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Abstract

Sequence to sequence (Seq2Seq) approach has
gained great attention in the field of single-turn
dialogue generation. However, one serious prob-
lem is that most existing Seq2Seq based models
tend to generate common responses lacking spe-
cific meanings. Our analysis show that the underly-
ing reason is that Seq2Seq is equivalent to optimiz-
ing Kullback–Leibler (KL) divergence, thus does
not penalize the case whose generated probability
is high while the true probability is low. How-
ever, the true probability is unknown, which poses
challenges for tackling this problem. Inspired by
the fact that the coherence (i.e. similarity) between
post and response is consistent with human eval-
uation, we hypothesize that the true probability of
a response is proportional to the coherence degree.
The coherence scores are then used as the reward
function in a reinforcement learning framework to
penalize the case whose generated probability is
high while the true probability is low. Three dif-
ferent types of coherence models, including an un-
learned similarity function, a pretrained semantic
matching function, and an end-to-end dual learn-
ing architecture, are proposed in this paper. Ex-
perimental results on both Chinese Weibo dataset
and English Subtitle dataset show that the pro-
posed models produce more specific and meaning-
ful responses, yielding better performances against
Seq2Seq models in terms of both metric-based and
human evaluations.

1 Introduction
This paper focuses on the problem of single-turn dialogue
generation, which is expected to automatically generate an
appropriate response for a given post. Following conven-
tional data-driven generation framework of statistical ma-
chine translation, most existing neural conversation models
are based on a Seq2Seq architecture [Sutskever et al., 2014].
In these models, a recurrent neural network (RNN) encoder is
first utilized to encode the input post to a vector, and another
RNN decoder is then used to generate the response. To learn

the model parameters, a maximum likelihood estimation ap-
proach is applied on the training data which consists of many
post-response pairs. The intrinsic philosophy is that the true
probability would be estimated by the generated probability
with proper parameters.

Though Seq2Seq has the ability to generate fluent re-
sponses, one serious problem is that the generated responses
are usually common, such as ‘I do not know’, ‘What does
this mean?’ and ‘Haha’ [Li et al., 2016a; Mou et al., 2017].
Clearly, these kinds of responses lack specific meanings for
further widening and deepening of the dialogue, which will
have a bad effect on the users’ experience. Through our anal-
ysis, the main reason is that the objective of Seq2Seq is equiv-
alent to minimizing the KL divergence between the generated
probability and the true probability. However, KL divergence
is not symmetric, thus it will not penalize the case whose gen-
erated probability is high while the true probability is low,
which is exactly the case of common responses.

In this paper, we propose to utilize the coherence (i.e. sim-
ilarity) between the generated responses and the original
post as an estimation of the true probability, with inspira-
tion comes from the fact that the similarity measure between
post and response embeddings is consistent with human eval-
uation. Specifically, three kinds of coherence models are
adopted in this paper. Firstly, an unlearned similarity func-
tion, such as cosine similarity, can be directly used as the co-
herence model. Secondly, the previous semantic text match-
ing models can be regarded as good candidates for measur-
ing the coherence between a post and its corresponding re-
sponse. In this paper, we use two pretrained matching func-
tions, i.e., GRU bilinear model [Socher et al., 2013] and
MatchPyramid [Pang et al., 2016], which are representatives
of two different kinds of deep matching models, i.e., repre-
sentation focused methods and interaction focused methods.
Thirdly, an end-to-end dual learning architecture similar to
[Xia et al., 2016] can be adopted to jointly learn the parame-
ters of response generation model and coherence model. Af-
ter that, the coherence model is used as the reward function in
a reinforcement learning framework for optimization, which
will guide the learning process to penalize the case whose
generated probability is high while the true probability is low.

We evaluate the proposed models on two public datasets,
i.e. the Chinese Weibo and the English Subtitle dataset. Ex-
perimental results show that our models significantly outper-
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form traditional Seq2Seq models and their variations with
respect to both metric-based evaluations [Li et al., 2016a;
Shen et al., 2017] and human judgments.

2 Related Work
The basic neural-based Seq2Seq framework for dialogue gen-
eration is inspired by the studies of statistical machine transla-
tion (SMT). Sutskever et al. [Sutskever et al., 2014] proposed
the original Seq2Seq framework, which used a multi-layered
Long Short-Term Memory(LSTM) to map the input sequence
to a fixed dimension vector and then used another LSTM to
decode the target sequence from the vector. At the same time,
Cho et al. [Cho et al., 2014] followed the above architecture,
and proposed to feed the last hidden state of encoder to ev-
ery cell of decoder, which enhanced the influence of contexts
in generation. To further alleviate the long dependency prob-
lem, Bahdanau et al. [Bahdanau et al., 2015] introduced the
attention mechanism into the neural network and achieved en-
couraging performances. Many studies [Shang et al., 2015;
Vinyals and Le, 2015] applied the above neural SMT models
to dialogue generation, and gained promising performances.

Although the current Seq2Seq model is capable to gener-
ate fluent responses, these responses are usually general, such
as ‘I don’t know’,‘interesting’, and ‘ what is it’. Li et al. [Li
et al., 2016a] proposed a mutual information model to tackle
this problem. However, it is not a unified training model,
instead it still trained maximum likelihood model, and used
the Maximum Mutual Information criterion only for testing
to rerank the primary top-n list generated by Seq2Seq. Mou
et al. [Mou et al., 2017] proposed a forward-backward key-
word method which used a pointwise mutual information to
predict a noun as a keyword and then used two Seq2Seq mod-
els to generate the forward sentence and the backward sen-
tence. Xing et al. [Xing et al., 2017] proposed a joint atten-
tion mechanism model which modified the generation prob-
ability by adding the topic keywords likelihood to the gener-
ated maximum likelihood. It has to train an extra LDA model
from an extra corpus to generate the topic keyword candi-
dates. However, if the new posts are not in these topics, the
user has to re-trained the LDA model to adapt the new data.
Recently, SeqGAN [Yu et al., 2017] and Adver-REGS [Li et
al., 2017] tried to use GAN for generation, where the dis-
criminator score is used as a reward function. However, the
meaning of this kind of reward function is not clear.

3 Sequence to Sequence Framework
We first introduce the typical LSTM-based Seq2Seq
model [Bahdanau et al., 2015] used in dialogue generation.

Given a post X={x1, . . . , xM} as the input, a standard
LSTM first maps the input sequence to a fixed-dimension
vector hM as follows.

ik = σ(Wi[hk−1, wk]), fk = σ(Wf [hk−1, wk]),

ok = σ(Wo[hk−1, wk]), lk = tanh(Wl[hk−1, wk]),

ck = fkck−1 + iklk, hi = ok tanh(ck),

where ik, fk and ok is the input, memory, and output gate,
respectively. wk is the word embedding for xk, and hk stands

for the vector computed by LSTM at time k by combining wk

and hk−1. ck is the cell at time k, and σ denotes the sigmoid
function. Wi,Wf ,Wo and Wl are parameters.

Then another LSTM is used as the decoder to map the vec-
tor hM to the ground-truth response Y={y1, · · · , yN}. Given
the context vector hM and the previous generated words
{y1, . . . , yi−1}, the decoder is typically trained to predict the
next word yi. In other words, the decoder defines a proba-
bility over the output Y by decomposing the joint probability
into conditionals by the chain rule in probability theory.

Usually the attention mechanism is further introduced to
the above Seq2Seq framework. Instead of directly using hM
as the context vector in the decoder, we let the new context
vector, denoted as si, to be dependent on the whole sequence
(h1, · · · , hM ), where each hk contains information about the
input sequence with a strong focus on the parts surrounding
the k-th word of the input sentence. Specifically, the context
vector si is usually defined as a weighted sum of these hk:

si =
M∑
k=1

αikhk.

The weight αik of each representation hk is computed as:

αik =
exp (eik)∑M
j=1 exp (eij)

,

eik = vT tanh(W1h
′
i−1 +W2hk),

where vT ,W1 and W2 are learned parameters. eik is an align-
ment model which scores how well the inputs around position
k and the output at position i match, which is based on the
LSTM hidden state h′i−1 (just before emitting yi), and hk of
the input sentence.

Given a set of training data D = {(X,Y )}, Seq2Seq as-
sumes that these data are i.i.d. sampled from the probability
Pg , and the following negative log likelihood is used as the
objective for minimization.

L = −
∑

(X,Y )∈D

logPg(Y |X). (1)

4 Motivation
Though the above Seq2Seq model has the ability to generate
fluent responses for a given post, the responses are usually
common [Li et al., 2016a; 2016b; 2017]. Through our data
analysis, we find that the empirical probabilities of these gen-
erated responses are very low. Specifically, we define two
metrics, i.e. hit rate and hit probability as follows.

HitR =
1

m

m∑
i=1

1

n

n∑
j=1

I((Xi, Yij) ∈ D), (2)

HitP =
1

m

m∑
i=1

1

n

n∑
j=1

I((Xi, Yij) ∈ D)× Pe(Yij |Xi) (3)

where Xi, i = 1, · · · ,m stands for the i-th posts in the train-
ing data, and Yij , j = 1, · · · , n stands for the j-th generated
response with respect the post Xi, I((Xi, Yij) ∈ D) is an
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human score 1 2 3 4 5
cosine similarity 60.19 57.39 60.30 62.06 66.41

Table 1: The average similarity(%) of post and its generated re-
sponses with human score on STC.

indictor function, and Pe(Yij |Xi) is the empirical probability
of Yij given Xi on the training data. That is to say, if there
are five ground-truth responses for post Xi in the training
data, the empirical probability of each ground-truth response
is 20%, and the empirical probabilities of other responses are
0. From the definition, we can see that hit rate reflects the
percentage of ground-truth responses generated, while the hit
probability considers not only the number but also the proba-
bilities of these ground-truth responses on the training data.

According to our statistics on a benchmark dialogue data
STC1, the hit rate and hit probability for Seq2Seq with at-
tention are 0.004239 and 0.00091 respectively. Therefore,
we conclude that most generated responses are not ground-
truth responses, and the true probabilities of most generated
responses are probably very low. Since the indicator function
is very strict and only considers exact matched responses, we
can also modify it to include the semantic matched ones. That
is to say, for a given generated response Yij , if there exists a
post-response pair (Xi, Ys) such that the cosine similarity be-
tween Yij and Ys is sufficiently large (i.e. 0.9 in this paper),
I((Xi, Yij) ∈ D) = 1. Otherwise I((Xi, Yij) ∈ D) = 0.
In this case, hit rate and hit probability becomes 0.1449 and
0.01255, respectively. Therefore, even we consider the se-
mantic relations, the true probabilities of generated responses
are still very low.

The main reason of the above observation is that Seq2Seq
is equivalent to minimizing the following KL divergence be-
tween the generated distribution Pg(Y |X) and the true dis-
tribution Pr(Y |X), i.e. KL(Pr(Y |X)||PgY |X)), as shown
in [Arjovsky et al., 2017]. Since KL divergence is asymmet-
ric, it only penalizes the case when Pg is low and Pr is high,
but fails to penalize the case when Pg is high and Pr is low.
Specifically, if Pr(Y |X) > 0 but Pg(Y |X) → 0, the in-
tegrand inside the KL divergence grows quickly to infinity,
meaning that this cost functions assigns an extremely high
cost to the generated probability if it does not cover parts of
the data. However, if Pg(Y |X) > 0 but Pr(Y |X) → 0, the
value inside the KL goes to 0, meaning that this cost function
will pay extremely low cost for generating fake responses.
This is accordant with our observation that Seq2Seq tends to
generate common responses with high generated probability
but low true probability. In order to tackle this problem, we
need to consider not only the likelihood of the generated prob-
ability Pg(Y |X), but also the true data distribution Pr(Y |X).
However, the true probability Pr(Y |X) is usually unknown,
which poses great challenges for tackling this problem.

Luckily, we find some insights from the data analysis.
Specifically, we make a relevance statistics on STC data of
the human evaluation and average similarity between one post
and its generated response. For human evaluation, given 300
randomly sampled post and their generated responses, three

1http://ntcirstc.noahlab.com.hk/STC2/stc-cn.htm

annotators (all of them are computer science majored stu-
dents) are required to give 5-graded judgements. The criteria
are defined as follows:

1. the response is nonfluent or logically wrong;
2. the response is fluent but not related with the post, in-

cluding the case when some un-related common re-
sponse;

3. the response is fluent and weakly related, but it’s com-
mon which can response many other posts;

4. the response is fluent and strongly related with its post;
5. the response is fluent and strongly related, which is like

following a real person’s tone.

As shown in Table 1, the similarity measure is consistent
with the human evaluation.2 This finding inspires us the true
probability of a response is highly likely to be proportional to
the coherence score (i.e. similarities) between this response
and its post. Therefore, it is natural to utilize the coherence
score to act as a reward function to penalize the case whose
generated probability is high while the true probability is low.

5 Coherence Model
In this paper, we propose three kinds of coherent model to
compute the similarity between a post and a response: an un-
learned similarity function, two pretrained semantic matching
functions, and an end-to-end dual learning architecture.

5.1 Unlearned Similarity Function
The simplest way to measure the coherence is to directly use
an unlearned similarity function. For example, we can use the
cosine function to act as the coherence model.

rcos(X,G) =
< h(X), h(G) >

‖h(X)‖‖h(G)‖
,

where < ·, · > and ‖ · ‖ denote the inner product and L2

norm, respectively. h(X) and h(G) stand for the sentence
representations of post and generated response. Following
previous practice [Shen et al., 2017], we directly use the mean
over the word embeddings in the sentence as the sentence
representations in this paper.

5.2 Pretrained Semantic Matching Functions
Recently, extensive semantic text matching models [Pang et
al., 2016; Wan et al., 2016b] have been proposed to cap-
ture the coherence relationship between two texts. In this
paper, we utilize two pretrained matching function, i.e., bi-
linear model [Socher et al., 2013] with GRU and MatchPyra-
mid [Pang et al., 2016] to measure the coherence. The rea-
son to choose these models is that they are representatives of
the two different categories of text matching models [Guo et
al., 2016], i.e., representation focused methods and interac-
tion focused methods.

2In order to eliminate the influence of same X and Y which sim-
ilarity score is perfect but the human score is not likely to be high,
we didn’t calculate their similarity score in this results.
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GRU Bilinear Model
GRU bilinear model is a typical representation focused se-
mantic matching model, which focuses on learning the se-
mantic representations of each sentence. Given the post X
and the generated response G, a GRU model is utilized to
encode them to sentence embeddings h(X) and h(G). Then
a bilinear function is used to model the transformation from
post to response:

rbi(X,G) = h(X) ·W · h(G),
where W is the transformation matrix.

MatchPyramid
MatchPyramid [Pang et al., 2016] is a typical interaction fo-
cused semantic matching model, which is capable to capture
different levels of interaction signals. For the dialogue gener-
ation task, the coherence pattern between post and response
may not lie in the global sentence-level, as assumed in co-
sine similarity and GRU bilinear, but in some local evidences.
For example, post and responses usually have some similar
keywords or phrases [Mou et al., 2017]. Therefore, Match-
Pyramid can also be viewed as a suitable coherence model,
denoted as rmp. Specifically, the word embedding matrix be-
tweenX andG is first constructed, and a convolutional neural
network is then applied. Finally, a multiple layer perceptron
is conducted to output the matching score rmp(X,G).

For pretrainning the above GRU-bilinear and MatchPyra-
mid models, we follow the practice of traditional semantic
matching [Wan et al., 2016a] and use a pairwise loss func-
tion for optimization. Specifically, for each post and pos-
itive (ground-truth) response pair in the training data, we
randomly sample five negative responses, chosen from other
post’s ground-truth responses, to construct the training data.
Then the training criterion is to learn appropriate parameters
to rank the positive response higher than the negative ones.

5.3 Dual Learning Architecture
Both GRU bilinear model and MatchPyramid are capable to
capture the complex coherence relationship between post and
response, however, the learning of coherence and maximum
likelihood are isolated. In this paper, we propose an end-to-
end dual learning architecture to jointly learn the parameters
of coherence and maximum likelihood. Dual learning is first
proposed by Xia et al. [Xia et al., 2016] for statistical ma-
chine translation. We apply it here because it is suitable to ful-
fill the requirement to represent the coherence between post
and generated response, which can be described as two-agent
communication process:

1. The first agent understands the post, and sends a mes-
sage to the second agent, which converts the message
from post to response.

2. The second agent understands the response, and mea-
sures the coherence of the message from the post and
the response, which is propagated to the first agent.

3. According to the coherence measure suggested by the
second agent’s, the first agent modifies the dialogue gen-
eration model.

4. The above three steps can also be started with the second
agent to obtain a dual joint learning architecture.

The dual-learning agents are two standard sequence to se-
quence models: the first agent generates the response for
the given post and the second agent generates post for the
given response. In the first step, given the post X , the first
agent generates the response G1 and sends G1 to the second
agent. The second agent calculates the conditional probabil-
ity of P (X|G1) as its coherence measure and tells the first
agent. Finally, the first agent uses the coherence measure
to guide the response generation process. The second agent
then starts the communication. For the given ground-truth re-
sponse Y , it first generates the responseG2 and sends it to the
first agent. The first agent calculates the conditional proba-
bility of P (Y |G2) as its coherence measure, and tells the sec-
ond agent. Finally, the second agent uses the coherence mea-
sure to guide the post generation process. The above process
repeated coordinately until convergence. Therefore, there
are two coherence models rdual1(X,G) and rdual2(X,G),
which can be defined as follows.

G1 = argmaxP1(G1|X),

rdual1(X,G1) = logP2(X|G1),

G2 = argmaxP2(G2|Y ),

rdual2(Y,G2) = logP1(Y |G2),

where P2(X|G1) is the probability of generating post X
given the sentence G1 generated by the first agent, and
P1(Y |G2) is the probability of generating response Y given
the sentence G2 by the second agent, where P1 and P2 are
two different Seq2Seq models.

5.4 Optimization
Inspired by recent work of [Li et al., 2016b; 2017; Yu et al.,
2017], we treat the problem of generating high quality re-
sponses with maximum likelihood as a reinforcement learn-
ing problem, in which the coherence model acts as the re-
ward function and is observed when the model arrives at the
end of the sequence. The reinforcement learning model PRL

is initialized by the pretrained Seq2Seq with attention model
PSeq2Seq . Specifically, an action is the dialogue response to
generate. The action space is infinite since arbitrary-length
sequences can be generated. A state is denoted by the post
in the single-turn dialogue generation, which is usually trans-
formed to a vector representation. A policy takes the form of
an LSTM encoder-decoder, and is defined by its parameters.
Note that we are using a stochastic representation of the pol-
icy, i.e., a probability distribution over actions given states.
The reward function is defined by the coherence model for
each action. For the unlearned similarity function and pre-
trained semantic matching functions, the reinforcement learn-
ing architecture is shown in Figure 1(a). Given an input post
X , Seq2Seq first takes an action to generate a response G,
and then it obtains the reward r(X,G) from the coherence
models. We use the policy gradient methods [Sutton et al.,
2000] for optimization, with the expected reward defined as:

J(θ) = E[r(X,G)]. (4)

The gradient is estimated as:

∇J(θ) = r(X,G)∇ logPRL(G|X), (5)
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Figure 1: The architecture of reinforcement learning. (a) shows the
architecture for unlearned similarity function and pretrained match-
ing functions. (b) shows the architecture for dual learning approach.

Please note that the coherence scores of the pretrained
matching functions need to be normalized, due to the var-
ied ranges. In this paper we use min-max normalization for
rbi and rmp. Take bilinear model as an example, we ran-
domly select some negative sentences {G′1, . . . , G′m} gen-
erated from Seq2Seq, and then calculate the scores: S =
{rbi(X,G),rbi(X,G′1),. . . ,rbi(X,G′m)}. The min-max nor-
malized coherence score r(X,G) is then defined as follows.

r(X,G) =
rbi(X,G)−min(p)

max(p)−min(p)
,

where min(p) and max(p) are the minimum value and maxi-
mum value of S .

The reinforcement learning process of dual learning archi-
tecture is more complex, as shown in Figure 1(b). There
are two opposite reinforcement learning processes. For
the first reinforcement learning process, the first agent
(post→response) generates a response G1 for a given the in-
put post X , and then obtains the reward rdual1 from the sec-
ond agent. The expected reward and gradient are defined as:

J1(θ) = E[rdual1(X,G1)],

∇J1(θ) = rdual1(X,G1)∇ logPRL(G1|X).

For the second reinforcement learning process, the second
agent (response→post) generates a post G2 for a given re-
sponse Y , and then receives the reward rdual2 from the first
agent. The expected reward and gradient are defined as:

J2(θ) = E[rdual2(Y,G2)],

∇J2(θ) = rdual2(Y,G2)∇ logPRL(G2|Y ).

Both aforementioned gradients are plugged into the policy
gradient methods [Sutton et al., 2000] to optimize the rein-
forcement learning process, shown in Fig. 1.

6 Experiments
6.1 Experimental Settings
Datasets. We use two public datasets in our experiments.
The Chinese Weibo dataset, named STC [Shang et al., 2015],
consists of 3,788,571 conversational post-response pairs ex-
tracted from the Chinese Weibo website and cleaned by the
data publishers. We randomly split the data to training, val-
idation, and testing sets, which contains 3,000,000, 388,571

and 400,000 pairs, respectively. We also use an English con-
versation data, named OpenSubtitles3 (OSDb) dataset , to test
our model. OSDb is a large, open-domain dataset containing
roughly 60M-70M scripted lines spoken by movie characters.
We randomly selected a subset of OSDb dataset in our ex-
periment, which contains 3,800,000 post-response pairs. We
split the data to 3,000,000, 400,000 and 400,000 for train-
ing,validation and testing, respectively.

Baseline Methods. Five baseline methods are used in the
comparison, including traditional Seq2Seq [Sutskever et al.,
2014], RNN autoencoder(RNN-encdec) [Cho et al., 2014],
Seq2Seq with attention(Seq2Seq-att) [Bahdanau et al., 2015],
MMI [Li et al., 2016b],Back-MMI [Li et al., 2016b]4 and
Adver-REGS [Li et al., 2017]. Since we have designed
three kinds of coherence models, we have four versions
of our model, denoted as Seq2SeqCo-cos, Seq2SeqCo-bi,
Seq2SeqCo-MP, Seq2SeqCo-dual, respectively. We first in-
troduce the input embeddings. For STC, we utilize character-
level embeddings trained from the STC training dataset rather
than word-level embeddings, due to the word sparsity, seg-
mentation mistakes and unknown Chinese words which lead
to inferior performance than character-level [Hu et al., 2015].
For OSDb, we use word embeddings trained by word2vec on
a large Wikipedia corpus 5. In the training process, the di-
mension is set to be 300, the size of negative sample is set
to be 3, and the learning rate is 0.05. Then we introduce the
settings on learning parameters in the deep architecture. For
a fair comparison among all the baseline methods and our
methods, the numbers of hidden nodes are all set to 300, and
batch sizes are set to 200. Stochastic gradient decent (SGD) is
utilized in our experiment for optimization, instead of Adam,
because SGD yields better performances in our experiments.
The learning rate is set to be 0.5, and adaptively decays with
rate 0.99 in the optimization. We run our model on a Tesla
K80 GPU card with Tensorflow.

Evaluation Measures. We use both quantitative metrics
and human judgements in section 4 to evaluate the proposed
models. Specifically, we use two kinds of metrics for quanti-
tative comparisons. The first one kind is traditional metrics,
such as PPL and BLEU score[Xing et al., 2017]. They are
both widely used in natural language processing, and here we
use them to evaluate the quality of the generated responses.
The other kind is to evaluate the degree of diversity of the
generated responses. In this paper, we use distinct [Li et al.,
2016a; 2016b], which calculates the number of distinct un-
igrams and bigrams in the generated responses. If a model
often generates common responses, the distinct will be low.

6.2 Experimental Results
The quantitative evaluation results are shown in Table 2.
From the results, we can see that both Back-MMI and Adver-
REGS outperform traditional Seq2Seq baselines in terms of
BLEU, PPL and distinct measures. That’s because both
Back-MMI and Adver-REGS further consider some reward

3https://github.com/jiweil/Neural-Dialogue-Generation
4We use the pre-trained backward seq2seq model as the reward.
5http://www.psych.ualberta.ca/˜westburylab/downloads/

westburylab.wikicorp.download.html
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STC Dataset

model BLEU PPL distinct-1 distinct-2
Seq2Seq 2.867 21.28 0.414 4.52
RNN-encdec 2.878 21.08 0.381 4.87
Seq2Seq-att 2.894 19.86 0.437 5.03
MMI 2.906 18.65 0.431 5.43
Back-MMI 2.917 18.57 0.441 5.82
Adver-REGS 2.918 18.57 0.433 5.74
Seq2SeqCo-cos 2.919 18.65 0.445 5.68
Seq2SeqCo-bi 2.918 18.64 0.438 5.87
Seq2SeqCo-MP 2.918 18.56 0.448 5.79
Seq2SeqCo-dual 2.925 18.52 0.440 5.98

OSDb Dataset

model BLEU PPL distinct-1 disttinct-2
Seq2Seq 2.216 26.13 1.22 5.33
RNN-encdec 2.310 26.02 1.15 5.56
Seq2Seq-att 2.282 25.99 1.38 5.84
MMI 2.323 25.78 1.45 6.10
Back-MMI 2.413 25.1 1.49 6.32
Adver-REGS 2.393 25.73 1.33 6.20
Seq2SeqCo-cos 2.387 25.79 1.38 6.18
Seq2SeqCo-bi 2.422 25.67 1.27 6.27
Seq2SeqCo-MP 2.397 25.3 1.52 6.24
Seq2SeqCo-dual 2.422 24.45 1.42 6.83

Table 2: The metric-based evaluation results(%).

functions in the optimization process. Back-MMI uses a pre-
defined reward function to penalize generating common re-
sponses, but the effect is quite limited. Adver-REGS uses a
learned discriminator to define the reward function, though
flexible, it is not clear whether the reward function truelly
penalizes the common responses. Among the four proposed
coherence models, the end-to-end dual learning approach per-
forms the best, because of its capability to jointly learning
all parameters for fitting the true distribution of the large
scale conversation data. Our models obtain higher BLEU and
lower PPL than baseline models. Take the BLEU score on
STC dataset for example, the BLEU score of dual learning
model is 2.925, which is significantly better than that of Back-
MMI and Adver-REGS, i.e., 2.917 and 2.918. These results
indicate that our models generate responses with higher qual-
ity. The distinct scores of our models are also higher than
baseline models, which indicate that our models can generate
more specific responses. That’s because we directly penalize
the case when generated probability is high and true probabil-
ity is low. We also conducted the significant test, and the re-
sult shows that the improvements of our model are significant
on both Chinese and English datasets, i.e., p-value < 0.01.
In summary, our coherence models produce more fluent and
diverse results, as compared with baseline methods.

The human evaluation results are shown in Table 3, in
which the percentage of sentences belonging to each grade
and the averaged grade are given to evaluate the quality of
generated responses, and kappa [Fleiss, 1971] value is also
given to demonstrate the consistency of different annotators.
From the results, our four coherent models significantly out-
perform baseline methods. Take STC as an example. The av-
eraged score of Seq2SeqCo-dual is 3.3, which is significantly
better than that of Back-MMI and Adver-REGS, i.e., 3.2 and
3.0, respectively. The percentage of strongly related sen-
tences (i.e., the sum of grade ‘4’ and ‘5’) of Seq2SeqCo-dual
is 58.8%, which is significantly better than that of Back-MMI
and Adver-REGS, i.e., 54.2% and 47.1%.

model human score distribution(%) Ave. Kappa1 2 3 4 5
Seq2Seq 17.4 40.2 21.7 18.5 2.2 2.48 0.454
RNN-encdec 18.7 34.1 20.9 19.8 6.6 2.62 0.517
Seq2Seq-att 14.0 35.6 14.0 31.6 4.8 2.78 0.418
MMI 13.6 30.0 12.4 39.2 4.8 2.92 0.461
Back-MMI 12.6 21.8 11.4 41.4 12.8 3.2 0.469
Adver-REGS 13.7 25.5 13.7 41.2 5.9 3.00 0.456
Seq2SeqCo-cos 11.6 28.0 9.6 42.8 8.0 3.08 0.473
Seq2SeqCo-bi 11.6 23.6 9.6 42.8 12.4 3.21 0.428
Seq2SeqCo-MP 11.2 27.2 9.2 44.0 8.4 3.11 0.426
Seq2SeqCo-dual 11.2 20.8 9.2 44.4 14.4 3.30 0.422

model human score distribution(%) Ave. Kappa1 2 3 4 5
Seq2Seq 10.0 54.5 21.8 9.1 4.5 2.43 0.302
RNN-encdec 8.2 51.8 18.2 16.4 5.5 2.60 0.317
Seq2Seq-att 3.6 53.6 14.5 20.0 8.2 2.75 0.286
MMI 4.5 40.0 18.2 31.8 5.5 2.94 0.285
Back-MMI 6.3 35.1 11.2 35.1 12.3 3.12 0.348
Adver-REGS 8.7 33.8 15.0 32.5 10.0 3.01 0.308
Seq2SeqCo-cos 5.5 39.1 13.6 31.8 10.0 3.02 0.341
Seq2SeqCo-bi 7.3 36.4 9.1 32.7 14.5 3.11 0.378
Seq2SeqCo-MP 4.5 38.2 12.7 33.6 10.9 3.08 0.255
Seq2SeqCo-dual 7.3 32.7 9.1 34.5 16.4 3.20 0.332

Table 3: The human evaluation on STC(top) and OSDb(bottom).

post 韦德生涯最血腥扣篮之一(The most wonderful dunk of Wade)
response 就应该补个詹姆斯的表情(Imagine the look of James)
Seq2Seq-att 这个太有才了(It is amazing)
MMI 我们的小伙伴都惊呆了(My friends were stunned)
Back-MMI 这个太有才了!(It is amazing)
Adver-REGS 我也想要这个篮球(I also want this basketball)
Seq2SeqCo-cos 韦德不是一个人(Wade is not alone)
Seq2SeqCo-bi 詹姆斯的表情太好笑了(James looks so funny)
Seq2SeqCo-MP 韦德,韦德,韦德(Wade, Wade, Wade)
Seq2SeqCo-dual 韦德的表情太有才了(Wade’s expression is awesome)

post Go ahead and kill her like you killed my son
response You’re damned if you don’t kill her
Seq2Seq-att I don’t care
MMI I don’t know what you mean
Back-MMI I don’t know
Adver-REGS What’s the matter?
Seq2SeqCo-cos I’m not a coward
Seq2SeqCo-bi I don’t care what you do with her
Seq2SeqCo-MP I’m not going to take her out of this
Seq2SeqCo-dual She’s innocent

Table 4: The generated responses on STC(top) and OSDb(bottom).

Here we show some generated responses for demonstra-
tion. Specifically, Table 4 gives one post, its ground-truth
responses, and the generated responses from different mod-
els. We can see that Seq2Seq-att, MMI, Back-MMI and
Adver-REGS all produce common responses, such as ‘It is
amazing’,‘I don’t care’ and‘I don’t know what you mean’.
However, our models give interesting responses with specific
meanings. We have obtained similar observations for many
other posts, but we have to omit them for space limitations.

We also computed the hit rate and hit probability as de-
fined in our motivation. The values on the dataset of STC
are 0.008449 and 0.001689 for Seq2SeqCo-dual, which are
much larger than Seq2Seq-att, as described before. There-
fore, our coherence models have the ability to generated re-
sponses with higher true probability.
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7 Conclusion
In this paper, we first analyzed the problem of Seq2Seq in
generating common responses. We find that the main rea-
son is that the objective of Seq2Seq is equivalent to KL di-
vergence, which does not penalize the case whose generated
probability is high while the true probability is low. Then we
hypothesized that the true probability can be estimated by the
coherence score between post and response, inspired by our
statistical findings that the similarity measure between post
and response embeddings is consistent with human evalua-
tion. Then we defined three kinds of coherence models, and
used them as the reward function in a reinforcement learn-
ing framework. Experimental results on both Chinese Weibo
and English Subtitle dataset showed that our models signif-
icantly outperform baselines, including traditional Seq2Seq
and some recent proposed models which are related.
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