
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN PARALLEL AND
DISTRIBUTED COMPUTING

Received September 23, 2019, accepted October 21, 2019, date of publication October 25, 2019, date of current version November 7, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2949611

Trend-Smooth: Accelerate Asynchronous SGD by
Smoothing Parameters Using Parameter Trends
GUOXIN CUI 1,2, JIAFENG GUO 1, (Member, IEEE), YIXING FAN1,
YANYAN LAN1, (Member, IEEE), AND XUEQI CHENG1, (Member, IEEE)
1CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding authors: Guoxin Cui (cuiguoxin@ict.ac.cn) and Jiafeng Guo (guojiafeng@ict.ac.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61425016, Grant 61722211,
Grant 61773362, and Grant 61872338, in part by the Youth Innovation Promotion Association CAS under Grant 20144310 and Grant
2016102, in part by the National Key Research and Development Program of China under Grant 2016QY02D0405, and in part by the
Foundation and Frontier Research Key Program of Chongqing Science and Technology Commission under Grant cstc2017jcyjBX0059.

ABSTRACT Stochastic gradient descent(SGD) is the fundamental sequential method in training large scale
machine learning models. To accelerate the training process, researchers proposed to use the asynchronous
stochastic gradient descent (A-SGD) method in model learning. However, due to the stale information when
updating parameters, A-SGD converges more slowly than SGD in the same iteration number. Moreover,
A-SGD often converges to a high loss value and results in lower model accuracy. In this paper, we propose
a novel algorithm called Trend-Smooth which can be adapted to the asynchronous parallel environment
to overcome the above problems. Specifically, Trend-Smooth makes use of the parameter trend during the
training process to shrink the learning rate of some dimensions where the gradients’ directions are opposite
to the trends of parameters. Experiments on MNIST and CIFAR-10 datasets confirm that Trend-Smooth can
accelerate the convergence speed in asynchronous training process. The test accuracy that Trend-Smooth
achieves is shown to be higher than other asynchronous parallel baseline methods, and is very close to the
SGDmethod. Moreover, Trend-Smooth can also be combined with other adaptive learning rate methods(like
Momentum, RMSProp and Adam) in the asynchronous parallel environment to promote their performance.

INDEX TERMS Parameter trend, asynchronous SGD, accelerate training.

I. INTRODUCTION
Stochastic gradient descent(SGD) is the most widely used
and fundamental sequential method in training machine
learning models recently. In each iteration, it uses a small
subset of the whole dataset to compute gradients and use them
to update model parameters. Usually, SGD can be imple-
mented using a single machine and it needs to take a large
number of iterations to converge during the learning process.
Despite the slow parameter update frequency due to limited
computing power, SGD converges well. To accelerate the
convergence, many gradient-based methods have been pro-
posed, such as Momentum [1], RMSProp [2], and Adam [3]
methods. Although these methods do help accelerate the
training, the convergence still needs a lot of time due to the
huge computation amount of gradient and the large iteration
number.

The associate editor coordinating the review of this manuscript and
approving it for publication was Stéphane Zuckerman.

As the computational ability of a single machine is always
limited, researchers propose asynchronous stochastic gradi-
ent descent (A-SGD) method which can leverage the clus-
ter’s computing power to accelerate the training. The A-SGD
method can be easily implemented using the Parameter
Server(PS) [4]–[6] system. In PS system, the whole cluster
is composed of the server and workers. The server holds
a global copy of the whole parameters and the workers
compute gradient of the machine learning model using local
training data. In the A-SGD method, the server updates the
parameters as long as the gradient from one worker comes.
After finishing updating global parameters, the server sends
the newest parameters to the worker. The parameter update
frequency of the A-SGD method is higher compared to the
SGD method. However, the local parameter producing the
gradient is often not consistent with the global parameter to
be updated, because the server may have updated the global
parameter based on other worker’s local gradient. This is
also known as the stale gradient problem [7]. Due to this

156848 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-7754-0967
https://orcid.org/0000-0002-9509-8674

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

reason, the A-SGD method can not perform as good as the
SGD method. Often, it converges slowly to a higher loss
value and results in lower test accuracy compared to the SGD
method.

To further understand the impact of the stale gradient,
we have conducted preliminary experiments on both the
A-SGDmethod and the SGDmethod.We find that the param-
eter curves of the A-SGD method also have some trends,
which is similar to that of the SGD method found in previ-
ous work [8]. However, the parameter curves of the A-SGD
method become more fluctuated than the curves of the SGD
method. Also, the parameter values in A-SGDmethod change
less than the SGDmethod. These features are both considered
to be the consequence of the stale gradient.

Based on these observations, in this paper we propose a
novel algorithm called ‘‘Trend-Smooth’’ which can speed
up the convergence speed and promote the test accuracy in
the asynchronous parallel environment. Specifically, Trend-
Smooth computes each parameter’s trend using the history
of parameters stored on the server. These trends give us
the reliability for the current gradient of each dimension.
For each dimension which violates the trends, we reduce its
effect by shrinking the learning rate of the dimension while
keeping the learning rate of other dimensions unchanged.
This can cut down the impact of the stale gradient dur-
ing the training. To verify the effectiveness of the method,
we conduct experiments on CIFAR-10 dataset and MNIST
dataset based on two existing neural network architectures.
On both datasets, Trend-Smooth ’s loss decreases faster than
other asynchronous parallel methods which means that it can
accelerate the training. Also, Trend-Smooth achieves higher
test accuracy (very close to the SGD method) compared
to other asynchronous parallel baseline methods. Moreover,
Trend-Smooth can be combined with other adaptive learning
rate methods like these mentioned above(e.g. Momentum,
RMSProp and Adam) to promote their performances in asyn-
chronous parallel environment.

The major contributions of this paper include:
• We explore the impact of the stale gradient on the
A-SGD method by observing the parameter curves in
comparison to the SGD method.

• We propose a novel asynchronous parallel method
named ‘‘Trend-Smooth’’ which makes use of the param-
eter trend to shrink the learning rate of the gradient
dimensions in which the gradient values violate the
parameter trend.

• We conduct experiments to verify that Trend-Smooth
can speed up the training convergence, and achieve
higher test accuracy (very close to the SGD method)
compared to other asynchronous parallel methods.

The rest of the paper are organized as follows: After intro-
ducing the related work in Section II, we explore the impact
of the stale gradient on the A-SGD method in comparison
to the SGD method in Section III. Based on these observa-
tions, we propose the Trend-Smooth method in Section IV.
Section V presents the experimental results to verify the

effectiveness of the proposed Trend-Smooth method and the
conclusions are drawn in Section VI.

II. RELATED WORK
A. SGD AND ITS VARIANTS
In this section, we give a detailed introduction to the SGD
method and its variants.

The goal of many machine learning (including the deep
learning) algorithms can be expressed via an ‘‘loss function’’,
which captures the properties of the learned model, such as
the error in terms of the training data and the complexity of
the learned model. Given a set of training data {(xi, yi)}Ni=1,
where xi and yi are the feature vector and the label for the
i-th instance, respectively, and N is the number of training
instances, the machine learning algorithm typically mini-
mizes the loss function of the model:

minL(w) = min
N∑
i=1

`(xi, yi;w)+�(w),

where ` represents the prediction error on the training data
and regularizer� penalizes the model complexity. In general,
there is no closed-form solution for L. Instead, learning starts
from an initial model. It iteratively refines the model by
executing the following formular:

wt = wt−1 − η ∗ u,

where t means the current iteration number and u means
the update vector. The training process stops when a (near)
optimal solution of L is found or the model is considered to
be converged.

The gradient descent (GD) method, where u is equal to
∇L(w), can get ε error by usingO(log 1

ε
) steps [9], [10] under

certain circumstances. Second-order optimization method
like Newton method can achieve ε error by usingO(loglog 1

ε
)

steps [9] under certain circumstances. There are also works
like stochastic quasi-Newton methods [11]–[14] to solve the
optimization problem.

When the dataset is very large, getting the gradient of the
whole training data (like the GDmethod) is not computation-
ally affordable. To overcome this issue, stochastic gradient
descent(SGD) method uses a single training sample xi and yi,
which is randomly chosen from the whole dataset, to finish
one iteration:

wt = wt−1 − η ∗ ∇L(xi, yi,w)

To make the gradient more accurate and leverage current
computing hardware like GPU efficiently, mini-batch SGD
is the most widely used algorithm. It randomly selects a
mini-batch from the whole dataset and uses the gradient from
the mini-batch to update the parameter:

wt = wt−1 − η ∗
1
M

M∑
i=1

∇L(xi, yi,w),

where M (M� N) is the batch size. The convergence of the
SGD method has been studied extensively in the stochastic

VOLUME 7, 2019 156849

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

approximation literature. It has been proved that when using
diminishing learning rate and when the optimization problem
is convex, SGD can get ε error by taking O(1

√
ε
) training

steps [15]. When the loss function is differentiable with Lip-
schitz gradient, SGD can take O(1

ε
) steps [9], [10] to reach

error ε by choosing suitable fixed learning rate. In this paper,
we use mini-batch SGD to conduct our experiments.

The SGD method uses a constant learning rate for all
dimensions of parameters. How to choose the learning rate
is an important problem as the learning rate often has a great
impact on the convergence of the learning progress. To solve
these problems, researchers have proposed a large number of
adaptive learning rate methods based on SGD [1]–[3], [16].
In the following, we will introduce several important adaptive
learning rate methods.

1) The Momentum SGD method [1] is a method that
accelerates SGD in relevant direction by adding a fraction γ
of the updated vector of past time step to the current update
vector. The update formulas show as follows:

ut = γ ∗ ut−1 + η ∗ g

wt = wt−1 − ut

2) Adagrad method [16] adapts the learning rate to the
parameters, performing smaller updates (i.e. low learning
rates) for parameters associated with frequently occurring
features, and larger updates (i.e. high learning rates) for
parameters associated with infrequent features. For this rea-
son, it is well-suited for dealing with sparse data. Its update
rules are as follows:

Gt = Gt−1 + gt � gt

wt = wt−1 −
η

√
Gt + ε

� gt ,

where � denotes element-wise product. Adagrad’s main
weakness is its accumulation of the squared gradients in the
denominator: Since every added term is positive, the accu-
mulated sum keeps growing during training. This, as a result,
makes the learning rate to shrink and eventually become
infinitesimally small, at which point the algorithm is no
longer able to acquire additional knowledge [17].

3) RMSProp method [2] replaces Gt in Adagrad by an
exponentially decaying average of squared gradients to avoid
the final learning rate being infinitesimally small. Its update
rules are as follows:

Gt = β ∗Gt−1 + (1− β) ∗ gt � gt

wt = wt−1 −
η

√
Gt + ε

� gt

4) Adaptive momentum estimation (Adam) method [3]
is now the most widely used optimization method in train-
ing machine learning model [18]. It keeps an exponentially
decaying average of past gradients mt (the first moment esti-
mate) and an exponentially decaying average of past squared
gradients vt (the second moment estimate). As mt and vt are
initialized as zero, they are biased towards zero. To counter-
act these biases, Adam uses bias-corrected first and second

moment estimates. The whole update rules are as follows:

mt = β1 ∗mt−1 + (1− β1) ∗ gt
vt = β2 ∗ vt−1 + (1− β2) ∗ g2t
mt =

mt

1− β t1

vt =
vt

1− β t2
wt+1 = wt −

η
√
vt + ε

∗mt

The above adaptive learning rate methods ((1) to (4)) focus
on making the training process converge faster compared
to the SGD method. The adaptive learning rate methods
perform well on the training dataset, however, they do not
generalize well on the test dataset [18]. Works in natural lan-
guage processing [19] and computer vision [20] also reflected
this fact. In this paper, we use the Momentum method((1)),
the RMSProp method((3)), the Adam method((4)) in asyn-
chronous parallel environment as baselines to show that
the Trend-Smooth combined versions can promote their
performances.

In asynchronous paralle environment, reference [7] pro-
posed Delay Compensated ASGD(DC-ASGD) to compen-
sate the delay of the gradient. It made the optimization
behaviour of A-SGD closer to that of the sequential SGD
by leveraging the Taylor expansion of the gradient function
and efficient approximation to the Hessian matrix of the loss
function. The global parameter update rules are shown as
follows:

wt+τ+1 = wt+τ − η ∗ (gt + λ ∗ gt � gt � (wt+τ − wt)),

where τ denotes the time delay between the gradient gt and
the parameter wt+τ . In this paper, we use DC-ASGD as one
of our baseline methods.

B. PARAMETER SERVER
In literature, several systems have been used to train the
machine learningmodel. For example, massage passing inter-
face (MPI) [21], [22] can be used to construct high per-
formance system. Despite the high performance it achieves,
its scalability and fault tolerance ability is poor. There
exist many general-purpose distributed systems for machine
learning applications. Mahout [23] based on Hadoop [24]
and MLI [25] based on Spark [26] both adopt the iterative
MapReduce [27] framework. These systems have no global
state and have high fault tolerance ability. They can scale well
to a few hundreds of nodes, primarily on dedicated research
clusters. However, they only support synchronous parallel
scheme, which has the strongest model consistency.

To make the model consistency more flexible, researchers
proposed Parameter Server(PS) architecture [4]–[6].
PS divides machines of the cluster into two categories,
namely server(s) and workers. The server holds a global copy
of the parameters. It receives gradients from all workers to
update the parameters. Then, it sends the updated parameters

156850 VOLUME 7, 2019

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

FIGURE 1. (a) Workflow of the BSP mode. (b) Workflow of the ASP mode.

back to each corresponding worker. Each worker computes
the gradients based on local data and sends the gradients to
the server. The PS will loop the two stages continuously.

The two commonly used parallel modes are bulk
synchronous parallel(BSP) [28], [29] and asynchronous par-
allel(ASP) [6], [30]–[32]. Each mode has its own advantages
and disadvantages. Firstly, the BSP mode has no stale gradi-
ent information, so it converges stably and faster compared to
the ASP mode in the same number of iterations. However, all
workers have to wait for each other to begin the next iteration.
The BSP’s updating frequency is slow as it averages updates
from all workers as a single update. The SGD method can be
seen as a special case of the BSP mode when the PS system
has only one worker. Adding more workers in PS just makes
the batch size larger compared to the SGD method. In this
paper, we use the single-machine SGDmethod to conduct our
experiments.

In ASP mode, the server updates the parameters as long
as it receives gradients from a worker. So the ASP mode has
faster parameter updating frequency than BSP mode. How-
ever, due to stale information(delayed gradient) [33]–[35],
it often converges more slowly than the BSP mode (SGD)
in the same number of iterations and the loss value remains
larger in the later training process which may make the test
accuracy lower [35]–[39]. The workflows of the BSP mode
and the ASP mode are shown in Fig. 1. Recently, machine
learning tools such as TensorFlow [9] can support BSP and
ASP implementations easily.

Besides the PS architecture in which the server and the
workers are connected to transport information, there were
works [40]–[43] that used ring-based all reduce method to
leverage the cluster’s computing power. By arranging the
machines in a logical ring, ring-based all-reduce method
solved the problem that the server may become the bottle-
neck of the system because of the large volumes of data to
transport.

C. PARAMETER TRENDS
In reference [8], it is found that when training neural net-
works, the evolution of the parameters had some trend during

the training process. The important findings were that a small
subset of parameters undergo massive changes compared to
the rest, and these parameters were observed to follow a pre-
dictable trend: they either have an obviously increasing trend
or an obviously decreasing trend during the training process.
With this notice, reference [8] trained a neural network I
using training data(parameter history during the training pro-
cess) collected from training another simple network. Then
they used the network I to predict parameter values at specific
iterations. Experiment results showed that this method could
accelerate the training process and promote test accuracy.

III. PRELIMINARY EXPERIMENTS
To explore the impact of the stale gradient on the A-SGD
method in comparison to the SGDmethod, we conduct exper-
iments on CIFAR-10 dataset with a 5-layer convolutional
neural network. The neural network’s first two layers are con-
volution layers and the other three layers are fully-connected
layers. We randomly choose 100 dimensions of parameters in
the first convolutional layer and log the value of parameters
of these dimensions at every step during the training.

For both the SGD and the A-SGD methods, we use a
learning rate of 0.1 and the batch size is set to 64. We use
4 workers in the A-SGD method. Fig. 2 shows the parameter
curves of the SGD method and the A-SGD method.

From the figure we can see that the parameter curves in
the A-SGDmethod also have some trends, similar to the SGD
method found in reference [8]. However, the parameter curves
in the A-SGD method are more fluctuated than those of the
SGD method. To elaborate this more clearly, we split each
line every 1000 consecutive iterations to get small episodes.
For each episode, we use least-squares regression to fit it and
compute the standard error which is the root of the square
error. Also we compute the value changes of these param-
eters. The value change for one parameter is the absolute
difference between its final value and its initial value. Table 1
shows the sums of the standard errors and value changes of
all curves in both methods.

From Table 1 we see that the A-SGD method has a higher
standard error and fluctuates more than the SGD method.

VOLUME 7, 2019 156851

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

FIGURE 2. (a) 100 randomly chosen parameter trend trained by the SGD method. (b) 100 randomly chosen parameter trends trained by the
A-SGD method with 4 workers.

TABLE 1. The summed standard error and values changed of the SGD and
the A-SGD methods.

In this process, lots of time in A-SGDmethod is wasted on the
fluctuation and as a result, the A-SGD method’s parameters
change less than the SGD method.

The above phenomenon clearly reflects the impact of the
stale gradient in the A-SGD method and this may be the rea-
son why the A-SGD method converges worse than the SGD
method.

IV. OUR APPROACH: TREND-SMOOTH
In this section, we will introduce the Trend-Smooth algo-
rithm. As discussed in previous section, the parameter curves
differ significantly between the SGD method and the A-SGD
method, in that the latter are more fluctuated than the for-
mer. Due to the fluctuation, the A-SGD method’s parameters
change less than the SGD method. Based on these observa-
tions, we try to leverage the parameter trend to accelerate
the training process. The whole idea is as follows. Since we
have the whole history of the parameters, we can calculate
the parameter trend and use the trend information to judge
the gradient. We will keep the gradient values that accord
with the trend while shrinking the gradient values that violate
the trend. By doing this, we can cut down the impact of the
fluctuated curves.

Before introducing the Trend-Smooth algorithm, we first
specify the symbols we use. The symbols are described in
the Table 2.

A. HOW TO COMPUTE THE TRENDS
As we aim to leverage the parameter trends to update the
global parameters, it is of great importance to get the param-
eter trends in an efficient way. In order to reduce the time

TABLE 2. Symbols used in Trend-Smooth.

cost in calculating the parameter trends, in the Trend-Smooth
method, we use the difference between the latest parameter
copy and the oldest parameter copy to measure the parameter
trend. Specifically, we maintain a stack H on the parameter
server which holds the past history of parameters. H’s max
length is set to L. We first get the newest parameter copy in
H as e and the oldest parameter copy in H as f . Then we
obtain the parameter trend by subtracting f from e. The whole
process is described in the Algorithm 1.

Algorithm 1 Trend-Smooth:GetTrend
Input:H
Output:trend
1: e← end(H)
2: f← front(H)
3: trend← e− f
4: return trend

B. HOW TO UPDATE PARAMETERS BASED ON THE TREND
Suppose the server now gets the trend and the gradient g
from a worker, how does it perform an update using this
information? In Trend-Smooth, we use a simple and efficient
rule to get the update. Specifically, we use an additional
hyper-parameter α to penalize the dimensions where the signs

156852 VOLUME 7, 2019

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

of the gradients run counter to the sign of the trend. For those
dimensions of the gradients whose signs are consistent with
the trend, we keep the learning rate unchanged.

The algorithm is depicted in the Algorithm 2. It is worth
noting that in the 4th line of Algorithm 2, we have compared
the sign of trend i and gi to determine whether to adjust the
learning rate. By using the trend to penalize the un-accorded
dimensions of gradients, the parameter curves will be more
smooth and change rapidly towards the trend directions. The
gradient values that do not accord with the trend will produce
less effect on the training process. Since we do not change
the signs of gradients, the loss function still decreases. At the
same time, it would not hinder the parameters from converg-
ing or changing their trends during training process.

Algorithm 2 Trend-Smooth:GetUpdate
Input:trend, g
Output:u
1: D←size(g)
2: u← 0
3: for i from 1 to D do
4: if sign(trendi) == sign(gi) then
5: ui← gi ∗ α
6: else
7: ui← gi
8: end if
9: end for

10: return u

C. THE WHOLE LEARNING PROCESS
The whole process of Trend-Smooth is shown in Algorithm 3
and Algorithm 4. Every worker pulls the latest parameters
w on the server before computing gradients g using local
data D. After worker m finishes computing gradient gm,
it sends gm to the parameter server. When server receives gm

from worker m, it first computes the trends based on the past
parameter history H. Then server uses these trends and gm

to get parameter update u to update w. After the parameters
have been updated, the server pushes the latest parameter w
to history stack H to compute the trends of the next iteration.
If H’s size exceeds the max size L, H will pop out the oldest
parameter. Fig. 3 shows the workflow of the whole system.

Algorithm 3 Trend-Smooth:Worker m
1: while NOT FINISHED do
2: Pull wt from server
3: Compute gm← ∇f (wt) using local data
4: Send gm to server
5: end while

V. EXPERIMENT
A. EXPERIMENTAL SETTINGS
To test the performance of the proposed Trend-Smooth
algorithm, we conduct experiments on two datasets:

Algorithm 4 Trend-Smooth:Server Side
Input:H, L, t
1: while NOT FINISHED do
2: if receives gm then
3: trend← GetTrend(H, s)
4: u← GetUpdate(trend, gm)
5: wt+1← wt − η ∗ u
6: t ← t + 1
7: push wt to H
8: if size(H) > L then
9: pop(H)
10: end if
11: else {receives pull request from worker m}
12: send wt to worker m
13: end if
14: end while

CIFAR-10 [44] and MNIST [45]. We maintain the max
length L of the history stack H to be 200. We perform grid
search on both datasets and the best test performances are
obtained by choosing the shrinking parameter α to 0.8.
The baselines we choose include stochastic gradient

descent method(SGD), asynchronous parallel stochastic gra-
dient descent method(A-SGD), and asynchronous delay-
compensate(A-DC) method in which the hyper-parameter λ
is set as 0.04. To eliminate the effect of the different learning
rates during training, we also set up another baseline calledA-
SGD-alpha which is the same to A-SGD except the learning
rate is shrunk by α (0.8) for all dimensions of gradients.

To show that Trend-Smooth can be combined with other
adaptive learning rate methods, we also do experiments using
asynchronous momentum method(A-Momentum), asyn-
chronous RMSProp method(A-RMSProp), asynchronous
Adam method (A-Adam) and their Trend-Smooth combined
versions on these two datasets.

In the following, we introduce the specific configurations
of the MNIST dataset and CIFAR-10 dataset, respectively.

1) MNIST
We conduct our experiments of the proposed Trend-Smooth
algorithm on MNIST dataset with an 11-machine cluster
which consists of a server and ten workers. Each machine has
a 2.3GHz frequency CPU and the machines are connected by
a network with 1000Mb/s bandwidth.

The machine learning model we choose to train MNIST
is a simple 3-layer fully-connected neural network named
MNIST3 in reference [8]. The shapes of parameters of these
layers are [784, 256], [256, 256] and [256, 10]. Cross entropy
loss is used as the loss function. For all the methods, the batch
size is set to 100. We run each method 20000 iterations.
To achieve the best performance, each method is fine tuned
and the learning rate decays by half every 5000 iterations. The
initial learning rate used for A-SGD-alpha is 0.08(0.1*α).
We set the learning rates of A-RMSProp and A-Adam as

VOLUME 7, 2019 156853

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

FIGURE 3. Trend-Smooth system architecture. 1. Workers pull the latest parameters w from parameter server. 2. Workers
compute gradient g using local data D. 3. Workers send gradient g to the server. 4. Server gets the trend from parameter
history. 5. Server uses the trend and current gradient g to compute the update u. 6. Server uses u to update w. 7. Server
pushes w to the history stack H for next trend computing.

0.002 in order to run these methods properly. The learning
rate of A-Momentum method is set as 0.01 and the momen-
tum efficient is set as 0.9. The initial learning rates for other
methods are set as 0.1.

2) CIFAR-10
To test the performances of the proposed Trend-Smooth algo-
rithm on CIFAR-10 dataset, we conduct experiments on a
5 nodes cluster which consists of 1 server and 4 workers.
Each node’s setting is the same as the one used conducting
the MNIST experiment.

The machine learning model tested is a 5-layer neural net-
work named CIFAR1 from reference [8]: the first two layers
are convolutional layers with each layers’ parameter shape
being [5, 5, 3, 64] and [5, 5, 64, 64]. Local response normal-
ization after max-pooling is used [46]. The third and fourth
layers are fully connected layers with shapes [2304, 384]
and [384, 192], respectively. The last softmax layer is also a
fully connected layer with shape [192, 10]. We use the cross
entropy as the loss. During the training, the batch size is set
as 128 for all methods. We run each method 50000 iterations.
To achieve the best performance, we fine tune each method
and use a learning rate with a decay of 0.8 every 3000 iter-
ations. The learning rate for A-SGD-alpha method is set as
0.08(0.1*α). We set the learning rates of A-RMSProp and
A-Adam as 0.002 in order to run these methods properly. The
learning rate of A-Momentum method is set as 0.01 and the
momentum efficient is set as 0.9. The other methods’ initial
learning rates are set as 0.1.

B. EXPERIMENTAL RESULTS
1) MNIST
The picture (a) in Fig. 4 shows the training loss curves
of Trend-Smooth as well as all other baselines. The x-axis

indicates the training iterations and y-axis indicates the loss.
From the figure, we can see that the loss of the Trend-Smooth
decreases faster than those of other asynchronous baseline
methods in the beginning of the learning process. Moreover,
the Trend-Smooth also achieves much lower loss value com-
pared with all other asynchronous parallel methods, and this
value is almost the same with that of the SGD method.

The picture (b) in Fig. 4 shows the loss values with respect
to the training time of all methods. The SGD method’s
loss decreases the slowest among all methods due to the
lower sequential parameter update frequency in comparison
to other asynchronous parallel methods, while the Trend-
Smooth method’s loss curve decreases the fastest among all
these methods.

The picture (c) in Fig. 4 shows the accuracies of all meth-
ods with respect to the training iterations. As we can see,
the Trend-Smooth also achieves better performance com-
pared with all the asynchronous baseline methods. Moreover,
the result is comparable with the SGDmethod.We also report
the best accuracies in the Table 3. All the asynchronous
methods (except the Trend-Smooth method) get very close
accuracy, obviously lower than the SGD method. Our Trend-
Smooth method, which use the parameter trend to accelerate
the learning process in the asynchronous methods, achieves
close accuracy to the SGD method.

TABLE 3. Accuracies of all methods on MNIST dataset.

156854 VOLUME 7, 2019

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

FIGURE 4. (a) Loss value with respect to the iteration number of different methods on MNIST dataset. (b) Loss value with respect to the training
time of different methods on MNIST dataset. (c)Test accuracy with respect to the iteration number of different methods on MNIST dataset.

FIGURE 5. (a) Loss value with respect to the iteration number of different methods on CIFAR-10 dataset. (b) Loss value with respect to the training
time of different methods on CIFAR-10 dataset. (c) Test accuracy with respect to the iteration number of different methods on CIFAR-10 dataset.

TABLE 4. Accuracies of all methods on CIFAR-10 dataset.

2) CIFAR-10
The picture (a) in Fig. 5 shows the loss curves of all methods
trained on the CIFAR-10 dataset. From the figure we can see
that our Trend-Smooth method converges faster than other
asynchronous parallel methods in the early stage of the train-
ing process. As the iteration grows, it could achieve nearly
the same loss compared with SGD method. This is consistent
with the results on theMNIST dataset, which demonstrate the
power of the Trend-Smooth method.

The picture (b) in Fig. 5 shows the loss values with respect
to the training time of all methods. The SGD method’s loss
decreases the slowest while the Trend-Smooth method’s loss
curve decreases the fastest among all these methods, which is
consistent with the results on the MNIST dataset. From these
results, we can confirm that the Trend-Smooth method can
accelerate the training.

The picture (c) in Fig. 5 shows the test accuracies of all the
methods with respect to iteration numbers. Table 4 shows the

TABLE 5. Accuracies on MNIST dataset of adaptive learning rate methods
and their Trend-Smooth counterparts.

final test accuracies of these methods. From the figure and
the table we can draw the same conclusions as is described in
the MNIST dataset.

3) TREND-SMOOTH COMBINED WITH ADAPTIVE LEARNING
RATE METHODS
The Trend-Smooth algorithm can be combined with other
adaptive learning rate methods(e.g. Momentum, RMSProp
and Adam) easily. Here we choose the update u in Trend-
Smooth as the gradient g in the adaptive learning rate meth-
ods. Fig. 6 shows the loss curves of the adaptive learning
rate methods and their Trend-Smooth counterpart versions
on MNIST and CIFAR-10 datasets. We see that the losses
of the methods combined with Trend-Smooth decrease faster
and get lower values compared to the original methods.
Table 5 and Table 6 show that the Trend-Smooth combined

VOLUME 7, 2019 156855

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

FIGURE 6. (a) Loss curves of adaptive learning rate methods and their Trend-Smooth combined versions on MNIST dataset. (b) Loss curves of
adaptive learning rate methods and their Trend-Smooth combined versions on CIFAR-10 dataset.

FIGURE 7. (a) Parameter curves of SGD training method. (b) Parameter curves of A-SGD training method. (c) Parameter curves of A-SGD-alpha
training method. (d) Parameter curves of A-DC training method. (e) Parameter curves of Trend-Smooth training method.

methods achieve higher test accuracies compared with the
original methods.

C. EXPERIMENTAL ANALYSIS
To analyze the impact of Trend-Smooth on the training
process, we randomly select 20 parameters from the last
fully-connected layer of the neural network trained on
CIFAR-10 dataset and record these parameters at each iter-
ation. At the same time, we calculate the two indicators

(i.e., Std Err and Values changed), which have been described
in Section III, to see what Trend-Smooth has learned.

The parameter curves of each method are shown in Fig. 7.
We also show the values of the indicators in Table 7. From the
results we can see: 1) The curves of the A-SGD and A-SGD-
alpha methods are more fluctuated than the SGD method and
the Trend-Smooth method. Despite the lower learning rate,
the A-SGD-alpha method’s parameter curves are as fluctu-
ated as the A-SGD method and value changes are almost

156856 VOLUME 7, 2019

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

TABLE 6. Accuracies on CIFAR-10 dataset of adaptive learning rate
methods and their Trend-Smooth counterparts.

TABLE 7. The summed standard error and values changed of these
methods.

the same with A-SGD method. In comparison, the Trend-
Smooth algorithm, which partially decreases the learning rate
according to the paraemter trends, is more effective than the
A-SGDmethod and the A-SGD-alphamethod in reducing the
fluctuation. Therefore, the Trend-Smooth method can get fast
convergence and higher accuracy as shown previously. 2) The
A-DCmethod’s parameter curves have the largest fluctuation
and the value changed is low. This is because that in the
A-DC method’s update rule, it adds a penalty to the gradient
dimensions whose values accord with the parameter trends
((wt+τ − wt)). This is on the contrary to the Trend-Smooth
method we propose. 3) The Trend-Smooth method’s curves
are much smoother compared to other asynchronous paral-
lel methods and the parameters can change larger. Also its
curves are more like the curves of SGD training method.
Overall, our Trend-Smooth method, which leverages the
parameter trend to adjust the learning rate, makes the param-
eter curves smoother and the variations larger. As a result,
the Trend-Smooth method converges faster and obtains better
performance.

Moreover, we analyze the overhead that Trend-Smooth
adds on the system. The overhead is all on the server side
since workers only compute gradients, send gradients and
pull parameters. In each iteration, the main computing over-
head comes from calculating the parameter trend on the
server. In fact, it is quite easy to calculate the parame-
ter trends, since it just needs to do a subtraction between
two vectors. We could use the parallel utility provided by
CPU to accelerate this job. Also, since for most parame-
ters, the trend directions will not change during the train-
ing process, we could reduce the frequency of computing
trends. As a result, Trend-Smooth’s computation overhead is
almost the same as compared to other asynchronous parallel
methods. The storage overhead can be controlled by select-
ing the max length L of stack H . When the RAM is lim-
ited, the parameter copies can be stored on external storage
(like disk).

VI. CONCLUSION
In this paper, we propose a novel algorithm called ‘‘Trend-
Smooth’’ to accelerate the convergence speed and promote
the test accuracy of the asynchronous parallel method. Our
work is based on the analysis of the stale gradient impact
on the parameter curves in the A-SGD method. To over-
come the large fluctuation of the parameter curves in the
A-SGDmethod, we leverage the parameter trend information
to shrink the learning rate of certain gradient dimensions in
order to make the parameter curves be smoother and change
more like the SGDmethod.We have verified the effectiveness
of the proposed method through experiments on MNIST and
CIFAR-10 datasets. Experimental results confirm that Trend-
Smooth could accelerate the training, get a lower loss value
and achieve higher test accuracy (very close to the SGD
method) than other asynchronous parallel methods. Trend-
Smooth could also be combined with adaptive learning rate
methods like Adam to further promote their performances in
asynchronous parallel environment.

Finally, we emphasize that in this work we have focused
on the application of the Trend-Smooth method in moderate
neural network. In view of the mechanism of reducing the
parameter fluctuations in our scheme, we expect this method
can also work well for larger models, which we will investi-
gate in the future work.

REFERENCES
[1] N. Qian, ‘‘On the momentum term in gradient descent learning algo-

rithms,’’ Neural Netw., vol. 12, no. 1, pp. 145–151, 1999.
[2] T. Tieleman and G. Hinton, ‘‘Lecture 6.5-RMSPROP: Divide the gradient

by a running average of its recent magnitude,’’ COURSERA, Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[3] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[4] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ in Proc. OSDI, Oct. 2014, vol. 1, p. 3.

[5] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson,
G. Ganger, and E. P. Xing, ‘‘More effective distributed ML via a stale
synchronous parallel parameter server,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 1223–1231.

[6] J. Dean, G. S. Corrado, R.Monga, K. Chen,M. Devin, Q. V. Le,M. Z.Mao,
M. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, ‘‘Large scale
distributed deep networks,’’ in Proc. 25th Int. Conf. Neural Inf. Process.
Syst., vol. 1, 2012, pp. 1223–1231.

[7] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and
T.-Y. Liu, ‘‘Asynchronous stochastic gradient descent with delay com-
pensation,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, Aug. 2017,
pp. 4120–4129.

[8] A. Sinha, M. Sarkar, A. Mukherjee, and B. Krishnamurthy, ‘‘Introspection:
Accelerating neural network training by learning weight evolution,’’ 2017,
arXiv:1704.04959. [Online]. Available: https://arxiv.org/abs/1704.04959

[9] M. Abadi et al., ‘‘Tensorflow: Large-scale machine learning on heteroge-
neous distributed systems,’’ 2015, arXiv:1603.04467. [Online]. Available:
https://arxiv.org/abs/1603.04467

[10] L. Bottou, F. E. Curtis, and J. Nocedal, ‘‘Optimization methods for large-
scale machine learning,’’ SIAM Rev., vol. 60, no. 2, pp. 223–311, 2018.

[11] A. Bordes, L. Bottou, and P. Gallinari, ‘‘SGD-QN: Careful Quasi-Newton
stochastic gradient descent,’’ J. Mach. Learn. Res., vol. 10, pp. 1737–1754,
Jul. 2009.

[12] N. N. Schraudolph, J. Yu, and S. Günter, ‘‘A stochastic Quasi-Newton
method for online convex optimization,’’ Artif. Intell. Statist., pp. 436–443,
Mar. 2007.

VOLUME 7, 2019 156857

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

[13] A. Mokhtari and A. Ribeiro, ‘‘RES: Regularized stochastic BFGS algo-
rithm,’’ IEEE Trans. Signal Process., vol. 62, no. 23, pp. 6089–6104,
Dec. 2014.

[14] A. Mokhtari and A. Ribeiro, ‘‘Global convergence of online limited mem-
ory BFGS,’’ J. Mach. Learn. Res., vol. 16, no. 1, pp. 3151–3181, Jan. 2015.

[15] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, ‘‘Robust stochastic
approximation approach to stochastic programming,’’ SIAM J. Optim.,
vol. 19, no. 4, pp. 1574–1609, 2009.

[16] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods for
online learning and stochastic optimization,’’ J. Mach. Learn. Res., vol. 12,
pp. 2121–2159, Feb. 2011.

[17] S. Ruder, ‘‘An overview of gradient descent optimization algorithms,’’
2016, arXiv:1609.04747. [Online]. Available: https://arxiv.
org/abs/1609.04747

[18] A. C.Wilson, R. Roelofs,M. Stern, N. Srebro, andB. Recht, ‘‘Themarginal
value of adaptive gradient methods in machine learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 4148–4158.

[19] L. Luo, W. Huang, Q. Zeng, Z. Nie, and X. Sun, ‘‘Learning personal-
ized end-to-end goal-oriented dialog,’’ 2018, arXiv:1811.04604. [Online].
Available: https://arxiv.org/abs/1811.04604

[20] Y.Wu and K. He, ‘‘Group normalization,’’ in Proc. Eur. Conf. Comput. Vis.
(ECCV), 2018, pp. 3–19.

[21] W. Gropp, R. Thakur, and E. Lusk, Using MPI–2—Advanced Features of
the Message Passing Interface. Cambridge, MA, USA: MIT Press, 1999.

[22] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, ‘‘A high-performance,
portable implementation of the MPI message passing interface standard,’’
Parallel Comput., vol. 22, no. 6, pp. 789–828, Sep. 1996.

[23] S. Owen and S. Owen, Mahout in Action. New York, NY, USA: Manning
Shelter Island, 2012.

[24] T. White, Hadoop: The Definitive Guide. Newton, MA, USA: O’Reilly
Media, Inc., 2012.

[25] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu,
J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin,
R. Zadeh, M. Zaharia, and A. Talwalkar, ‘‘Mllib: Machine learning in
apache spark,’’ J. Mach. Learn. Res., vol. 17, no. 1, pp. 1235–1241,
Jan. 2016.

[26] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computingwithworking sets,’’ inProc. 2ndUSENIXConf.
Hot Topics Cloud Comput., Jun. 2010, p. 10.

[27] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[28] A. V. Gerbessiotis and L. G. Valiant, ‘‘Direct bulk-synchronous parallel
algorithms,’’ J. Parallel Distrib. Comput., vol. 22, no. 2, pp. 251–267, 1994.

[29] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant, ‘‘Bulk synchronous
parallel computing—A paradigm for transportable software,’’ in Tools and
Environments for Parallel and Distributed Systems Cham, Switzerland:
Springer, 1996, pp. 61–76.

[30] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman, ‘‘Project adam:
Building an efficient and scalable deep learning training system,’’ in Proc.
11th USENIX Symp. Operating Syst. Design Implement. (OSDI), 2014,
pp. 571–582.

[31] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, ‘‘An asynchronous
parallel stochastic coordinate descent algorithm,’’ J. Mach. Learn. Res.,
vol. 16, no. 1, pp. 285–322, Jan. 2015.

[32] S. Zhang, A. E. Choromanska, and Y. LeCun, ‘‘Deep learning with elastic
averaging SGD,’’ in Proc. 28th Int. Conf. Neural Inf. Process. Syst., Cam-
bridge, MA, USA, vol. 1, 2015, pp. 685–693.

[33] B. Recht, C. Re, S. Wright, and F. Niu, ‘‘Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2011, pp. 693–701.

[34] H. Avron, A. Druinsky, and A. Gupta, ‘‘Revisiting asynchronous lin-
ear solvers: Provable convergence rate through randomization,’’ J. ACM,
vol. 62, no. 6, Dec. 2015, Art. no. 51.

[35] B. McMahan and M. Streeter, ‘‘Delay-tolerant algorithms for asyn-
chronous distributed online learning,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2014, pp. 2915–2923.

[36] A. Agarwal and J. C. Duchi, ‘‘Distributed delayed stochastic optimiza-
tion,’’ in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 873–881.

[37] X. Lian, Y. Huang, Y. Li, and J. Liu, ‘‘Asynchronous parallel stochastic
gradient for nonconvex optimization,’’ in Proc. Adv. Neural Inf. Process.
Syst., 2015, pp. 2737–2745.

[38] W. Zhang, S. Gupta, X. Lian, and J. Liu, ‘‘Staleness-aware async-SGD for
distributed deep learning,’’ 2015, arXiv:1511.05950. [Online]. Available:
https://arxiv.org/abs/1511.05950

[39] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu, ‘‘A comprehensive
linear speedup analysis for asynchronous stochastic parallel optimization
from zeroth-order to first-order,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 3054–3062.

[40] A. Sergeev and M. D. Balso, ‘‘Horovod: Fast and easy distributed deep
learning in tensorflow,’’ 2018, arXiv:1802.05799. [Online]. Available:
https://arxiv.org/abs/1802.05799

[41] M. Cho, U. Finkler, S. Kumar, D. Kung, V. Saxena, and D. Sreed-
har, ‘‘PowerAI DDL,’’ 2017, arXiv:1708.02188. [Online]. Available:
https://arxiv.org/abs/1708.02188

[42] P. Goyal and P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, ‘‘Accurate, large minibatch
SGD: Training imagenet in 1 hour,’’ 2017, arXiv:1706.02677. [Online].
Available: https://arxiv.org/abs/1706.02677

[43] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie, Z. Guo,
Y. Yang, L. Yu, T. Chen, G. Hu, S. Shi, and X. Chu, ‘‘Highly scal-
able deep learning training system with mixed-precision: Training ima-
genet in four minutes,’’ 2018, arXiv:1807.11205. [Online]. Available:
https://arxiv.org/abs/1807.11205

[44] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009,
vol. 1, no. 4.

[45] Y. LeCun, C. Cortes, and C. Burges. (Feb. 18, 2010). Mnist Handwritten
Digit Database. [Online]. Available: http://yann.lecun.com/exdb/mnist

[46] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

GUOXIN CUI is currently pursuing the Ph.D.
degree with the CAS Key Lab of Network Data
Science and Technology, Institute of Computing
Technology, Chinese Academy of Sciences. His
major research interest includes the training accel-
eration of machine learning models in distributed
cluster.

JIAFENG GUO received the Ph.D. degree in com-
puter software and theory from the University of
Chinese Academy of Sciences, Beijing, China,
in 2009. He has worked on a number of topics
related to web search and data mining, including
query representation and understanding, learning
to rank, and text modeling. He is currently a Pro-
fessor with the Institute of Computing Technology,
Chinese Academy of Sciences, and University of
Chinese Academy of Sciences. He has published

more than 80 articles in several top conferences/journals such as SIGIR,
WWW, CIKM, IJCAI, and TKDE. His current research interests include rep-
resentation learning and neural models for information retrieval and filtering.
Moreover, he has served as the PC member for the prestigious conferences,
including SIGIR, WWW, KDD,WSDM, and ACL. His work on information
retrieval has received the Best Paper Award in ACM CIKM, in 2011, Best
Student Paper Award inACMSIGIR, in 2012, and Best Full Paper Runner-up
Award in ACM CIKM, in 2017. He has served as an Associate Editor of
TOIS.

YIXING FAN is currently an Assistant Professor
with the Institute of Computing Technology, Chi-
nese Academy of Sciences (ICT-CAS). His major
research interests include information retrieval
and machine learning. His research articles have
been published in international conference, such
as SIGIR, ACL, AAAI, WSDM, and CIKM.
In CIKM 2017, he has received the Best Full Paper
Runner-up Award. He has also lead an open source
project for text matching (i.e., MatchZoo), which

has been widely used by researchers.

156858 VOLUME 7, 2019

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

YANYAN LAN is currently an Associate Professor
with the Institute of Computing Technology, Chi-
nese Academy of Sciences. She leads a research
group working on Big Data and Machine Learn-
ing. Her current research interests include machine
learning, web search and data mining, and big data
analysis. She has publishedmore than 60 papers on
top conferences, including ICML, NIPS, SIGIR,
and WWW, and the article entitled ‘‘Top-k Learn-
ing to Rank: Labeling, Ranking, and Evaluation’’

has received the Best Student Paper Award of SIGIR 2012. She was awarded
Best Paper Runner-Up Award of CIKM, in 2017, Outstanding Reviewer of
SIGIR, in 2017, and Youth Innovation Promotion Association, CAS.

XUEQI CHENG is currently a Professor with
the Institute of Computing Technology, Chinese
Academy of Sciences. He is also a Ph.D. advi-
sor, the Deputy Director, and the Director of
Key Laboratory of Web Science and Technology,
CAS. His main research areas include web search
and data mining, data science, and social media
analytics. He has more than 100 publications,
and was awarded the Best Paper Award in ACM
CIKM’11, and the Best Student Paper Award in

ACM SIGIR’12. He is an Editorial Board Member of the Journal of Com-
puter Science and Technology and the Chinese Journal of Computer. He is
the General Secretary of CCF Task Force on Big Data, the Vice-Chair of
CIPS Task Force on Chinese Information Retrieval. He was the General
Co-Chair of WSDM’15, a Steering Committee Co-Chair of the IEEE Con-
ference on Big Data, a PC Chair of ChinaCom’12 and IS’09, and PCmember
of more than 20 conferences, including ACM SIGIR, WWW, ACM CIKM,
ACL, the IEEE ICDM, IJCAI, and ACMWSDM. He is an Associate Editor
of the IEEE TRANSACTIONS ON BIG DATA.

VOLUME 7, 2019 156859

