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ABSTRACT
Policy gradient, which makes use of Monte Carlo method to get

an unbiased estimation of the parameter gradients, has been widely

used in reinforcement learning. One key issue in policy gradient

is reducing the variance of the estimation. From the viewpoint

of statistics, policy gradient with baseline, a successful variance

reduction method for policy gradient, directly applies the control

variates method, a traditional variance reduction technique used in

Monte Carlo, to policy gradient. One problem with control variates

method is that the quality of estimation heavily depends on the

choice of the control variates. To address the issue and inspired by

the antithetic variates method for variance reduction, we propose

to combine the antithetic variates method with traditional policy

gradient for the multi-armed bandit problem. Furthermore, we

achieve a new policy gradient algorithm called Antithetic-Arm

Bandit (AAB). In AAB, the gradient is estimated through coordinate

ascent where at each iteration gradient of the target arm is estimated

through: 1) constructing a sequence of arms which is approximately

monotonic in terms of estimated gradients, 2) sampling a pair of

antithetic arms over the sequence, and 3) re-estimating the target

gradient based on the sampled pair. Theoretical analysis proved

that AAB achieved an unbiased and variance reduced estimation.

Experimental results based on a multi-armed bandit task showed

that AAB can achieve state-of-the-art performances.
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1 INTRODUCTION
Reinforcement learning, including theMulti-Armed Bandit(MAB) [7]

and Markov Decision Process(MDP) [5], have been successfully

used in variant machine learning applications recently. Among the

algorithms that solve the reinforcement learning problems, policy

gradient [13] has shown its advantages in e�ectiveness in high-

dimensional/continuous action spaces, fast convergence rate, and

handling stochastic policies etc. Roughly speaking, policy gradient

relies upon optimizing parametrized policies (a distribution over

the agent actions) with respect to the expected return (long-term

cumulative reward) by gradient ascent.

To calculate the parameter gradients at each optimization it-

eration, policy gradient algorithms such as REINFORCE [12, 13]

usually adopt the Monte Carlo method [9] to estimate the expec-

tation of the gradient. The gradient estimated by the Monte Carlo

method is unbiased but usually has large variance, which hurts

the e�ciency and e�ectiveness of the traditional policy gradient

algorithm. How to reduce the variance of the estimated gradient

becomes a key issue in policy gradient algorithms.

A number of research has been conducted to reduce the gradient

variance in policy gradient. For example, Policy gradient with base-

line [3] is commonly used in real reinforcement learning tasks. In

the method, a baseline variate, which is designed as the averaged

rewards of the history steps, is �rst designed. Then, the real reward

of the action minus the baseline is used as the reward for the gradi-

ent estimation and parameter updating. It also shows that variance

of the newly estimated gradients is reduced while its expectation is

identical to that of the traditional policy gradient. More methods on

variance reduction for policy gradient please referred to [1, 8, 11]

From the viewpoint of statistics, the policy gradient with base-

line is a direct application of control variates method [2], a variance

reduction approach in Monte Carlo Method, to improve the tradi-

tional policy gradient. The baselines are implementations of the

control variates in the reinforcement learning environment. In gen-

eral, designing reliable control variates is critical for the success

of control variates method. Inappropriate setting of the control

variates may result in the raising of variance and hurt the estima-

tion. When applied to reinforcement learning, though the policy

gradient with baseline heuristically constructs the baselines, which

is far away from the ideal control variates, it is di�cult to achieve

its optimal e�ect.

To get rid of this problem, antithetic variates method [4] is pro-

posed. Every time antithetic variates method draws a pair of anti-

thetic samples for the estimation. Since one antithetic sample in

the pair is easily derived from another, the auxiliary functions (e.g.,

the control variates) is not a mandatory anymore.
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Based on the observation, we propose a novel policy gradient

method which uses antithetic variates to improve policy gradient

for MAB. The proposed method, referred to as Antithetic-Arm

Bandit (AAB), estimates the parameter gradients through sampling

a pair of antithetic arms at each time. To achieve this, AAB adopts

the coordinate ascent framework for the optimization where each

coordinate corresponds an arm. At each iteration, the arms are

sorted according to their estimated gradients. After that, a pair of

antithetic arms are sampled on the basis of the sorted arms. The

gradient of the target arm (determined with another sampling) is

then re-estimated and updated.

Theoretical analysis showed that the gradients calculated with

AAB was an unbiased estimation and the variance of the estimation

was e�ectively reduced with high con�dence.

Experiments were conducted to show the e�ectiveness of the

proposed AAB. The experimental results based on an MAB task

showed that AAB outperformed the baseline of traditional policy

gradient and achieved comparable performances with the policy

gradient with baseline.

2 BACKGROUND: VARIANCE REDUCTION IN
POLICY GRADIENT

This section introduces the formulation of variance reduction meth-

ods in the policy gradient for the multi-armed bandit problem.

2.1 Gradient bandit algorithm
Suppose we are facing repeatedly with a choice among k di�erent

actions. After each choice, we receive a numerical reward chosen

from a stationary probability distribution that depends on the se-

lected action. Each action has an expected reward, called value. The

objective is to maximize the expectation of total reward over some

time periods. There are two targets in the game, that is, �nding

the best action which has the largest value and maximizing the

accumulative reward in limited time periods.

Policy gradient aims to learn a numerical preference Ht (a) for
each action a = {1, 2, · · ·k}, to calculate the policy πt (a) on time

step t . Denote the action selected on time t asAt , the corresponding
reward as Rt , and the value of selecting an action a as q∗(a) =
E[Rt |At = a]. The policy πt (a distribution over the actions) is

de�ned as the softmax over the preferences Ht :

πt (a) = Pr (At = a) =
exp{Ht (a)}∑k

a′=1 exp{Ht (a′)}
. (1)

The policy in Equation (1) is used to play the bandit game, and

the expected reward at time step t is E[Rt ] =
∑
a πt (a)q∗(a). In

principle, the gradient of the expected reward
∂E[Rt ]
∂Ht (a)

is used to

update the preferences of the actions. However, it is di�cult to

calculate E[Rt ] and its partial gradient to preference because q∗(a)
is unknown. Monte-Carlo method is used to estimate the gradient.

The basic idea is the system gets a sample q(a) as a reward when

action a has been issued. Thus, the gradient is estimated as:

∂E[Rt ]

∂Ht (a)
=
∑
b

πt (b)q∗(b)(1a=b − πt (a))

sample

= E

[
1

n

n∑
i=1

q(xi )(1a=xi − πt (a))

]
= E [η]

(2)

wheren ≥ 1, the

sample

= samplesxi ∼ πt , andη =
1

n
∑n
i=1 q(xi )(1a=xi−

πt (a)). The equation above shows that η is an unbiased estimation

for the gradient of Rt (i.e.,E[η] =
∂E[Rt ]
∂Ht (a)

). Thus, one e�ective way

to the accuracy of the estimation is to reduce the varianceV[η].

2.2 Control variates method for policy gradient
Policy gradient with baseline is an e�ective method to reduce the

variance of η. In the k-armed bandit problem, it calculates the gradi-

ent of Ht (a) as
1

n
∑n
i=1[q(xi ) · (1a=xi −πt (a)) −R · (1a=xi −πt (a))],

where R is the averaged rewards of the history samplings.

From the viewpoint of statistics, policy gradient with baseline is

an application of control variates in policy gradient. The original

control variates method can be described as follows: considering the

estimation θ of an integral of function f (x), Monte Carlo method

directly uses
1

n
∑n
i=1(ξi ), where ξi ∼ U (0, 1) and n ≥ 1, as an

estimation of θ , which is an obviously unbiased estimation.

The control variates method, on the other hand, estimates the

integral with:

θ =

∫
1

0

f (x)dx =

∫
1

0

[f (x) − cд(x)]dx + c

∫
1

0

д(x)dx

=

∫
1

0

[f (x) − cд(x)]dx +C,

(3)

where c and C = c
∫
1

0
д(x)dx are constants. De�ne a new ran-

dom variable ζ = f (ξ ) − cд(ξ ) +C , where ξ ∼ U (0, 1) is a random
number uniformly distributed over the interval (0, 1). It is sim-

ple to calculate that E[ζ ] = E[f (ξ )], and V[ζ ] ≤ V[f (ξ )] when
Corr [f (ξ ),д(ξ )] ≥ 0, thus, ζ could be a better unbiased estimation

with reduced variance for the integral.

In policy gradient with baseline,R ·(1a=xi −πt (a)) corresponds to
cд(x),R·E[(1a=xi−πt (a))] = 0 corresponds toC , andCorr [R(1a=xi−
πt (a)),q(xi )(1a=xi − πt (a))] ≥ 0. Thus, policy gradient with base-

line can be considered as an application of control variates method

to policy gradient.

2.3 Antithetic Variates Method
In statistics, antithetic variates method is another approach to reduc-

ing the variance of Monte Carlo method. Still consider the problem

of estimating θ =
∫
1

0
f (x)dx . Antithetic variates method adopts the

strati�ed sampling strategy [10]. The sampler chooses a �xed set of

numbers 0 = α0 < α1 < · · · < αn = 1 and de�nes a new estimation

ζ

ζ =
n∑
j=1
(α j − α j−1)f [α j−1 + (α j − α j−1)ξ j ], (4)

where the ξ j ∈ U (0, 1)(j = 1, · · · ,n). It can be shown that ζ is an

unbiased estimation for θ and V(ζ ) ≤ V( 1n
∑n
i=1 f (ξi )). Speci�-

cally, antithetic variates method constructs antithetic pair among

the variables f [α j−1 + (α j − α j−1)ξ j ] (i.e.,Cov[η1,η2] < 0 where

ηj = f [α j−1+ (α j −α j−1)ξ j ], j = 1, 2, . . . ,n) to get the smallerV(ζ ).

3 OUR APPROACH: ANTITHETIC-ARM BANDIT
This section proposes Antithetic-Arm Bandit (AAB), a novel vari-

ance reduction policy gradient algorithm for multi-armed bandit,

on the basis of antithetic variates method.
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Algorithm 1 Antithetic-Armed Bandit (AAB)

Input: Action (arm) set A = {1, · · · ,k}, number of iterations T,
strati�ed parameterm, learning rate λ

1: Ht ← 0
2: for t = 1 to T do
3: πt ←

{
expHt (a)∑
a′ expHt (a′)

}k
a=1

{Equation (1)}

4: Sample an arm d ∈ A according to πt

5: ∀a ∈ A,p(a) ←
{

0 a = d
πt (a)
(1−πt (d ))

otherwise

6: ∀a ∈ A,I(a) ←Index of action a after descent sorting arms

according to p
7: α ←

∑m
i=1 πt (I(i))+

1

2
πt (I(m+1)){Heuristics for calculating

α }
8: Sampling ξ ∼ U (0, 1)
9: ξ1 ← αξ , ξ2 ← 1 − (1 − α)ξ
10: a1 ← σ (I,p,ξ1), a2 ← σ (I,p,ξ2){Algorithm 2}

11: дd ← q(d)(1 − πt (d))
12: д1 ← q(a1)(−πt (a1));д2 ← q(a2)(−πt (a2))
13: ζd ← πt (d)дd + (1 − πt (d))(αд1 + (1 − α)д2) {Equation (5)}

14: Ht (d) ← Ht (d) + λζa
15: end for

3.1 Antithetic-Arm Bandit
Suppose ank-armed bandit problemwhere the set of actions areA =
{1, 2, · · · ,k} and each action a ∈ A represents the a-th arm of the

bandit. AAB updates the gradient of di�erent arms with coordinate

ascent. Given an arm a, the estimation of gradient proposed by

Monte Carlo method for a is

η =
1

n

n∑
i=1

q(xi )(1a=xi − πt (a))

where xi ∼ πt , πt is the current policy at time step t , and n is the

number of samplings.

Denote the random sampled arm according to current policy πt
as fπt (ξ )where ξ ∼ U (0, 1). Also denote the function for calculating
the gradient as G. Thus, after taking an action xi = fπt (ξ ), the
gradient of the d-th arm can be calculated as Gd (xi ) = 1d=xi −
πt (d). At each iteration, AAB samples three arms: the �rst sampling

chooses a target action d ∼ πt and makes d to be the arm to update;

the second and the third sample two antithetic arms for calculating

the gradients for d . Speci�cally, given three sampled actions, the

estimation of gradient for arm d can be calculated as:

ζd = πt (d)Gd (d) + (1 − πt (d))αGd fπt σ (αξ )

+ (1 − πt (d))(1 − α)Gd fπt σ (1 − (1 − α)ξ )
(5)

where the random variable ξ ∼ U (0, 1), σ is the permutation func-

tion that sorts the arms so that the second and the third sampled

arms are antithetic, and α ∈ (0, 1) is the parameter which is heuristi-

cally set as

∑m
i=1 πt (I(i))+

1

2
πt (I(m+1))wherem (named strati�ed

parameter) represents the position of stratifying.

Algorithm 1 shows the AAB process and Algorithm 2 shows the

function for sorting the arms.

At time step t , given the current policy πt , an action d is sampled

which corresponds the arm to update. Then the algorithm sort the

actions (arms) with σ . After that, a pair of antithetic actions are

Algorithm 2 Sort function σ

Input: Sorted index I, solved policy p, random variable ξ
Output: action a
1: for a = 1 to length of p do
2: if ξ − p(I(a)) < 0 then
3: return I(a)
4: end if
5: end for

sampled from A \ {d}, and the two antithetic random variables д1
and д2 are constructed. It can be shown that д1 and д2 have high
probability to be antithetic, because the arms were sorted. Finally

the gradient for the chosen arm d is calculated and the policy is

updated. The iteration is repeated until converge.

Intuitively, AAB constructs a monotonic compound function

Gd fπt σ which makes Cov[д1,д2] < 0 because Cov[ξ1, ξ2] < 0. In

the next section, we show that AAB makes an unbiased estimation

of the gradient and reduces the variance of the estimated gradients.

3.2 Theoretical analysis
AAB makes an unbiased estimation of the gradient, as shown in the

following Theorem 3.1 becauseGd fπt (ξ ) is an unbiased estimation

obviously when ξ ∼ U (0, 1).

Theorem 3.1. ∀t = 1, 2, · · · , and ∀d ∈ A = {1, 2, . . . ,k}, the
expectation of ζd in Equation (5) satis�es E[ζd ] = E[Gd fπt (ξ )],
where ξ ∼ U (0, 1).

Proof. Denote pi j as the probability of choosing the actions

i and j at the same time after action d being chosen. And we set

pi j = 0 if i = d , j = d or i > j. We have

E[ζd ] =πt (d)Gd (d) + (1 − πt (d))
k∑
i=1

k∑
j=1
[αpi jGd (i) + (1 − α)pi jGd (j)]

=πt (d)Gd (d) + (1 − πt (d))
k∑
i=1
(

k∑
j=1

αpi j +
k∑
j=1
(1 − α)pji )Gd (i)

=πt (d)Gd (d) +
∑

i ∈A\{d }

πt (i)Gd (i)

=
∑

i ∈{A}

πt (i)Gd (i) = E[Gd fπt (ξ )]

�

AAB uses strati�ed sampling as the traditional antithetic variates

method do. Given α ∈ (0, 1), strati�ed sampling has lower variance

than the primal Monte Carlo method. In coordinate ascent, the

strati�ed sampling estimates the gradient of the arm d as:

ηd = πt (d)Gd (d) + (1 − πt (d))αGd fπt (πt (d) + αξ1)

+ (1 − πt (d))(1 − α)Gd fπt (πt (d) + α + (1 − α)ξ2)
(6)

where ξ1, ξ2 ∼ U (0, 1) and Cov[ξ1, ξ2] = 0.

Moreover, it can be shown that the estimation of AAB has a

smaller variance than strati�ed sampling, as shown in Theorem 3.2.

Theorem 3.2. ∀t = 1, 2, · · · , and ∀d ∈ A = {1, 2, . . . ,k}, the
variance of ζd in Equation (5) andηd in Equation (6) satis�esV[ζd ] ≤
V[ηd ]
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Figure 1: Performance curves of di�erent methods.

Proof. Let θ1 = αGd fπt σ (αξ ), θ2 = (1−α)Gd fπt σ (1−(1−α)ξ ),
θ3 = αGd fπt (πt (d)+ αξ1), and θ4 = (1− α)Gd fπt (πt (d)+ α + (1−
α)ξ2) where ξ , ξ1, ξ2 ∼ U (0, 1).
V[ζd ] = (1 − πt (d))

2(V[θ1] +V[θ2] +Cov[θ1,θ2])
V[ηd ] = (1 − πt (d))

2(V[θ3] +V[θ4] +Cov[θ3,θ4])
∵ θ1 and θ3 are I.I.D., and θ2 and θ4 are I.I.D.
∴ V[θ1] = V[θ3],V[θ2] = V[θ4]
∵ Cov[θ1,θ2] ≤ 0,Cov[θ3,θ4] = 0

∴ V[ζd ] ≤ V[ηd ] �

4 EXPERIMENTS
We conducted experiments to test the proposed AAB algorithm.

Following the practices in [6], “one real competitor” in [6] was used

as our experiments. As for the reward in the k-armed bandit, the

reward distributions were set to Bernoulli and the expected rewards

of actions were set as p1 = 0.5, p2 = 0.5 − 1

10k and pi = 0.4, i =
3, . . . ,k . The number of arms k was set to k = 20. The parameter

m for calculating α in AAB was set asm = 4.

Figure (1) shows the performance curves of di�erent methods

in terms of the ratio of choosing the optimal action. From the

results, we can see that our approaches (AAB and AABwithBase
1
)

performed better than the baseline method of policy gradient (PGB),

and have similar performance to the method of policy gradient with

baseline (PGBwithBase). Note that PGB and PGBwithBase only

update the �rst of 3 sampled arms at each iteration. From the results

we can see that 1) AAB can e�ectively reduce the variance, making

it outperform PGB; 2) both AAB and policy gradient with baseline

can e�ectively reduce the gradient variance, leading to similar

performances; and 3) combining AAB with policy gradient with

baseline (AABwithBase) can marginally improve the performances.

We also tested the variance curves of AAB and PGB, as shown in

Figure (2). The variances of the estimated gradient by AAB are in

general smaller than that of by PGB in all of the iterations, showing

the e�ectiveness of AAB in reducing the gradient variance.

5 CONCLUSION
In this paper, we propose a novel variance reduction method for pol-

icy gradient in multi-armed bandit problem, called Antithetic-Arm

Bandit (AAB). Compared with existing method of policy gradient

1
Note that AAB can be combined with the policy gradient with baseline for further

reducing the variance.
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Figure 2: The variance of PGB and AAB.

with baseline which can be viewed as a control variates method

in statistics, AAB resorts to the antithetic variants method for the

task. Algorithms were proposed to conduct the estimation and the

theoretical analysis showed that the gradients estimated by AAB

are unbiased and the variance is smaller than that of by the con-

ventional Monte Carlo methods. Experimental results also showed

that AAB can achieve the state-of-the-art performances.
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