) on queries with one
perfect document but 2.64 (22.8%) on queries with four perfect doc-
uments. These numbers imply that the DLCMs are more useful in
queries with more than one perfect result in the original ranked list.
This basically supports the hypothesis that relevance information
from top results can help us better predict the relevance of each
document with learning-to-rank models.

6.3 Parameter Sensitivity
To evaluate the parameter sensitivity of DLCM, we tested the
DLCMwith SoftRank (DLCMLambdaMART ,Sof tRank) and AttRank
(DLCMLambdaMART ,AttRank) with different hyper-parameters on
Microsoft 30K.

Figure 4a shows the ERR@10 of the DLCMs with different input
ranked list size n. As shown in Figure 4a, the performance of the
DLCM with AttRank became better when n increased from 10 to

40 and then remained unchanged when n increased from 40 to
60. In comparison, the performance of the DLCM with SoftRank
showed no clear correlation with the size of input ranked lists. In
the beginning, when n is relatively small, the increase of n would
introduce more relevant documents into the inputs of DLCMs and
give the model more opportunities to improve the ranked list. When
n is large enough, however, increasing n only brings irrelevant
documents into the initial ranked list. Compared to the DLCM with
SoftRank, the DLCM with AttRank is more robust to noise and
more capable of gathering relevant information from the initial
ranked lists.

Figure 4b depicts the results of the DLCM with different abstrac-
tion dimension β . When β equals to 0, it means that there is no
abstraction process and we used the original feature vector from
the training data as our model inputs. Overall, adding abstraction
layers was beneficial for the performance of DLCMs. The abstrac-
tion process introduces more parameters into the DLCM and has
the potential to improve the model robustness with respect to in-
put noise. Nonetheless, large β does not necessarily lead to better
performance. The performance of the DLCM with β = 200 has no
significant difference with the performance of the DLCMwith β = 0
in our experiments. Because the original feature vector has 136 di-
mensions, adding an abstraction with larger dimensions than the
original input may not be reasonable and could bring unnecessary
computation cost to the training of DLCMs.

In Figure 4c and Figure 4d, the performance of the DLCM is rela-
tively stable after k and training iterations are larger than certain
thresholds. The improvement on ERR@10 is not noticeable when
we increased k from 3 to 15 and the performance of the DLCM
fluctuated before 12,000 iterations, but remained stable afterward.

7 CONCLUSION AND FUTUREWORK
In this paper, we propose a Deep Listwise Context Model to im-
prove learning-to-rank systems with the local ranking context. Our
model uses a RNN to encode the top retrieved documents from a
global learning-to-rank algorithm and refines the ranked list with a
local context model. Our model can be efficiently trained with our
attention-based listwise ranking loss and directly deployed over
existing learning-to-rank models without additional feature extrac-
tion or retrieval processing. In our experiments, we showed that
our DLCM can significantly improve the performance of baseline
methods on benchmark learning-to-rank datasets. Also, our analy-
sis indicates that the DLCM is particularly good at finding the best
documents from the initial ranked list. These results support the
hypothesis that the local ranking context from top retrieved docu-
ments are valuable for learning to rank, which potentially provides
new ideas for the future study.

As the DLCM learns to rank documents according to the local
ranking context of top results, there is a concern as to whether the
model would place similar documents in high positions and hurt
ranking diversity. We did not discuss this problem in this paper,
but it could be another fruitful research direction in the future. We
believe that our framework has the potential to improve search
result diversity as well. For example, we could add a decoding
phase into our model and generate each result according to both
the ranking features and previous outputs. This process resembles

SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Qingyao Ai1,Keping Bi1, Jiafeng Guo2, W. Bruce Croft1

10 20 30 40 50 60
Ranked list size n

0.355

0.356

0.357

0.358

0.359

0.360

0.361

0.362

E
R

R
@

10

DLCMLambdaMART,AttRank

DLCMLambdaMART,SoftRank

LambdaMART

(a) Input ranked list size n

0 40 80 120 160 200
Abstraction Dimension β

0.355

0.356

0.357

0.358

0.359

0.360

0.361

0.362

E
R

R
@

10

DLCMLambdaMART,AttRank

DLCMLambdaMART,SoftRank

LambdaMART

(b) Abstraction dimension β

1 3 6 9 12 15
Hidden unit number k

0.355

0.356

0.357

0.358

0.359

0.360

0.361

0.362

E
R

R
@

10

DLCMLambdaMART,AttRank

DLCMLambdaMART,SoftRank

LambdaMART

(c) Hidden unit number k

2k 4k 6k 8k 10k 12k 14k 16k
Training Iteration

0.355

0.356

0.357

0.358

0.359

0.360

0.361

0.362

E
R

R
@

10

DLCMLambdaMART,AttRank

DLCMLambdaMART,SoftRank

LambdaMART

(d) Training iteration

Figure 4: The performance of the DLCMs on Microsoft 30k with different hyper-parameters.

the paradigm used by many ranking diversity models. We will
further explore this direction in our future work.

8 ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent In-
formation Retrieval and in part by NSF IIS-1160894. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
those of the sponsor.

REFERENCES
[1] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018. Unbi-

ased Learning to Rank with Unbiased Propensity Estimation. In Proceedings of
the 41st ACM SIGIR. ACM.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd ICML. ACM, 89–96.

[4] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11 (2010), 23–581.

[5] Ethem F Can, W Bruce Croft, and R Manmatha. 2014. Incorporating query-
specific feedback into learning-to-rank models. In Proceedings of the 37th ACM
SIGIR. ACM, 1035–1038.

[6] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning
to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
ICML. ACM, 129–136.

[7] Olivier Chapelle and Yi Chang. 2011. Yahoo! Learning to Rank Challenge
Overview.. In Yahoo! Learning to Rank Challenge. 1–24.

[8] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected
reciprocal rank for graded relevance. In Proceedings of the 18th ACM CIKM. ACM,
621–630.

[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems. ACM, 7–10.

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Ben-
gio. 2014. On the properties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259 (2014).

[11] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078 (2014).

[12] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. arXiv preprint
arXiv:1704.08803 (2017).

[13] Fernando Diaz. 2007. Regularizing query-based retrieval scores. Information
Retrieval 10, 6 (2007), 531–562.

[14] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and Heung-Yeung Shum. 2010.
An empirical study on learning to rank of tweets. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics. Association for Computational
Linguistics, 295–303.

[15] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[16] Xiubo Geng, Tie-Yan Liu, Tao Qin, Andrew Arnold, Hang Li, and Heung-Yeung
Shum. 2008. Query dependent ranking using k-nearest neighbor. In Proceedings
of the 31st ACM SIGIR. ACM, 115–122.

[17] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM CIKM. ACM,
55–64.

[18] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM CIKM. ACM, 2333–2338.

[19] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation
of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[20] Thorsten Joachims. 2002. Optimizing search engines using clickthrough data. In
Proceedings of the eighth ACM SIGKDD. ACM, 133–142.

[21] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of
the 12th ACM SIGKDD. ACM, 217–226.

[22] Victor Lavrenko and W Bruce Croft. 2001. Relevance based language models. In
Proceedings of the 24th ACM SIGIR. ACM, 120–127.

[23] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval 3, 3 (2009), 225–331.

[24] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. arXiv preprint arXiv:1609.07843 (2016).

[25] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[26] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-ShengWang, and Hang Li. 2008. Global
ranking of documents using continuous conditional random fields. Technical Report.
Technical Report MSR-TR-2008-156, Microsoft Corporation.

[27] C Quoc and Viet Le. 2007. Learning to rank with nonsmooth cost functions.
Advances in Neural Information Processing Systems 19 (2007), 193–200.

[28] Stephen E Robertson and K Sparck Jones. 1976. Relevance weighting of search
terms. Journal of American Society for Information science 27, 3 (1976), 129–146.

[29] Gerard Salton and Chris Buckley. 1997. Improving retrieval performance by
relevance feedback. Readings in information retrieval 24, 5 (1997), 355–363.

[30] Mike Schuster and Kuldip K Paliwal. 1997. Bidirectional recurrent neural net-
works. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–2681.

[31] Mark D Smucker, James Allan, and Ben Carterette. 2007. A comparison of
statistical significance tests for information retrieval evaluation. In Proceedings
of the sixteenth ACM CIKM. ACM, 623–632.

[32] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013. Rea-
soning with neural tensor networks for knowledge base completion. In Advances
in Neural Information Processing Systems. 926–934.

[33] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning
with neural networks. In Advances in neural information processing systems. 3104–
3112.

[34] Michael Taylor, John Guiver, Stephen Robertson, and Tom Minka. 2008. Softrank:
optimizing non-smooth rank metrics. In Proceedings of WSDM’08. ACM, 77–86.

[35] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In
Advances in Neural Information Processing Systems. 2692–2700.

[36] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise
approach to learning to rank: theory and algorithm. In Proceedings of the 25th
ICML. ACM, 1192–1199.

[37] Liu Yang, Qingyao Ai, Damiano Spina, Ruey-Cheng Chen, Liang Pang, W Bruce
Croft, Jiafeng Guo, and Falk Scholer. 2016. Beyond Factoid QA: Effective Methods
for Non-factoid Answer Sentence Retrieval. In ECIR. Springer, 115–128.

[38] Chengxiang Zhai and John Lafferty. 2001. Model-based feedback in the language
modeling approach to information retrieval. In Proceedings of the 10th ACM CIKM.
ACM, 403–410.

[39] Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for lan-
guage models applied to information retrieval. ACM Transactions on Information
Systems 22, 2 (2004), 179–214.

http://arxiv.org/abs/1306.2597

	Abstract
	1 Introduction
	2 Related Work
	3 Learning to Rank with The Local Ranking Context
	4 Deep Listwise Context Model
	4.1 Input Document Representations
	4.2 Encoding the Listwise Local Context
	4.3 Re-ranking with the Local Context
	4.4 Loss Function

	5 Experimental Setup
	6 Results and Analysis
	6.1 Overall performance
	6.2 Pair-wise Ranking Analysis
	6.3 Parameter Sensitivity

	7 Conclusion and Future Work
	8 Acknowledgments
	References

