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Abstract

The dependency relation between words in the sentence is critical for the relation extrac-
tion. Existing methods often utilize the dependencies accompanied with various pruning
strategies, thus suffer from the loss of detailed semantic information. In order to exploit
dependency structure more effectively, we propose a novel bidirectional dependency-guided
attention model. The main idea is to use a top-down attention as well as a bottom-up
attention to fully capture the dependencies from different granularity. Specifically, the
bottom-up attention aims to model the local semantics from the subtree of each node,
while the top-down attention is to model the global semantics from the ancestor nodes.
Moreover, we employ a label embedding component to attend the contextual features,
which are extracted by the dependency-guided attention. Overall, the proposed model is
fully attention-based which make it easy for parallel computing. Experiment results on
TACRED dataset and SemEval 2010 Task 8 dataset show that our model outperforms ex-
isting dependency based models as well as the powerful pretraining model. Moreover, the
proposed model achieves the state-of-the-art performance on TACRED dataset.

Keywords: relaion extraction, dependency tree, attention mechanism

1. Introduction

Reading text to identify and extract relations between entities has been a long standing
goal in natural language processing. Take the following sentence as an example: ”[Markus
Andreas]e1, arrested for murdering an engineer in Polish, was a former [Austrian]e2 law-
maker .” The relation between entity ”Markus Andreas” and entity ”Austria” is ”per:origin”.
High-quality relation extraction could offer useful information for many applications, such as
question answering, information extraction, the construction and completion of knowledge
base.

The head-dependent relations parsed by dependency grammar express the semantic re-
lationships between different constituents of the sentence which makes them directly useful
for many applications such as coreference resolution and information extraction. Thus,
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dependency parsing tree of the sentence has been used as a strong feature from some tradi-
tional method [Zelenko et al. (2003); KAMBHATLA (2004)] , because model can capture
long-range dependency relation information and reduce the noise of irrelevant words with
the help of dependency information. However, traditional models face the challenge of
sparse feature spaces and are brittle to lexical variations.

Recent years, to solve above problems, deep learning methods are widely applied to this
task and several work show that incorporating dependency trees into deep neural models
significantly improves the performance. However, to avoid noise of irrelevant context, most
models adopt pruning strategies. For instance, Miwa and Bansal (2016) and Xu et al. (2015)
found it is quite effective applying LSTM over the lowest common ancestor (LCA) subtree
of entities and even only the shortest dependency path of entities. Nevertheless, due to
the limit of above models’ pruning strategies and their structures, they suffer from serious
information loss and some of them are computationally inefficient. To overcome these
shortcomings, some gragh based models have been proposed: Zhang et al. (2018) proposes
contextualized graph convolutional networks (C-GCN) model over a pruned tree which use
a path-centric pruning strategy; Guo et al. (2019) proposed an attetntion guided GCN
model (AGGCN) which is a graph attention model based on full dependency tree. But the
pruning strategy used in C-GCN to alleviate information loss is still aggressive and harmful
to dependency structure because a certain K hop path-centric pruning won’t be suitable for
all cases. For example, in the sentence showed in figure 1, using such pruning strategy, the
sentence will lose the information: ”murdering an engineer in Polish” , which imply the
meaning that this man is from other place. Thus the model is more likely to predict this
sample as ”per:countries of residence” for ”person - country” entity pair due to unbalanced
data. Moreover, the C-GCN and AGGCN model both use a sparse adjacency matrix, node
on the tree can only interact with its parent node and child nodes. Multiple layers stacking
is needed to interact with more and farther nodes, which may bring information confusion
and information loss when stacking.

In fact, on the dependency tree, a subtree for any none-leaf node represents a context
constituent (e.g, a noun/verb phrase, a subordinate clause) and this none-leaf node is the
central organizing word (head node) of the constituent, other words in the constituent are
dependent nodes. Thus, for any none-leaf node on the dependency tree, the information flow
collected from bottom-up on the subtree of the node expresses detailed local semantics of
a smaller constituent. The top-down information flow collected from ancestors dependency
path of the node indicates global semantics for a larger and more specific constituent where
the gathered local semantics of the node will blend in. In other words, for the bottom-up
direction, the node gather the local information as a head node, for the top-down direction,
the node gather the global information from larger scope as a dependent node. Therefore,
using the pruned dependency tree without direction may do damage to semantic aggregation
and degrade the performance.

In this paper, we propose a novel dependency based model that are also fully attention-
based to overcome above shortcomings, we call it bidirectional dependency guided attention(Bi-
DGA) model. The Bi-DGA is consisted of bottom-up attention and top-down attention.
Guided by dependency, bottom-up attention allows a node interacting with all nodes of
its subtree on dependency tree(all descendant nodes of current node on dependency tree),
then collects the information flow from bottom-up. Likely, top-down attention receive the
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Figure 1: The dependency parse of sentence ”Markus Andreas, arrested for murdering an
engineer in Polish, was a former Austria lawmaker. ” This visualization result
comes from stanford corenlp.

information from top-down ancestors dependency path by an attention operation with all
ancestor nodes of current node on the dependency tree. Inspired by transformer [Vaswani
et al. (2017)] which use a lower triangular mask matrix to make sure the word in the sen-
tence only interact with words before itself to encode the sentence order. Our model encode
the tree structure by bottom-up attention and top-down attention with bottom-up masks
and top-down masks. In this way, we build information flows for two different directions.
Meanwhile, a single node is able to interact with more nodes related on semantic. Be-
yond that, instead of rule-based pruning strategies, we keep the whole tree and use a hop
embedding which indicate the hops to dependency path of two entities on the LCA tree.
Moreover, extra knowledge is helpful for improving the performance of relation extraction,
especially under the circumstances of unbalanced data. In our model, we encode the word
representations using ALBERT, a pretrained language model [Lan et al. (2020)] that has
significantly fewer parameters than a BERT architecture [Devlin et al. (2019)] , to obtain
word representations with rich and context-related lexical information. In addition, with
the idea that the same label may contain similar context information as clues for classifi-
cation, we employ a label embedding component and label-to-context attention to attend
the label-related contextual features for each label without external human-designed knowl-
edge features. Then, we transform the classification problem into a matching problem with
hinge loss. Through these ways, our model is able to reach a high score with more balanced
precision and recall.

Our contributions are as follows: (1) We propose a novel bidirectional dependency
guided attention mechanism, which allows it to encode dependency tree structure to cap-
ture long-range syntactic relation information without using an aggressive pruning strategy.
We use bottom-up attention and top-down attention to gather local and global semantics
respectively, based on the character of dependency tree. Thus, the Bi-DGA provide a effi-
cient way to encode tree structure with attention mechanism. (2) We use label-to-context
attention to extract label-related context features as classification clues and transform the
classification problem into a matching problem to further improve the performance. (3) We
test our model on SemEval 2010 Task 8 dataset and the larger TACRED dataset and our
performance on both datasets surpassing several competitive baselines. The state-of-the-art
performance is achieved on TACRED dataset.
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2. Related Work

Traditional relation extraction methods based on human-design features [KAMBHATLA
(2004); Hendrickx et al. (2009)] or kernels [Bunescu and Mooney (2005); Plank and Mos-
chitti (2015)] have the disadvantage of time-consuming and poor generalization due to the
low coverage of different training datasets. Recent years, the focus of research on super-
vised relation extraction methods has shifted to neural models. Zeng et al. (2014) first
apply CNNs to relation extraction. Nguyen and Grishman (2015) improve the results by
introducing multiple convolution windows sizes. Zhang and Wang (2015) first apply Recur-
rent Neural Network(RNN) to this task and get competitive performance to CNNs models.
Vu et al. (2016) showed that combining a CNN with a RNN through a voting scheme can
further improve performance. [Wang et al. (2016); Peng et al. (2016); Zhang et al. (2017)]
proposed to use attention mechanisms to capture important information over RNN and
CNN architectures for this task and achieve high performance. Li et al. (2019) implements
an attention mechanism which incorporates prior knowledge from external human-designed
lexical resources of labels and reach a competitive results.

Dependency parsing tree of the sentence has been used as a strong feature from some
traditional method [Zelenko et al. (2003); KAMBHATLA (2004)]. Because model can
capture long-range syntactic relation information and reduce the influence of irrelevant noise
with the help of dependency information. Several work show that incorporating dependency
trees into neural models is also helpful. Xu et al. (2015) generalized the idea of dependency
path kernels by applying a LSTM network over the shortest dependency path between
entities. Miwa and Bansal (2016) applied a Tree-LSTM, a generalized form of LSTM over
dependency trees, in a joint entity and relation extraction setting. They use the shortest
dependency path on LCA tree of the two entities to extract features effectively. Zhang
et al. (2018) use graph convolutional neural network and a path-centric pruning strategy
of dependency trees to keep relative information and further improve the performance.
Guo et al. (2019) proposed an attetntion guided GCN model (AGGCN) which is a graph
attention model based on full dependency tree which uses graph attention to focus on
important information and further improves the performance. But the LSTM model using
dependency information is hard to encode tree structure with multiple children structure
and suffer from low computational efficiency. The GCN and AGGCN models improved
these two problems. However, they both use the tree as an undirected graph which is still
harmful to the tree structure and suffer from the problem of sparse adjacency matrix.

Recent two years, unsupervised pre-training language models have shown to be a very
effective and improved performance on various natural language processing tasks. The
Generative Pre-trained Transformer (OpenAI GPT) [Radford et al. (2018)], a left-to-right
transformer based language model pretrained on large corpus, achieved significant results on
many sentence level tasks. BERT [Devlin et al. (2019)] further improved the performance on
lots of NLP tasks by using masked language models to enable pretrained deep bidirectional
representations. By incorporating factorized embedding parameterization and cross-layer
parameter sharing, ALBERT [Lan et al. (2020)], a lite BERT architecture, has significantly
fewer parameters than a traditional BERT architecture. Joshi et al. (2019) extends BERT
by masking contiguous random spans and training the span boundary representations to
predict the entire content of the masked span, without relying on the individual token
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representations within it. Extra knowledge is helpful for improving the performance of
relation extraction, especially under the circumstances of unbalanced data. Pretrained
language model which trained on large external corpus is able to provides rich co-occurrence
and semantic information. Researchers also tried to improve the performance of relation
classification via fine-tuning on pretrained language model [Alt et al. (2019); Wu and He
(2019); Joshi et al. (2019)]. In our work, for fewer parameters and better performance, we
use ALBERT to generate word representation.
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Figure 2: Overall architecture of the Bi-DGA model

3. Methodology

For supervised relation extraction, the task can be formalized as follows: Let X =
[x1, x2, . . . , xn] denote a sentence, where xi is the i-th word token. A subject entity
and an object entity are identified and correspond to two spans in the sentence: Xs =
[xs1 , xs2 , . . . , xsn ] and Xo = [xo1 , xo2 , . . . , xon ]. Given X, Xs and Xo, the goal of relation
classification is to predict a relation r ∈ R (a predefined relation set) that holds between
the entities or no relation otherwise.

The overall architecture of our model is shown in figure 2, which is consisted of the
following three modules: (1) Input layer: tokens are fed into pretrained ALBERT model1

to get embedding for each word. Then the word embedding are concatenated with POS
tag embedding and hop embedding to form the input feature h0 of Bi-DGA layer. (2) Bi-
DGA layers: h0 are encoded on the dependency tree for layers to get the structure guided

1. ALBERT may tokenize a word to several subwords, to keep the dependency structure, we tried: 1) use
the first subword as node on dependency tree and mask other subwords; 2) treat other subwords as child
nodes of first subword; We found that the second approach reach a better performance.
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features. (3) Classification layer: the outputs of ALBERT are pooling on subject positions,
object positions and LCA subtrees respectively to get features hsubj , hobj , and hsent. And
we use label-to-context attention to obtain a label-related context feature for each label.
Then we concatenate these features together and feed them into a linear layer. After that,
the features will be matched with label embedding to get the final scores.

3.1. Input Representation

For relation extraction, the datasets are usually unbalanced, with the traditional static
word vectors [Mikolov et al. (2013); Pennington et al. (2014)] , fewer training samples of
a label lead to the lack of enough semantic information for identifying this label. BERT
[Devlin et al. (2019)] is a deep bidirectional transformer model pretrained on BooksCorpus
and Wikipedia. Thus, BERT can generate contextualized word representations and provide
richer lexical and semantic information than traditional static word vectors, which is helpful
for improving the performance. For fewer parameters and comparative performance, we use
ALBERT, a lite BERT architecture, as our word representations encoder.

For each input sentence, a ’[CLS]’ token is appended to the beginning of token sequence.
Input representation of each token for ALBERT is constructed by the summation of the
corresponding token, segment and position embeddings. We denote the hidden state output
from ALBERT is hw ∈ Rn×dw , where n is the sequence length of input sentence (including
’[CLS]’) and dw is the size of hidden state output of ALBERT. And hwi is the hidden state
feature of token i.

Previous work [Xu et al. (2015); Miwa and Bansal (2016); Zhang et al. (2018)] indicate
that extracting features on shortest dependency path on LCA subtree of two entities is
effective for most of cases. However, such a strategy is too aggressive which may neglect
important information for some cases as demonstrated in Section 1. Besides, a K hop prun-
ing strategy used in C-GCN model [Zhang et al. (2018)] leads to the same problem because
a certain K distance pruning will not be suitable for all cases. For further improving per-
formance, we maintain the whole dependency tree and use the hop embedding as auxiliary
information for attention. For each word, we calculate its hop-distance K away from de-
pendency path, if K is equal to 0, indicates that the word is unreachable, such as a padding
word. If K is equal to 1, indicates that the word is on the dependency path. Otherwise, K
indicate that the node is K-1 hop away from the dependency path. For nodes are far away
from dependency path (hops > 7), we set K to 7. Then the hop-distance K of each word
will be transformed into a vector by looking up the embedding matrix Vhop ∈ Rdhop×Kmax ,
where dhop is the dimension of hop embedding vector and Kmax is the maximum of hop K.

Follow previous works, we concatenate the word embedding produced by ALBERT, the
POS tag embeddings as well as the hop embedding proposed by us to generate the input
features h0 ∈ Rn×ds for Bi-DGA layers. Here, ds = dw + dhop + dpos, dpos is the dimension
of POS tag embedding.

3.2. Bidirectional Dependency Guided Attention Mechanism

Attention mechanism has been successfully applied in relation extraction models. How-
ever, most of these models simply use attention mechanism to extract relative features in
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Figure 3: An example of how the Bi-DGA generates the features of the token ”murdering”
for next layer .The (a) shows the information flow from top-down and bottom-up.
The green dashed lines represent the top-down information flow, the red dashed
lines represent the bottom-up information flow. The (b) shows the computation
process of Bi-DGA layer for the token ”murdering”.

decoder stage. They still use CNNs or LSTM as their encoder that are difficult to encode
the entire sentence over dependency tree.

Here we propose the bidirectional dependency guided attention. An example describes
how does it work is shown in figure 3. Instead of an attention operation for all nodes from
two directions, the bidirectional dependency guided attention is consisted of bottom-up
attention and top-down attention. Bottom-up attention is an attention operation for all
descendant nodes of current node and itself. Top-down attention is an attention operation
with all ancestor nodes on the dependency tree. On the basis of the character of the de-
pendency tree, we hold the opinion that the node gather information from two directions
as head node and dependent node respectively, then obtain semantics for different semantic
scope. We believe the information flow from two directions are equally important and they
ought to be encoded respectively before combining them together. The importance of nodes
in one direction for current node is not supposed to be influenced by nodes from another
direction during attention stage which may result in information confusion between two in-
formation flows and damage to the semantic aggregation. Thus, encoding the sentence with
directional dependency tree is also important. Our experiments in Section 4 demonstrate
that a bidirectional dependency attention can indeed improve the performance.

In an L-layer Bi-DGA, if we denote by h(l−1) ∈ Rn×d(l−1) , hl ∈ Rn×dl the input features
and the output features at the l-th layer, a bottom-up attention operation can be computed
as below: First, like most commonly used attention [Vaswani et al. (2017)], we calculate
Q,K, V and get the scores between all elements through Q and K.
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Ql = h(l−1)Wq
l + bq

l , K l = h(l−1)Wk
l + bk

l , V l = h(l−1)Wv
l + bv

l (1)

Sl = (QlK lT )/
√
dk (2)

Where Wq
l ∈ Rd(l−1)×dk , Wk

l ∈ Rd(l−1)×dk and Wv
l ∈ Rd(l−1)×dv are linear transformation

matrices, bq
l,bk

l,bv
l and bo

l are bias terms, dk is the dimension of Q and K, dv is the
dimension of V .

For each node on the dependency tree, we want it to interact with all its descendant
nodes. We implement it by using a bottom-up mask matrix Maskbottom.

Maskbottom(i, j) =


0 if j ∈ D(i) or j = i

−∞ else

(3)

Sm
l = Softmax(Sl + Maskbottom) (4)

Where D(i) is the descendant nodes of node i. Then we can calculate the output of
bottom-up attention hbottom

l with Sm
l:

hbottom
l = g((V lSm

l)Wo
l + bo

l) (5)

Where Wo
l ∈ Rdv×dl , bo

l is bias term, dl is the hidden size of the bottom-up attention
output features for layer l. g(·) is gelu activation [Hendrycks and Gimpel (2016)].

The output of top-down attention htop
l can be obtained in the same way with top-down

mask matrix and different transformation matrices and bias terms for calculating Q,K,V
and htop

l. And the hl ∈ Rn×dl is the sum of hbottom
l and htop

l:

hl = hbottom
l + htop

l (6)

3.3. Classification Layer

Concatenating the sentence and the entity representations before classifying has been
shown effective in previous work [Santoro et al. (2017);Lee et al. (2017);Zhang et al. (2018)].
Therefore, we obtain the subject and object entity representations from the output hidden
features hw of ALBERT by pooling:

hsubj = pool(hw [s1:sn]) hobj = pool(hw [o1:on]) (7)

Where hsubj ∈ Rdw , hobj ∈ Rdw and pool(·) : Rn×d → Rd is a max pooling function.
We get the sentence representations hsent by pooling the output features of Bi-DGA

layers hL on the complete common ancestor subtree (including common ancestor node and
all its descendant nodes, denote this nodes collection by T ) of two entities. Thus, the hsent
contain the relation semantics between two entities.

hsent = pool(hL[t∈T ]) (8)
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Previous work [Wang et al. (2016);dos Santos et al. (2015)] shows that it is effective that
using label information to attend the contextual features. Similarly, we think samples with
the same label may contain similar context information which could be used as a clue to
help classification, we also introduce a relation label embeddings matrix VR ∈ Rm×dr , where
m is the number of labels and dr is the dimension. To get label-related context features for
each label, we implement a label-to-context attention as follows:

Q
′

= hLWq′ + bq′ , K
′

= VRWk′ + bk′ , V
′

= hLWv′ + bv′ (9)

We use the output features hL of Bi-DGA layers to generate Q
′ ∈ Rn×dk and V

′ ∈ Rm×dk ,
and use label embeddings VR to generate K

′ ∈ Rn×dk . Then we obtain a matrix S
′ ∈ Rn×m

with the scores of similarity between label embeddings and the token features .

S
′

= (
Q
′
K
′T

√
dk

) (10)

To normalize the importance scores of tokens under single label, we transpose the S
′
,

and do softmax operation at the last dimension:

S
′′

= Softmax(S
′T

) (11)

With S
′′
, we can calculate the label related context features for each label:

HR = g((S
′′
V ′)W

′
+ b

′
) (12)

Where W
′ ∈ Rdv×dh , HR ∈ Rm×dh and dh is a hidden size. So far, we have obtained

the entity features : hsubj and hobj , the sentence representations with relation semantics
: hsent, and the label related context features: HR . Then we combine them together by
concatenating. First, we concatenate hsubj , hobj and hsent at the last dimension and repeat
it for m times to generate the feature HC ∈ Rm×dc (dc = dw + dw + dL). Then we obtain
the final representations Hfinal through concatenating HC with HR and feeding them into
a feed-forward neural network (FFNN):

Hfinal = FFNN([HC ;HR]) (13)

Not that for the convenience of mathching operation, after FFNN(·), the Hfinal must
have the same dimension with label embeddings . The Hfinal is then matched with label
embeddings to obtain a score distribution ỹ over relations for the target entity pair. For
the score of label i:

ỹi = Hfinali · VRi (14)

Where · is dot production, Hfinali is the i-th feature of Hfinal and VRi is the embedding
of i-th label. Then we can get the predicted label ŷ of the target entity pair :

ŷ = arg max
i

(ỹi) (15)
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3.4. Loss Fuction

For the loss function, we use the hinge loss which is widely used in matching problems.
For an instance with label ŷi, the loss is calculated as below:

L =
∑

ŷj∈R,ŷj 6=ŷi

MAX(0, ỹj − ỹi + 1) (16)

we also tried to use cross entropy as loss function, which result in a high recall and a
low precision, and the f1 score using cross entropy is slightly lower than that using hinge
loss. We suppose that’s because the hinge loss is able to expand the distance in vector space
between categories to distinguish similar labels.

4. Experiment

4.1. Dataset

We conduct experiments on two relation extraction datasets :
(1) TACRED: TACRED is a large-scale relation extraction dataset with over 106K

sentences with mention pairs introduced in [Zhang et al. (2017)]. The entity pairs are
annotated by subject or object. It represents 41 relation types and a ”no relation” class
when the mention pair does not have a relation between them within these categories. The
dataset is unbalanced with 79.5% ”no relation” samples, which makes it difficult for models
to extract relations for positive samples. Follow previous work, a ”entity mask” strategy is
used to replace subject (or object) entity with ”<NER Type>-SUBJ” ( or ” <NER Type>-
OBJ ”) and report micro-averaged F1 score on this dataset. We select our best model based
on the median validation F1 score over 5 independent runs and report its performance on
the test set.

(2) SemEval 2010 Task 8: The SemEval 2010 dataset is much smaller and simpler than
TACRED with 8000 training samples and 2717 testing samples. It contains 9 directed
semantic relations types, such as ”Entity-Origin(e1,e2)”, ”Entity-Origin(e2,e1)” . And the
Other relation indicates that there is no relation between two entities. Therefore, there are
19 relations classes in total. We use this dataset to evaluate the generalization ability of
our proposed model. The evaluation metric for this dataset is official macro averaged F1

score.

4.2. Experimental Settings

We use the ALBERT-V2 to generate word vector representations. The parameters of
pos tag embedding, hop embedding, label embedding are randomly initialized, and the
dpos, dhop are set to be 30. The dk and dv for all attention operations are 32. For TACRED
dataset, the hidden size dl for all Bi-DGA layers l is 256, the dimension of label embedding
and the hidden size dh for label-to-context attention are 128. For SemEval 2010 with a
much smaller data size, we half the dl and dh and only use ALBERT-base as pretrained
encoder. We find that 2-layer stacked Bi-DGA layers work best for both two dataset. We
minimize the hinge loss using AdamW optimizer [Loshchilov and Hutter (2019)] with a
learning rate of 8e-6 for TACRED with ALBERT-base and 5e-6 for ALBERT-large as well
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Model P R F1

Sequence Model
PA-LSTM † [Zhang et al. (2017)] 65.7 64.5 65.1
Knwl-attn † [Li et al. (2019)] 70.1 66.0 67.9

Dependency Based Model
LR‡ [Zhang et al. (2017)] 73.5 49.9 59.4
SDP-LSTM ‡ [Xu et al. (2015) 66.3 52.7 58.7
Tree-LSTM ‡ [Tai et al. (2015)] 66.0 59.2 62.4
C-GCN † [Zhang et al. (2018)] 69.9 63.3 66.4
C-AGGCN † [Guo et al. (2019)] 73.1 64.2 69.0

Model with Pretrained Encoder
TRE † [Alt et al. (2019)] 70.1 65.0 67.4
SpanBERT † [Joshi et al. (2019)] 70.8 70.9 70.8

Our Model
Bi-DGA (ALBERT-base) 71.5 68.4 69.9
Bi-DGA (ALBERT-xlarge) 73.4 69.9 71.6

Table 1: Micro-averaged precision(P),recall(R), and F1 score on TACRED dataset.† marks
results reported in the original papers; ‡ marks results reported in [Zhang et al.
(2017)] and [Zhang et al. (2018)].

as for SemEval2010. Batch size for training is 32. To avoid overfitting, we add a dropout
before each Bi-DGA layer and the FFNN of classification layer with a rate of 0.1.

4.3. Results on TACRED Dataset

Tabel 1 shows the results of baseline as well as our proposed models on TACRED
dataset. It is observerd that our proposed Bi-DGA model outperforms all baseline models
by at least 0.8 F1 and achieves a new state-of-the-art.

We can see from the table 1 that most models reach a high precision but a lower recall.
One of the reasons is the unbalanced amount of negative training samples. The data skew
leads to a biased prediction results. An effective way to solve this problem is to introduce
external knowledge. The external knowledge can be seen as data augmentation which is
not related to the data distribution of training set. The effect of external knowledge can be
proven by the higher recall results of Knwl-attn model with knowledge from external lexical
resources, the SpanBERT model as well as our Bi-DGA model with pretrained ALBERT.

Another important reason is information loss. Previous dependency based model only
use the dependency path between entities on LCA tree which may lose important infor-
mation. Thus, the sequence model and the C-GCN with a path-centric pruning strategy
reach a higher recall than other dependency based models. But the C-GCN still suffer in-
formation loss from path-centric pruning as we demonstrate in section 1 . The C-AGGCN
model improved this problem by a graph attention model based on fully dependency tree
and reached higher recall and f1 score. But the sparse adjacency matrix is still a problem
for C-AGGCN which results in a big gap between precision and recall.
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Model Macro-F1

Sequence Model
PA-LSTM‡ [Zhang et al. (2017)] 82.7
Knwl-attn† [Li et al. (2019)] 84.3

Dependency Based Model
SDP-LSTM† [Xu et al. (2015)] 83.7
SPTree† [Miwa and Bansal (2016)] 84.4
C-GCN† [Zhang et al. (2018)] 84.8
C-AGGCN† [Guo et al. (2019)] 85.7

Pretrained Models
TRE† [Alt et al. (2019)] 87.1
R-BERT† [Wu and He (2019)] 89.2

Our Model
Bi-DGA - Label-to-Context Attention 89.5
Bi-DGA 89.6

Table 2: Macro-average F1 score on SemEval2010-Task8 dataset. † marks results reported
in the original papers; ‡ marks results reported in [Zhang et al. (2018)]. ALBERT-
base is used as encoder for our model .

For our model, we encode the sentence by attention mechanism on the complete depen-
dency tree with our information flow strategy and use a hop embedding to indicate the hop
distance to dependency path. In this way, our model is able to capture long-range syntactic
information between entities with less information loss.

4.4. Results on SemEval 2010 Dataset

We use SemEval 2010-Task8 dataset to evaluate the generalization ability of our pro-
posed model. The results are shown in table 2. On the account of strong correlations
between entities of interest and relation classes reported in previous work [Nguyen and Gr-
ishman (2015); Li et al. (2019)] , we experiment and report results without using the ”entity
mask” strategy which will degrades the performance. Different from TACRED dataset, the
relation labels of SemEval are not specific relationships in the real world, but abstract se-
mantic relationships. Thus, the result of Knwl-attn model using the external knowledge of
labels is not so significant. For pretrained models, which provide rich semantic information,
are particularly suitable for this dataset. Though the TRE and R-BERT have reached a
very high F1 score, we still improve the result by 0.3% with Our Bi-DGA, which prove the
effectiveness of Bi-DGA on other dataset. By incorporating label-to-context attention, the
result further improve 0.1% .

4.5. Ablation Study

To study the contibution of each components in our model, we perform ablation exper-
iments on TACRED dataset. The results are shown in table 3. It is observed that: (1)
The Bi-DGA model with label-to-context attention reach highest F1 and recall and more
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Model P R F1

Bi-DGA (ALBERT-base) 71.5 68.4 69.9
- Label-to-Context Attention 72.3 66.7 69.4
- Direction 72.5 64.2 68.1
- Information Flow 74.3 62.3 67.8
- Dependency Tree 71.0 65.9 68.4
- Hop Embedding +Pruning 72.8 65.2 68.9
+ ALBERT-large 71.7 69.1 70.4
+ ALBERT-xlarge 73.4 69.9 71.6

Table 3: Ablation study on Bi-DGA model. Results are the median F1 scores of 5 indepen-
dent runs on test set of TACRED.

balanced P score and R score, which proves the label related context is indeed helpful for
identifying correct positive relationships. (2) We remove the direction information by using
an attention on all ancestors and all descendant nodes for each node without separating
them. As we expect, and the precision and recall are both worsened. The information
flow from different directions plays different roles, a mixture use of them will degrade the
performance. (3) We further remove the information flow to do an attention only with ad-
jacent nodes (only parent and children), which is more like a graph attention model with a
sparse adjacency matrix, and reaches a worse result. In such a way, multiple layers stacking
is required to interact with more nodes which may lead to information loss and confusion
during layers stacking. (4) We even replace the Bi-DGA layers with self attention to remove
the dependency information. Instead of hop embedding, we add the embedding of relative
position to subject and object into the input representation, which are commonly used in
previous works [Nguyen and Grishman (2015); Zhang et al. (2017)]. Without the depen-
dency structure to guide the attention, the F1 score is 1.0 lower than Bi-DGA, proving
the importance of dependency information. Compared to the result of (2) and (3), we find
that using the dependency information improperly gives the opposite effect. (5) We remove
the hop embedding and use a K=1 path-centric pruning strategy same as [Zhang et al.
(2018)], then the result decreases 1.0% . Through the experiment result , we can see that
the path-centric pruning is still a aggressive strategy which may loss some helpful context
information and lead to a decrease in recall and F1 score. (6) To show the power of pre-
trained encoders with different size, we substitute the ALBERT-base with ALBERT-large
and ALBERT-xlarge. We can observe that the result are significantly improved by larger
pretrained encoders and reach a new state of art result with ALBERT-xlarge.

5. Conclusion

In this paper, we propose the bidirectional dependency guided attention for relation
classification which is fully attention-based and taking the character of dependency tree
as the starting point. Incorporating the label-to-context attention and ALBERT, the pro-
posed model achieves state-of-the-art result on TACRED dataset and a significant result
on SemEval2010-Taks8 dataset, showing superiority of our model to previous dependency
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based models. In the future work, we will incorporate the conceptual knowledge of la-
bels into label embedding to further enhance the effectiveness of label-to-context attention.
Since we offer a way to encode tree structure information with attention mechanism, we
will try to apply this idea to the more complicated transformer structure and to other NLP
tasks such as event detection.
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