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ABSTRACT Stochastic gradient descent(SGD) is the fundamental sequential method in training large scale
machine learning models. To accelerate the training process, researchers proposed to use the asynchronous
stochastic gradient descent (A-SGD) method in model learning. However, due to the stale information when
updating parameters, A-SGD converges more slowly than SGD in the same iteration number. Moreover,
A-SGD often converges to a high loss value and results in lower model accuracy. In this paper, we propose
a novel algorithm called Trend-Smooth which can be adapted to the asynchronous parallel environment
to overcome the above problems. Specifically, Trend-Smooth makes use of the parameter trend during the
training process to shrink the learning rate of some dimensions where the gradients’ directions are opposite
to the trends of parameters. Experiments on MNIST and CIFAR-10 datasets confirm that Trend-Smooth can
accelerate the convergence speed in asynchronous training process. The test accuracy that Trend-Smooth
achieves is shown to be higher than other asynchronous parallel baseline methods, and is very close to the
SGD method. Moreover, Trend-Smooth can also be combined with other adaptive learning rate methods(like
Momentum, RMSProp and Adam) in the asynchronous parallel environment to promote their performance.

INDEX TERMS Parameter trend, asynchronous SGD, accelerate training.

I. INTRODUCTION

Stochastic gradient descent(SGD) is the most widely used
and fundamental sequential method in training machine
learning models recently. In each iteration, it uses a small
subset of the whole dataset to compute gradients and use them
to update model parameters. Usually, SGD can be imple-
mented using a single machine and it needs to take a large
number of iterations to converge during the learning process.
Despite the slow parameter update frequency due to limited
computing power, SGD converges well. To accelerate the
convergence, many gradient-based methods have been pro-
posed, such as Momentum [1], RMSProp [2], and Adam [3]
methods. Although these methods do help accelerate the
training, the convergence still needs a lot of time due to the
huge computation amount of gradient and the large iteration
number.

The associate editor coordinating the review of this manuscript and
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As the computational ability of a single machine is always
limited, researchers propose asynchronous stochastic gradi-
ent descent (A-SGD) method which can leverage the clus-
ter’s computing power to accelerate the training. The A-SGD
method can be easily implemented using the Parameter
Server(PS) [4]-[6] system. In PS system, the whole cluster
is composed of the server and workers. The server holds
a global copy of the whole parameters and the workers
compute gradient of the machine learning model using local
training data. In the A-SGD method, the server updates the
parameters as long as the gradient from one worker comes.
After finishing updating global parameters, the server sends
the newest parameters to the worker. The parameter update
frequency of the A-SGD method is higher compared to the
SGD method. However, the local parameter producing the
gradient is often not consistent with the global parameter to
be updated, because the server may have updated the global
parameter based on other worker’s local gradient. This is
also known as the stale gradient problem [7]. Due to this
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reason, the A-SGD method can not perform as good as the
SGD method. Often, it converges slowly to a higher loss
value and results in lower test accuracy compared to the SGD
method.

To further understand the impact of the stale gradient,
we have conducted preliminary experiments on both the
A-SGD method and the SGD method. We find that the param-
eter curves of the A-SGD method also have some trends,
which is similar to that of the SGD method found in previ-
ous work [8]. However, the parameter curves of the A-SGD
method become more fluctuated than the curves of the SGD
method. Also, the parameter values in A-SGD method change
less than the SGD method. These features are both considered
to be the consequence of the stale gradient.

Based on these observations, in this paper we propose a
novel algorithm called “Trend-Smooth” which can speed
up the convergence speed and promote the test accuracy in
the asynchronous parallel environment. Specifically, Trend-
Smooth computes each parameter’s trend using the history
of parameters stored on the server. These trends give us
the reliability for the current gradient of each dimension.
For each dimension which violates the trends, we reduce its
effect by shrinking the learning rate of the dimension while
keeping the learning rate of other dimensions unchanged.
This can cut down the impact of the stale gradient dur-
ing the training. To verify the effectiveness of the method,
we conduct experiments on CIFAR-10 dataset and MNIST
dataset based on two existing neural network architectures.
On both datasets, Trend-Smooth ’s loss decreases faster than
other asynchronous parallel methods which means that it can
accelerate the training. Also, Trend-Smooth achieves higher
test accuracy (very close to the SGD method) compared
to other asynchronous parallel baseline methods. Moreover,
Trend-Smooth can be combined with other adaptive learning
rate methods like these mentioned above(e.g. Momentum,
RMSProp and Adam) to promote their performances in asyn-
chronous parallel environment.

The major contributions of this paper include:

o« We explore the impact of the stale gradient on the
A-SGD method by observing the parameter curves in
comparison to the SGD method.

o« We propose a novel asynchronous parallel method
named “Trend-Smooth’ which makes use of the param-
eter trend to shrink the learning rate of the gradient
dimensions in which the gradient values violate the
parameter trend.

o We conduct experiments to verify that Trend-Smooth
can speed up the training convergence, and achieve
higher test accuracy (very close to the SGD method)
compared to other asynchronous parallel methods.

The rest of the paper are organized as follows: After intro-
ducing the related work in Section II, we explore the impact
of the stale gradient on the A-SGD method in comparison
to the SGD method in Section III. Based on these observa-
tions, we propose the Trend-Smooth method in Section I'V.
Section V presents the experimental results to verify the
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effectiveness of the proposed Trend-Smooth method and the
conclusions are drawn in Section VL.

Il. RELATED WORK

A. SGD AND ITS VARIANTS

In this section, we give a detailed introduction to the SGD
method and its variants.

The goal of many machine learning (including the deep
learning) algorithms can be expressed via an ““loss function”,
which captures the properties of the learned model, such as
the error in terms of the training data and the complexity of
the learned model. Given a set of training data {(x;, y,')}fy: I
where X; and y; are the feature vector and the label for the
i-th instance, respectively, and N is the number of training
instances, the machine learning algorithm typically mini-
mizes the loss function of the model:

N
min L(w) = min Z L(x;, yi; W) + Q(W),

i=1
where £ represents the prediction error on the training data
and regularizer Q2 penalizes the model complexity. In general,
there is no closed-form solution for L. Instead, learning starts
from an initial model. It iteratively refines the model by
executing the following formular:

Wy = W1 —n*xu,

where t means the current iteration number and u means
the update vector. The training process stops when a (near)
optimal solution of L is found or the model is considered to
be converged.

The gradient descent (GD) method, where u is equal to
VL(w), can get € error by using O(logé) steps [9], [10] under
certain circumstances. Second-order optimization method
like Newton method can achieve € error by using (’)(loglogé)
steps [9] under certain circumstances. There are also works
like stochastic quasi-Newton methods [11]-[14] to solve the
optimization problem.

When the dataset is very large, getting the gradient of the
whole training data (like the GD method) is not computation-
ally affordable. To overcome this issue, stochastic gradient
descent(SGD) method uses a single training sample x; and y;,
which is randomly chosen from the whole dataset, to finish
one iteration:

W, = W;1 — 1% VL(X;, ¥i, W)

To make the gradient more accurate and leverage current
computing hardware like GPU efficiently, mini-batch SGD
is the most widely used algorithm. It randomly selects a
mini-batch from the whole dataset and uses the gradient from
the mini-batch to update the parameter:

M
1
Wi =W =% o 21 VL(xi, yi, W),
=
where M (M « N) is the batch size. The convergence of the
SGD method has been studied extensively in the stochastic

156849



IEEE Access

G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

approximation literature. It has been proved that when using
diminishing learning rate and when the optimization problem
is convex, SGD can get € error by taking O(LE) training
steps [15]. When the loss function is differentiable with Lip-
schitz gradient, SGD can take (9(%) steps [9], [10] to reach
error € by choosing suitable fixed learning rate. In this paper,
we use mini-batch SGD to conduct our experiments.

The SGD method uses a constant learning rate for all
dimensions of parameters. How to choose the learning rate
is an important problem as the learning rate often has a great
impact on the convergence of the learning progress. To solve
these problems, researchers have proposed a large number of
adaptive learning rate methods based on SGD [1]-[3], [16].
In the following, we will introduce several important adaptive
learning rate methods.

1) The Momentum SGD method [1] is a method that
accelerates SGD in relevant direction by adding a fraction y
of the updated vector of past time step to the current update
vector. The update formulas show as follows:

W =yxW_1+n*xg
W = W1 — Iy

2) Adagrad method [16] adapts the learning rate to the
parameters, performing smaller updates (i.e. low learning
rates) for parameters associated with frequently occurring
features, and larger updates (i.e. high learning rates) for
parameters associated with infrequent features. For this rea-
son, it is well-suited for dealing with sparse data. Its update
rules are as follows:

G =G_1+g0g
n

\/Gt—‘ré

where © denotes element-wise product. Adagrad’s main
weakness is its accumulation of the squared gradients in the
denominator: Since every added term is positive, the accu-
mulated sum keeps growing during training. This, as a result,
makes the learning rate to shrink and eventually become
infinitesimally small, at which point the algorithm is no
longer able to acquire additional knowledge [17].

3) RMSProp method [2] replaces G; in Adagrad by an
exponentially decaying average of squared gradients to avoid
the final learning rate being infinitesimally small. Its update
rules are as follows:

G =BG 1 +(1-B)*xgOg

Ui

JGire

4) Adaptive momentum estimation (Adam) method [3]
is now the most widely used optimization method in train-
ing machine learning model [18]. It keeps an exponentially
decaying average of past gradients m,(the first moment esti-
mate) and an exponentially decaying average of past squared
gradients v;(the second moment estimate). As m; and v; are
initialized as zero, they are biased towards zero. To counter-
act these biases, Adam uses bias-corrected first and second

W[ = W[_] — @g[s

Wi = Wi—1 —
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moment estimates. The whole update rules are as follows:

m, = frxme_1+ (1 —pB1)*xg
vi=Frxviii+ (1 —fo)* g’

— m;
mt=—
l—,B{
_ \L;
Vl:—
l—,Bé
Ui —
Witl = Wy — —(— *IIy
VYV + €

The above adaptive learning rate methods ((1) to (4)) focus
on making the training process converge faster compared
to the SGD method. The adaptive learning rate methods
perform well on the training dataset, however, they do not
generalize well on the test dataset [18]. Works in natural lan-
guage processing [19] and computer vision [20] also reflected
this fact. In this paper, we use the Momentum method((1)),
the RMSProp method((3)), the Adam method((4)) in asyn-
chronous parallel environment as baselines to show that
the Trend-Smooth combined versions can promote their
performances.

In asynchronous paralle environment, reference [7] pro-
posed Delay Compensated ASGD(DC-ASGD) to compen-
sate the delay of the gradient. It made the optimization
behaviour of A-SGD closer to that of the sequential SGD
by leveraging the Taylor expansion of the gradient function
and efficient approximation to the Hessian matrix of the loss
function. The global parameter update rules are shown as
follows:

Wipr4l =Wigr — 0% (8 + A %8 O8 O (Wrpr — W),

where 1T denotes the time delay between the gradient g; and
the parameter w,. In this paper, we use DC-ASGD as one
of our baseline methods.

B. PARAMETER SERVER

In literature, several systems have been used to train the
machine learning model. For example, massage passing inter-
face (MPI) [21], [22] can be used to construct high per-
formance system. Despite the high performance it achieves,
its scalability and fault tolerance ability is poor. There
exist many general-purpose distributed systems for machine
learning applications. Mahout [23] based on Hadoop [24]
and MLI [25] based on Spark [26] both adopt the iterative
MapReduce [27] framework. These systems have no global
state and have high fault tolerance ability. They can scale well
to a few hundreds of nodes, primarily on dedicated research
clusters. However, they only support synchronous parallel
scheme, which has the strongest model consistency.

To make the model consistency more flexible, researchers
proposed Parameter Server(PS) architecture [4]-[6].
PS divides machines of the cluster into two categories,
namely server(s) and workers. The server holds a global copy
of the parameters. It receives gradients from all workers to
update the parameters. Then, it sends the updated parameters

VOLUME 7, 2019



G. Cui et al.: Trend-Smooth: Accelerate Asynchronous SGD by Smoothing Parameters Using Parameter Trends

IEEE Access

g=13 & W=w=—1%*g

local
data

worker 1 worker 2 worker N

(a)

FIGURE 1. (a) Workflow of the BSP mode. (b) Workflow of the ASP mode.

back to each corresponding worker. Each worker computes
the gradients based on local data and sends the gradients to
the server. The PS will loop the two stages continuously.

The two commonly used parallel modes are bulk
synchronous parallel(BSP) [28], [29] and asynchronous par-
allel(ASP) [6], [30]-[32]. Each mode has its own advantages
and disadvantages. Firstly, the BSP mode has no stale gradi-
ent information, so it converges stably and faster compared to
the ASP mode in the same number of iterations. However, all
workers have to wait for each other to begin the next iteration.
The BSP’s updating frequency is slow as it averages updates
from all workers as a single update. The SGD method can be
seen as a special case of the BSP mode when the PS system
has only one worker. Adding more workers in PS just makes
the batch size larger compared to the SGD method. In this
paper, we use the single-machine SGD method to conduct our
experiments.

In ASP mode, the server updates the parameters as long
as it receives gradients from a worker. So the ASP mode has
faster parameter updating frequency than BSP mode. How-
ever, due to stale information(delayed gradient) [33]-[35],
it often converges more slowly than the BSP mode (SGD)
in the same number of iterations and the loss value remains
larger in the later training process which may make the test
accuracy lower [35]-[39]. The workflows of the BSP mode
and the ASP mode are shown in Fig. 1. Recently, machine
learning tools such as TensorFlow [9] can support BSP and
ASP implementations easily.

Besides the PS architecture in which the server and the
workers are connected to transport information, there were
works [40]-[43] that used ring-based all reduce method to
leverage the cluster’s computing power. By arranging the
machines in a logical ring, ring-based all-reduce method
solved the problem that the server may become the bottle-
neck of the system because of the large volumes of data to
transport.

C. PARAMETER TRENDS
In reference [8], it is found that when training neural net-
works, the evolution of the parameters had some trend during
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the training process. The important findings were that a small
subset of parameters undergo massive changes compared to
the rest, and these parameters were observed to follow a pre-
dictable trend: they either have an obviously increasing trend
or an obviously decreasing trend during the training process.
With this notice, reference [8] trained a neural network [
using training data(parameter history during the training pro-
cess) collected from training another simple network. Then
they used the network [ to predict parameter values at specific
iterations. Experiment results showed that this method could
accelerate the training process and promote test accuracy.

Ill. PRELIMINARY EXPERIMENTS

To explore the impact of the stale gradient on the A-SGD
method in comparison to the SGD method, we conduct exper-
iments on CIFAR-10 dataset with a 5-layer convolutional
neural network. The neural network’s first two layers are con-
volution layers and the other three layers are fully-connected
layers. We randomly choose 100 dimensions of parameters in
the first convolutional layer and log the value of parameters
of these dimensions at every step during the training.

For both the SGD and the A-SGD methods, we use a
learning rate of 0.1 and the batch size is set to 64. We use
4 workers in the A-SGD method. Fig. 2 shows the parameter
curves of the SGD method and the A-SGD method.

From the figure we can see that the parameter curves in
the A-SGD method also have some trends, similar to the SGD
method found in reference [8]. However, the parameter curves
in the A-SGD method are more fluctuated than those of the
SGD method. To elaborate this more clearly, we split each
line every 1000 consecutive iterations to get small episodes.
For each episode, we use least-squares regression to fit it and
compute the standard error which is the root of the square
error. Also we compute the value changes of these param-
eters. The value change for one parameter is the absolute
difference between its final value and its initial value. Table 1
shows the sums of the standard errors and value changes of
all curves in both methods.

From Table 1 we see that the A-SGD method has a higher
standard error and fluctuates more than the SGD method.
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FIGURE 2. (a) 100 randomly chosen parameter trend trained by the SGD method. (b) 100 randomly chosen parameter trends trained by the

A-SGD method with 4 workers.

TABLE 1. The summed standard error and values changed of the SGD and
the A-SGD methods.

TABLE 2. Symbols used in Trend-Smooth.

Methods | Std Err | Values Changed
SGD 1.1e-4 6.26
A-SGD 5.1e-4 3.31

In this process, lots of time in A-SGD method is wasted on the
fluctuation and as a result, the A-SGD method’s parameters
change less than the SGD method.

The above phenomenon clearly reflects the impact of the
stale gradient in the A-SGD method and this may be the rea-
son why the A-SGD method converges worse than the SGD
method.

IV. OUR APPROACH: TREND-SMOOTH
In this section, we will introduce the Trend-Smooth algo-
rithm. As discussed in previous section, the parameter curves
differ significantly between the SGD method and the A-SGD
method, in that the latter are more fluctuated than the for-
mer. Due to the fluctuation, the A-SGD method’s parameters
change less than the SGD method. Based on these observa-
tions, we try to leverage the parameter trend to accelerate
the training process. The whole idea is as follows. Since we
have the whole history of the parameters, we can calculate
the parameter trend and use the trend information to judge
the gradient. We will keep the gradient values that accord
with the trend while shrinking the gradient values that violate
the trend. By doing this, we can cut down the impact of the
fluctuated curves.

Before introducing the Trend-Smooth algorithm, we first
specify the symbols we use. The symbols are described in
the Table 2.

A. HOW TO COMPUTE THE TRENDS

As we aim to leverage the parameter trends to update the
global parameters, it is of great importance to get the param-
eter trends in an efficient way. In order to reduce the time
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Symbols Explanation
w Global parameters stored on server
g Local gradients computed by worker m
g The i-th dimension of g
Stack that stores the history of
H
global parameters on the server
L Max size of H
u Update value of w
trend Parameter trends
t Time step in server
« Value to shrink gradient

cost in calculating the parameter trends, in the Trend-Smooth
method, we use the difference between the latest parameter
copy and the oldest parameter copy to measure the parameter
trend. Specifically, we maintain a stack H on the parameter
server which holds the past history of parameters. H’s max
length is set to L. We first get the newest parameter copy in
H as e and the oldest parameter copy in H as f. Then we
obtain the parameter trend by subtracting f from e. The whole
process is described in the Algorithm 1.

Algorithm 1 Trend-Smooth:GetTrend
Input:H
Output:trend

1: e < end(H)

2: f < front(H)

3: trend < e —f

4: return trend

B. HOW TO UPDATE PARAMETERS BASED ON THE TREND
Suppose the server now gets the trend and the gradient g
from a worker, how does it perform an update using this
information? In Trend-Smooth, we use a simple and efficient
rule to get the update. Specifically, we use an additional
hyper-parameter « to penalize the dimensions where the signs
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of the gradients run counter to the sign of the trend. For those
dimensions of the gradients whose signs are consistent with
the trend, we keep the learning rate unchanged.

The algorithm is depicted in the Algorithm 2. It is worth
noting that in the 4th line of Algorithm 2, we have compared
the sign of trend; and g; to determine whether to adjust the
learning rate. By using the trend to penalize the un-accorded
dimensions of gradients, the parameter curves will be more
smooth and change rapidly towards the trend directions. The
gradient values that do not accord with the trend will produce
less effect on the training process. Since we do not change
the signs of gradients, the loss function still decreases. At the
same time, it would not hinder the parameters from converg-
ing or changing their trends during training process.

Algorithm 2 Trend-Smooth:GetUpdate
Input:trend, g
Output:u

1: D <«size(g)
2:u<«0

3: for ifrom 1to D do

4 if sign(trend;) == sign(g;) then
5: U < gixa

6 else

7 U; < g

8 end if

9: end for

10: return u

C. THE WHOLE LEARNING PROCESS

The whole process of Trend-Smooth is shown in Algorithm 3
and Algorithm 4. Every worker pulls the latest parameters
w on the server before computing gradients g using local
data D. After worker m finishes computing gradient g,
it sends g™ to the parameter server. When server receives g”
from worker m, it first computes the trends based on the past
parameter history H. Then server uses these trends and g”
to get parameter update u to update w. After the parameters
have been updated, the server pushes the latest parameter w
to history stack H to compute the trends of the next iteration.
If H’s size exceeds the max size L, H will pop out the oldest
parameter. Fig. 3 shows the workflow of the whole system.

Algorithm 3 Trend-Smooth:Worker m
1: while NOT FINISHED do
2:  Pull w; from server
3:  Compute g" <« Vf(w;) using local data
4:  Send g™ to server
5: end while

V. EXPERIMENT
A. EXPERIMENTAL SETTINGS

To test the performance of the proposed Trend-Smooth
algorithm, we conduct experiments on two datasets:
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Algorithm 4 Trend-Smooth:Server Side
Input:H, L, ¢

1: while NOT FINISHED do

2:  if receives g”* then

3 trend < GetTrend(H, s)

4: u < GetUpdate(trend, g")
5: Wit < W, —n%u
6

7

8

9

t<—t+1
push w; to H
if size(H) > L then
: pop(H)
10: end if
11:  else {receives pull request from worker m}
12: send w; to worker m
13:  endif
14: end while

CIFAR-10 [44] and MNIST [45]. We maintain the max
length L of the history stack H to be 200. We perform grid
search on both datasets and the best test performances are
obtained by choosing the shrinking parameter « to 0.8.

The baselines we choose include stochastic gradient
descent method(SGD), asynchronous parallel stochastic gra-
dient descent method(A-SGD), and asynchronous delay-
compensate(A-DC) method in which the hyper-parameter A
is set as 0.04. To eliminate the effect of the different learning
rates during training, we also set up another baseline called A-
SGD-alpha which is the same to A-SGD except the learning
rate is shrunk by « (0.8) for all dimensions of gradients.

To show that Trend-Smooth can be combined with other
adaptive learning rate methods, we also do experiments using
asynchronous momentum method(A-Momentum), asyn-
chronous RMSProp method(A-RMSProp), asynchronous
Adam method (A-Adam) and their Trend-Smooth combined
versions on these two datasets.

In the following, we introduce the specific configurations
of the MNIST dataset and CIFAR-10 dataset, respectively.

1) MNIST

We conduct our experiments of the proposed Trend-Smooth
algorithm on MNIST dataset with an 11-machine cluster
which consists of a server and ten workers. Each machine has
a 2.3GHz frequency CPU and the machines are connected by
a network with 1000Mb/s bandwidth.

The machine learning model we choose to train MNIST
is a simple 3-layer fully-connected neural network named
MNIST5 in reference [8]. The shapes of parameters of these
layers are [784, 256], [256, 256] and [256, 10]. Cross entropy
loss is used as the loss function. For all the methods, the batch
size is set to 100. We run each method 20000 iterations.
To achieve the best performance, each method is fine tuned
and the learning rate decays by half every 5000 iterations. The
initial learning rate used for A-SGD-alpha is 0.08(0.1*w).
We set the learning rates of A-RMSProp and A-Adam as
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FIGURE 3. Trend-Smooth system architecture. 1. Workers pull the latest parameters w from parameter server. 2. Workers
compute gradient g using local data D. 3. Workers send gradient g to the server. 4. Server gets the trend from parameter
history. 5. Server uses the trend and current gradient g to compute the update u. 6. Server uses u to update w. 7. Server

pushes w to the history stack H for next trend computing.

0.002 in order to run these methods properly. The learning
rate of A-Momentum method is set as 0.01 and the momen-
tum efficient is set as 0.9. The initial learning rates for other
methods are set as 0.1.

2) CIFAR-10

To test the performances of the proposed Trend-Smooth algo-
rithm on CIFAR-10 dataset, we conduct experiments on a
5 nodes cluster which consists of 1 server and 4 workers.
Each node’s setting is the same as the one used conducting
the MNIST experiment.

The machine learning model tested is a 5-layer neural net-
work named CIFAR; from reference [8]: the first two layers
are convolutional layers with each layers’ parameter shape
being [5, 5, 3, 64] and [5, 5, 64, 64]. Local response normal-
ization after max-pooling is used [46]. The third and fourth
layers are fully connected layers with shapes [2304, 384]
and [384, 192], respectively. The last softmax layer is also a
fully connected layer with shape [192, 10]. We use the cross
entropy as the loss. During the training, the batch size is set
as 128 for all methods. We run each method 50000 iterations.
To achieve the best performance, we fine tune each method
and use a learning rate with a decay of 0.8 every 3000 iter-
ations. The learning rate for A-SGD-alpha method is set as
0.08(0.1*cr). We set the learning rates of A-RMSProp and
A-Adam as 0.002 in order to run these methods properly. The
learning rate of A-Momentum method is set as 0.01 and the
momentum efficient is set as 0.9. The other methods’ initial
learning rates are set as 0.1.

B. EXPERIMENTAL RESULTS

1) MNIST

The picture (a) in Fig. 4 shows the training loss curves
of Trend-Smooth as well as all other baselines. The x-axis
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indicates the training iterations and y-axis indicates the loss.
From the figure, we can see that the loss of the Trend-Smooth
decreases faster than those of other asynchronous baseline
methods in the beginning of the learning process. Moreover,
the Trend-Smooth also achieves much lower loss value com-
pared with all other asynchronous parallel methods, and this
value is almost the same with that of the SGD method.

The picture (b) in Fig. 4 shows the loss values with respect
to the training time of all methods. The SGD method’s
loss decreases the slowest among all methods due to the
lower sequential parameter update frequency in comparison
to other asynchronous parallel methods, while the Trend-
Smooth method’s loss curve decreases the fastest among all
these methods.

The picture (c) in Fig. 4 shows the accuracies of all meth-
ods with respect to the training iterations. As we can see,
the Trend-Smooth also achieves better performance com-
pared with all the asynchronous baseline methods. Moreover,
the result is comparable with the SGD method. We also report
the best accuracies in the Table 3. All the asynchronous
methods (except the Trend-Smooth method) get very close
accuracy, obviously lower than the SGD method. Our Trend-
Smooth method, which use the parameter trend to accelerate
the learning process in the asynchronous methods, achieves
close accuracy to the SGD method.

TABLE 3. Accuracies of all methods on MNIST dataset.

Methods Accuracies
A-SGD 97.42%
A-SGD-alpha 97.28%
A-DC 97.36%
SGD 98.26%
Trend-Smooth 98.07%
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TABLE 4. Accuracies of all methods on CIFAR-10 dataset.

TABLE 5. Accuracies on MNIST dataset of adaptive learning rate methods

and their Trend-Smooth counterparts.

Methods Accuracies
A-SGD 83.37% Methods Accuracies
A-SGD-alpha 83.11% A-Momentum 96.53%
A-DC 83.31% A-RMSProp 97.81%
SGD 84.74% A-Adam 97.32%
Trend-Smooth 84.58% Trend-Smooth+ A-Momentum 97.60%
Trend-Smooth+ A-RMSProp 98.30%
Trend-Smooth+ A-Adam 97.94%

2) CIFAR-10

The picture (a) in Fig. 5 shows the loss curves of all methods
trained on the CIFAR-10 dataset. From the figure we can see
that our Trend-Smooth method converges faster than other
asynchronous parallel methods in the early stage of the train-
ing process. As the iteration grows, it could achieve nearly
the same loss compared with SGD method. This is consistent
with the results on the MNIST dataset, which demonstrate the
power of the Trend-Smooth method.

The picture (b) in Fig. 5 shows the loss values with respect
to the training time of all methods. The SGD method’s loss
decreases the slowest while the Trend-Smooth method’s loss
curve decreases the fastest among all these methods, which is
consistent with the results on the MNIST dataset. From these
results, we can confirm that the Trend-Smooth method can
accelerate the training.

The picture (c) in Fig. 5 shows the test accuracies of all the
methods with respect to iteration numbers. Table 4 shows the
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final test accuracies of these methods. From the figure and
the table we can draw the same conclusions as is described in
the MNIST dataset.

3) TREND-SMOOTH COMBINED WITH ADAPTIVE LEARNING
RATE METHODS

The Trend-Smooth algorithm can be combined with other
adaptive learning rate methods(e.g. Momentum, RMSProp
and Adam) easily. Here we choose the update u in Trend-
Smooth as the gradient g in the adaptive learning rate meth-
ods. Fig. 6 shows the loss curves of the adaptive learning
rate methods and their Trend-Smooth counterpart versions
on MNIST and CIFAR-10 datasets. We see that the losses
of the methods combined with Trend-Smooth decrease faster
and get lower values compared to the original methods.
Table 5 and Table 6 show that the Trend-Smooth combined
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methods achieve higher test accuracies compared with the
original methods.

C. EXPERIMENTAL ANALYSIS

To analyze the impact of Trend-Smooth on the training
process, we randomly select 20 parameters from the last
fully-connected layer of the neural network trained on
CIFAR-10 dataset and record these parameters at each iter-
ation. At the same time, we calculate the two indicators
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(i.e., Std Err and Values changed), which have been described
in Section III, to see what Trend-Smooth has learned.

The parameter curves of each method are shown in Fig. 7.
We also show the values of the indicators in Table 7. From the
results we can see: 1) The curves of the A-SGD and A-SGD-
alpha methods are more fluctuated than the SGD method and
the Trend-Smooth method. Despite the lower learning rate,
the A-SGD-alpha method’s parameter curves are as fluctu-
ated as the A-SGD method and value changes are almost
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TABLE 6. Accuracies on CIFAR-10 dataset of adaptive learning rate
methods and their Trend-Smooth counterparts.

Methods Accuracies
A-Momentum 80.83%
A-RMSProp 82.27%
A-Adam 80.73%
Trend-Smooth+ A-Momentum 81.57%
Trend-Smooth+ A-RMSProp 82.61%
Trend-Smooth+ A-Adam 81.92%

TABLE 7. The summed standard error and values changed of these
methods.

Methods Std Err Values Changed
A-SGD 5.81e-05 1.82
A-SGD-alpha 8.45e-05 1.93
A-DC 9.81e-05 1.83
SGD 3.89e-05 2.64
Trend-Smooth | 4.82e — 05 2.39

the same with A-SGD method. In comparison, the Trend-
Smooth algorithm, which partially decreases the learning rate
according to the paraemter trends, is more effective than the
A-SGD method and the A-SGD-alpha method in reducing the
fluctuation. Therefore, the Trend-Smooth method can get fast
convergence and higher accuracy as shown previously. 2) The
A-DC method’s parameter curves have the largest fluctuation
and the value changed is low. This is because that in the
A-DC method’s update rule, it adds a penalty to the gradient
dimensions whose values accord with the parameter trends
((Wrsr — wy)). This is on the contrary to the Trend-Smooth
method we propose. 3) The Trend-Smooth method’s curves
are much smoother compared to other asynchronous paral-
lel methods and the parameters can change larger. Also its
curves are more like the curves of SGD training method.
Overall, our Trend-Smooth method, which leverages the
parameter trend to adjust the learning rate, makes the param-
eter curves smoother and the variations larger. As a result,
the Trend-Smooth method converges faster and obtains better
performance.

Moreover, we analyze the overhead that Trend-Smooth
adds on the system. The overhead is all on the server side
since workers only compute gradients, send gradients and
pull parameters. In each iteration, the main computing over-
head comes from calculating the parameter trend on the
server. In fact, it is quite easy to calculate the parame-
ter trends, since it just needs to do a subtraction between
two vectors. We could use the parallel utility provided by
CPU to accelerate this job. Also, since for most parame-
ters, the trend directions will not change during the train-
ing process, we could reduce the frequency of computing
trends. As a result, Trend-Smooth’s computation overhead is
almost the same as compared to other asynchronous parallel
methods. The storage overhead can be controlled by select-
ing the max length L of stack H. When the RAM is lim-
ited, the parameter copies can be stored on external storage
(like disk).
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VI. CONCLUSION

In this paper, we propose a novel algorithm called “Trend-
Smooth™ to accelerate the convergence speed and promote
the test accuracy of the asynchronous parallel method. Our
work is based on the analysis of the stale gradient impact
on the parameter curves in the A-SGD method. To over-
come the large fluctuation of the parameter curves in the
A-SGD method, we leverage the parameter trend information
to shrink the learning rate of certain gradient dimensions in
order to make the parameter curves be smoother and change
more like the SGD method. We have verified the effectiveness
of the proposed method through experiments on MNIST and
CIFAR-10 datasets. Experimental results confirm that Trend-
Smooth could accelerate the training, get a lower loss value
and achieve higher test accuracy (very close to the SGD
method) than other asynchronous parallel methods. Trend-
Smooth could also be combined with adaptive learning rate
methods like Adam to further promote their performances in
asynchronous parallel environment.

Finally, we emphasize that in this work we have focused
on the application of the Trend-Smooth method in moderate
neural network. In view of the mechanism of reducing the
parameter fluctuations in our scheme, we expect this method
can also work well for larger models, which we will investi-
gate in the future work.
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