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Abstract
Clustering is an essential data analysis technique and has been studied extensively over
the last decades. Previous studies have shown that data representation and data structure
information are two critical factors for improving clustering performance, and it forms two
important lines of research. The first line of research attempts to learn representative features,
especially utilizing the deep neural networks, for handling clustering problems. The second
concerns exploiting the geometric structure information within data for clustering. Although
both of themhave achieved promising performance in lots of clustering tasks, few efforts have
been dedicated to combine them in a unified deep clustering framework, which is the research
gap we aim to bridge in this work. In this paper, we propose a novel approach, Manifold
regularized Deep Embedded Clustering (MDEC), to deal with the aforementioned challenge.
It simultaneously models data generating distribution, cluster assignment consistency, as
well as geometric structure of data in a unified framework. The proposed method can be
optimized by performing mini-batch stochastic gradient descent and back-propagation. We
evaluate MDEC on three real-world datasets (USPS, REUTERS-10K, and MNIST), where
experimental results demonstrate that our model outperforms baseline models and obtains
the state-of-the-art performance.
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1 Introduction

Clustering has attracted much attention from a variety of communities, especially in scenar-
ios where data is easily accessible and effective data analysis techniques are critical in real
applications. Conventional clustering methods, such as k-means [3,13], Gaussian mixture
models (GMM) [5] , and spectral clustering [27,35], aim at grouping similar patterns based
on hand-crafted features. However, when the dimensionality of data is high, these meth-
ods would lead to unsatisfactory results. To tackle this issue, a number of dimensionality
reduction methods have been proposed, such as Principle Component Analysis (PCA) and
Latent Semantic Indexing (LSI) [7]. One shortcoming of these methods is that the reduced
representation might be ineffective due to their shallow learning framework.

In recent years, inspired by the powerful representation learning ability of deep learning
and its successful applications in many fields, such as face recognition [11,15,25], image
classification [2,38,40], and recommender system [8,36,37], clustering algorithms based on
deep neural networks have been developed, which are also referred to as Deep Clustering
[12]. For example, Yang et al. [32] perform agglomerative clustering based on current rep-
resentations to obtain clustering results, and update the representations based on the latest
clustering results. Xie et al. [30] employ a stacked autoencoder (SAE) to get initial fea-
ture representations, and then use the auxiliary target distribution as supervisory signal for
optimization. Guo et al. [12] further propose to simultaneously maintain the reconstruction
constraint as well as auxiliary clustering constraint in a unified framework. Jabi et al. [16]
conduct theoretical analysis of existing state-of-the-art models. They prove that, for the stan-
dard logistic regression posteriors, maximizing the L2 regularized mutual information via
the alternating direction method is equivalent to a soft and regularized K-means loss.

Although aforementioned deep learning-based approaches have achieved encouraging
performance in many clustering tasks, the main focus of these works is to learn features
for clustering while largely overlooks the rich structure information of data. Recently, a
number of studies [1,29] have demonstrated that real-world data are usually sampled from
a low-dimensional manifold embedded in a high-dimensional ambient space, and verify the
effectiveness for clustering via integrating the underlying geometric structure of data into
shallow learning models (e.g., Non-negative Matrix Factorization).

Motivated by these works, we attempt to exploit the intrinsic geometric structure of data
and integrate it into the deep clustering framework. In particular, we propose a novel method,
called Manifold Regularized Deep Embedded Clustering (MDEC), which jointly models
data generating distribution, cluster assignment consistency, as well as geometric structure
of data in a unified framework. The overall architecture of our proposed model is illustrated
in Fig. 1. The loss function of MDEC contains three components, including a reconstruction
constraint to capture the data generating distribution, a clustering constraint to keep the
cluster assignment consistency, and a manifold constraint to preserve the geometric structure
of data. The proposedMDECapproach can be optimized by performingmini-batch stochastic
gradient descent and back-propagation. To demonstrate the effectiveness of our approach, we
conduct extensive experiments on threewidely used datasets:MNIST, USPS andREUTERS-
10K. Experimental results show that the proposed method outperforms all baseline methods
and achieves the state-of-the-art performance on all datasets.

The main contributions of this work are summarized as follows:

(1) We exploit the underlying geometric structure of data and seamlessly incorporate it for
deep clustering. To the best of our knowledge, this work is the first effort towards this
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Fig. 1 The proposed architecture of MDEC

target in the deep clustering scenario. Our study shows that exploiting the geometry
properties of the data can substantial improve the clustering performance.

(2) We propose a novel deep clustering algorithm, which is an end-to-end learning frame-
work by simultaneously modeling data generating distribution, cluster assignment
consistency, as well as geometric structure of data.

(3) Extensive experiments on three widely used datasets show that the proposed approach
outperforms all baseline methods and achieves the state-of-the-art performance. The
rest of the paper is organized as follows: In Sect. 2, we briefly review the related work,
includingmanifold preservation and deep clustering; In Sect. 3,we describe our proposed
approach in detail; Sect. 4 presents the experimental results on three real-world datasets.
Finally, we conclude this paper in Sect. 5.

2 RelatedWork

In this section, we present a brief description of some existing studies on manifold preserva-
tion and deep clustering, respectively.

Manifold PreservationMost conventional clustering algorithms, such as k-means [3,13],
Gaussian mixture model (GMM) [5], and spectral clustering [27,35] assume the data lies in
an Euclidean space. However, recent studies [9,31] have shown that many real world datasets
reside on a low-dimensional manifold which is embedded in a high-dimensional ambient
space. Applying conventional clustering algorithms on this kind of data will likely result in
suboptimal performance.

To address this issue, a number of algorithms have been proposed in the hope of preserving
the intrinsic manifold structure for better clustering results. For example, Liu et al. [20] apply
a local consistency regularizer, which assumes that similar observations should have similar
conditional probability distributions, to revise the objective function of the GMM-based
clustering methods. Zheng et al. [39] propose to incorporate manifold constraint into the
objective function of sparse coding to obtain powerful sparse representations for clustering.
Cai et al. [1] utilize the intrinsic geometry of the data distribution and adopt it as an additional
regularization term in the standard Non-negative Matrix Factorization (NMF) algorithm.Wu
et al. [29] employ a L21 norm in the objective function NMF to measure the quality of
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factorization and utilize the geometric structure of data to preserve local invariance. Xu et
al. [31] introduce manifold regularizations into a zero-shot learning framework based on
matrix tri-factorization in order to capture the geometric structure residing in both visual
and semantic spaces. Ye et al. [34] address the multi-manifold clustering problem, and they
assume that each sub-manifold is a probability distribution defined in themanifold space with
a deep neural network. Inspired by the observations, in this work, we consider to leverage
the underlying geometric structure of data as a supervisory signal and seamlessly integrating
it into the deep clustering framework.

Deep Clustering In recent years, deep learning has been widely used in clustering prob-
lems due to its strong capability to exploit the unknown structure in the data space for learning
good representations. We can roughly group these works into two categories. The first cate-
gory includes two-stage methods, which first conduct feature learning based on deep neural
networks, and then employ traditional clusteringmethods to obtain final results. For example,
Tian et al. [26] use a stacked autoencoder to learn a non-linear embedding of the original
graph, and then conduct k-means to get clustering results. Chen et al. [4] train a DBN for
feature representation and then apply a non-parametric maximum-margin clustering over
the new representation to cluster data. Peng et al. [24] model data generating distribution
information by minimizing the reconstruction error of the input data and incorporate a global
structure prior into the deep neural networks for learning reliable representations. After that,
traditional clustering algorithms, such as k-means, will be used to obtain clustering results.

In contrast, the second category includes methods which jointly conduct feature learning
and clustering in a unified framework. For an instance,Wang et al. [28] explore the possibility
to combine the sparse coding domain expertise into deep learning framework for clustering.
The proposed model is jointly optimized by a task-specific clustering-oriented loss functions
from end to end. Yang et al. [32] utilize intermediate clustering results as supervisory signals
to guide representation learning, and in turn, the learned representations will be leveraged for
obtaining more reliable clustering results. These two alternative steps will be implemented
until a stopping criterion is reached. Xie et al. [30] propose amethod, namedDeep Embedded
Clustering (DEC), which simultaneously learns feature representations and cluster assign-
ments using deep neural networks. It uses a stacked autoencoder to pre-train initial feature
representations, and then fine-tune them by utilizing a cluster-oriented loss. Although DEC
has achieved promising results, it ignores the reconstruction loss which may distort the dis-
tribution of the data during the training procedure. To deal with this problem, Guo et al. [12]
further propose to simultaneously consider reconstruction loss and clustering loss in a unified
framework, which achieves the state-of-the-art clustering performance.

Our work falls into the second category. Since deep clustering still remains an open issue,
we believe it will significantly boost the clustering performance by combining the geometric
structure of data and the merits of previous works to develop new deep clustering models.
Different to previous research, we explore the geometric structure of data and seamlessly
integrate it into the deep embedded clustering framework. It is worth noting that the infor-
mation of the data manifold structure is substantially different from that of the data locality
information as used in IDEC. The latter focuses on the property of data in a point-wise man-
ner, while the former relies on the intrinsic geometric relationships among data points and
captures the data property in a pair-wise manner.
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3 Proposed Approach

In this section, we first elaborate on the formulation of the objective function for the proposed
approach, Manifold regularized Deep Embedded Clustering (MDEC). Then we discuss the
optimization procedure of MDEC.

3.1 The General Framework of MDEC

Themain idea behind our approachMDEC is shown by the diagram in Fig. 1. It contains three
essential parts: reconstruction constraint, clustering constraint, and manifold constraint. The
reconstruction constraint, which is derived from a stacked autoencoder, is used to preserve the
data generating distribution. The clustering constraint, which is based on an auxiliary target
distribution as proposed in [30], is utilized to maintain the cluster assignment consistency.
The manifold constraint is used to constrain the learned feature representations to preserve
the underlying geometric structure of data.

3.2 Reconstruction Loss

The reconstruction loss Lr is handled by employing a stacked autoencoder, which aims to
learn a compressed representation of the input data. Generally, a stacked autoencoder contains
two parts: an encoder function zi = fθ (xi ) to map the input xi to a hidden representation
zi and a decoder function xi ′ = gθ ′(zi ) to reconstruct the input xi from zi . Formally, the
reconstruction loss is measured by Mean Square Error (MSE):

Lr =
n∑

i=1

||xi − gθ ′(zi )||22 (1)

where θ and θ ′ are the parameters of the encoder and decoder, respectively.

3.3 Clustering Loss

The clustering loss is first proposed by Xie et al. [30], and is designed to minimize the match-
ing discrepancy between the soft cluster assignment and the auxiliary target distribution.
Following Xie et al. [30], we measure the soft cluster assignment based on the similarity
between embedded point zi and the cluster centroid μ j by using the Student’s t-distribution
[22]:

qi j = (1 + ||zi − μ j ||22/α)− α+1
2

∑
j ′(1 + ||zi − μ j ′ ||22/α)− α+1

2

(2)

where α is the degree of freedom of the Student’s t-distribution, which is set to 1 as suggested
in [30].

Then, the auxiliary target distribution pi is derived by manipulating the obtained soft
cluster assignment to strengthen high confidence predictions. It can be formalized as follows:

pi j = q2i j/
∑

i qi j∑
j ′(q

2
i j ′/

∑
i qi j ′)

(3)
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Subsequently, the clustering loss can be formally defined by the KL divergence between
the soft cluster assignment qi and the auxiliary target distribution pi :

Lc = K L(P||Q) =
∑

i

∑

j

pi j log
pi j
qi j

. (4)

3.4 Manifold Loss

The goal of incorporating the manifold regularizer term into the objective function is to learn
embeddings for the input data which can vary smoothly along the geodesics on the manifold.
In order to exploit the underlying geometric structure of data, we resort to constructing a
graph, such as anchor graph, which describes similarities between data points and landmarks
[21] or a k-nearest neighbor graph. In this work, we focus on adopting the k-nearest neighbor
graph, because it has been successfully used in several recent studies [1,33] to capture the
intrinsic geometric structure of data.

Suppose there are n data points, represented as: X = {xi }ni=1 where xi is the feature vector
of the i-th data point. Z = {zi }ni=1 denotes the embedded points extracted through an encoder
mapping zi = fθ (xi ). Considering a graphwith n data points, a weight matrixW = [wi j ]n×n

on the graph is defined as follows:

wi j =
{
1 if x j ∈ Ni

0 otherwise,
(5)

where Ni denotes the k nearest neighbors of xi .
With the weight matrix W defined above, we use the following term to measure the

smoothness of the embedded representations.

Lm = 1

k

n∑

i=1

∑

j∈Ni

Wi jφ(zi , z j ) (6)

where φ(zi , z j ) is a measurement of the distance between the two embedded representations
zi and z j . It is worth noting that there are many options to define φ(·, ·), and some commonly
used distance measurements are Euclidean distance and cosine distance. In this paper, we
leverage the cosine distance, which has shown superior performance in many applications
like information retrieval and text mining, to measure the discrepancy between zi and z j ,
which is formalized as follows:

φ(zi , z j ) = 1 − cos(zi , z j ) (7)

= 1 − zTi z j
||zi ||2||z j ||2 (8)

We have also implemented our approach based on the euclidean distance, and the results were
considerably worse than that of adopting cosine distance. By minimizing Lm , we expect that
if two data points xi and x j are close in the original data space, their corresponding embedded
representations zi and z j should also be close to each other.

3.5 Objective Function

MDEC seamlessly integrates these three parts into a unified end-to-end framework, and
each part can provide useful complementary information for other parts during the training
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procedure. The objective function of MDEC can be expressed as

L = Lr + δLm + γ Lc (9)

where Lr , Lm and Lc are reconstruction loss, manifold loss, and clustering loss, respectively.
δ and γ are the weights to control the trade-off among these three terms.

It is worth noting that the manifold constraint is different to the reconstruction constraint
for modeling the property of data. In particular, the reconstruction constraint attempts to
model data property in a point-wise manner, i.e., reconstructing each data point via capturing
data generating distribution. However, themanifold constraint tends to capture pair-wise rela-
tionships among data points via exploiting geometric structure of data. Hence, incorporating
the manifold constraint is considered to be complementary to the reconstruction constraint.
Our experimental results also verify the effectiveness of exploiting the geometric structure
of data.

3.6 Optimization

In our MDEC model, the parameters for learning contain the encoder parameters θ , the
decoder parameters θ ′ and the cluster centroids {μ j }Kj=1. We optimize Eq. (9) using a mini-
batch stochastic gradient descent and back-propagation. Specifically, in each iteration we
sample a mini-batch of data points from the whole dataset, and then conduct learning based
on the sampled set. The gradients of Lm with respect to zi are computed as:

∂Lm

∂zi
= −1

k

∑

j∈Ni

Wi j

(
z j

||zi ||2 · ||z j ||2
)

−
(
zi cos(zi , z j )

||zi ||22

)
, (10)

and the gradients of Lc with respect to zi and μ j are computed as:

∂Lc

∂zi
= α + 1

α

K∑

j=1

(
1 + ||zi − μ j ||22

α

)−1

× (pi j − qi j )(zi − μ j ) (11)

∂Lc

∂μ j
= α + 1

α

n∑

i=1

(
1 + ||zi − μ j ||22

α

)−1

× (pi j − qi j )(μ j − zi ) (12)

We can then update μ j with

μ j = μ j − λ

m

m∑

i=1

∂Lc

∂μ j
(13)

and use the chain rule to update the encoder parameters θ and the decoder parameters θ ′ by:

θ = θ − λ

m

m∑

i=1

(
∂Lr

∂θ
+ δ

∂Lm

∂θ
+ γ

∂Lc

∂θ

)
(14)

θ ′ = θ ′ − λ

m

m∑

i=1

∂Lr

∂θ ′ (15)

where λ is the learning rate, and m is the number of data point in the mini-batch.
In order to maintain stability, we update the target distribution P which serves as “ground

truth” soft label in every T iterations. We choose to stop training when the algorithm has con-
verged, i.e., the label assignment s between two consecutive updates for the target distribution
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is less than a predefined threshold ε. The label assignment of xi is computed by:

si = argmax
j

qi j (16)

The whole learning algorithm of MDEC is summarized in Algorithm 1. Please note that
before training, we first construct a k-nearest neighbor graph based on the original feature
space. We may also generate a k-nearest neighbor graph for every T iterations according to
the latest embedded point {zi }ni=1 during the training procedure. However, computing a k-
nearest neighbor graph for every T iterations is expensive, and our experiments demonstrate
that adopting the k-nearest neighbor graph constructed based on the original feature space
can well capture the geometric structure of data.

Algorithm 1Manifold Regularized Deep Embedded Clustering
Require: Train data: X ; Number of Clusters: K ; Number of nearest neighbors: k; Target distribution update

interval: T ; Stopping threshold: δ; Maximum iterations: Max I ter .
Ensure: Parameters θ and θ ′ of autoencoder; Clustering center μ ; Label assignment s.
Initialization: Initialize cluster center μ using k-means; Initialize parameters θ and θ ′ by pre-training a

stacked denoising autoencoder as conducted in [30].
1: Construct a k-nearest neighbor graph G based on the input data X
2: for i = 0 → Max I ter do
3: if i % T == 0 then
4: compute all embedded points {zi = fθ (xi )}ni=1;
5: update q and p using (2) and (3), respectively;
6: save last label assignment: sold = s;
7: compute new label assignment s with (16);
8: if sum(sold �= s)/n < δ then
9: break.
10: Sample a mini-batch of m points from X , and for

each point xi , perform the following operation:
11: Compute its embedded representation zi .
12: Compute its k nearest neighbors’ embedded

representations {z j } j∈Ni according to G.
13: Calculate the gradients according to (10), (11), and

(12).
14: Update parameters θ, θ ′, μ by using back propoga-

tion.

4 Experiments

4.1 Datasets

We compare our model with several baselines on three widely used benchmark datasets:
MNIST, USPS and REUTERS-10K. The table The dataset statistics are summarized in Table
1.

– MNIST [18]: The MNIST dataset contains 70,000 handwritten digits of 28 × 28 pixel
size. The digits are centered and size-normalized.

– USPS [14]: The USPS dataset consists of 9,298 gray-scale handwritten digit images with
size of 16 × 16 pixels. The features are floating point in [0,2].

– REUTERS-10K [19]: The REUTERS-10K dataset contains nearly 810,000 English news
stories labeled with a category tree [19]. As in [30], we adopted four root categories
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Table 1 Statistics of the three
datasets: MNIST, USPS and
REUTERS-10K

Dataset #Points #Classes #Dimension

MNIST 70,000 10 784

REUTERS-10K 10,000 4 2000

USPS 9298 10 256

(corporate/industrial, government/social, markets, economics) as labels and skipped all
documents with multiple labels. We further randomly sampled a subset of 10,000 exam-
ples and computed tf-idf features on the 2000most frequent occurringwords.The sampled
dataset is referred to as REUTERS-10K.

4.2 Baseline Methods

We compare our MDEC framework with five baseline approaches, which are summarized
as follows. To the best of our knowledge, our proposed approach is the first work that incor-
porating the underlying geometric structure into the deep embedded clustering framework.
Hence, for the evaluation, we adopt two state-of-the-art deep embedded clustering methods,
i.e., DEC and IDEC, as baseline methods. Besides, since our method is relying on the under-
lying geometric structure of the input data, thus we also compare with the spectral embedded
clustering method SEC [23].

It is worth noting that some recent efforts show that leveraging a complicated deep neural
network (e.g., a multi-layer convolutional denoising autoencoder) can further improve the
performance on visual data [16]. For fair comparison, in this paper, we employ the same base
deep neural network (i.e., a stacked autoencoder) as used in IDEC [12], which is a general
framework and can handle both textual and visual data. We leave the exploration of specified
and complicated deep neural network as future work.

Since KMeans is one of the most classical clustering methods, we implement two variants
of KMeans based on different input feature representations: the original representation and
the embedded representation pre-trained with an autoencoder. For all compared methods
except KMeans based approaches, we used their default parameters recommended by the
corresponding authors.More details about these baselinemethods are summarized as follows:

– KMeans This is a widely established clustering algorithm.We run KMeans 20 times with
different initialization and choose the best objective value as the result.

– AE-KMeans This method is a two-stage deep clustering algorithm. It first obtains embed-
ded representations by pre-training a stacked autoencoder, and then runs the k-means
algorithm on them.

– Spectral Embedded Clustering (SEC) [23] SEC is a variant of spectral clustering with a
linearity regularization. It outperforms traditional spectral clustering methods on a wide
range of datasets. We use the default parameters of SEC provided in [23].

– Deep Embedded Clustering (DEC) [30] DEC leverages deep neural networks to simul-
taneously handle the cluster assignment consistency as well as the underlying feature
representation.

– Improved Deep Embedded Clustering (IDEC) [12] This method is a variant of DEC. It
jointly maintains the cluster assignment consistency and preserves the data generating
distribution.
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4.3 EvaluationMetrics

To evaluate the performance of the clusters produced by different approaches, we use two
evaluation metrics as follows:

– Clustering Accuracy (ACC) is defined as:

ACC =
∑n

i=1 δ(li ,map(ci ))

n
,

where li is the true class label and ci is the obtained cluster label of xi , δ(x, y) is the
delta function, and map(·) is the best mapping function. Note δ(x, y) = 1 if x = y,
δ(x, y) = 0 otherwise. The mapping function map(·) matches the true class label and
the obtained cluster label and the bestmapping is solved by theKuhn-Munkres algorithm,
also called Hungarian method.

– Normalized Mutual Information (NMI) is calculated by:

NMI = MI (C,C ′)
max(H(C), H(C ′)

,

whereC is a set of clusters obtained from the true labels andC ′ is a set of clusters obtained
from the clustering algorithm. MI (C,C ′) is the mutual information metric, and H(C)

and H(C ′) are the entropies of C and C ′ respectively.

4.4 Implementation

Similar to [30], we implement the encoder network and decoder network in a symmetrical
way. Specifically, we set the encoder network as a fully multilayer perceptron (MLP) with
dimension d-500-500-2000-10 for all datasets, and set the decoder network in a reversemode,
i.e., a MLP with dimensions 10-2000-500-500-d , where d is the dimension of the input data
space. All internal layers are activated by the nonlinearity function ReLU [10]. In order to
accelerate the convergence of the model’s learning progress, we pre-train a stacked autoen-
coder network before using back-propagation to fine-tune the entire deep neural networks.
There are three parameters γ , δ and k to control the impact of clustering loss and manifold
loss. We empirically set γ = 0.1, δ = 0.3, and k = 3. More discussion about the impact
of the two parameters can be found in the section of parameter sensitivity analysis. For the
MNIST dataset, we adopt the optimizer Adam [17] with an initial learning rate λ = 0.001,
β1 = 0.9 and β2 = 0.999. For both the USPS and REUTERS-10K datasets, we use the
optimizer SGD with learning rate λ = 0.1 and momentum β = 0.99. We set the batch size
to 256, and the convergence threshold ε to 0.001. The update intervals T for MNIST, USPS
and REUTERS-10K are set to 140, 30, 3 iterations, respectively. The implementation of our
model is based on Python and Keras [6], and run on a GPU server with GeForce GTX 1080Ti
and 11GB GPU memory.

4.5 Experimental Results

As shown in Table 2, the worst performance (in terms of Accuracy) can be observed for the
conventional clusteringmethodKMeans on all datasets except USPS. The spectral embedded
clustering method SEC demonstrates better performance than KMeans on both REUTERS-
10k and MNIST. However, it shows a worse performance than KMeans on USPS, which
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Table 2 Comparison of
clustering performance of
different methods on three
datasets in terms of Accuracy(%)

Method USPS REUTERS-10K MNIST

KMeans 66.80 51.48 53.24

SEC 48.02 58.62 80.37

AE + Kmeans 69.13 70.43 81.85

DEC 74.08 73.68 86.55

IDEC 75.98 75.02 88.05

MDEC 77.88 76.82 88.46

The bold numbers indicates the best results among all methods

Table 3 Comparison of
clustering performance of
different methods on three
datasets in terms of NMI(%)

Method USPS REUTERS-10K MNIST

KMeans 62.64 30.87 49.98

SEC 40.14 34.34 N/A

AE + Kmeans 66.17 39.72 74.76

DEC 75.29 49.76 83.72

IDEC 78.36 49.37 86.53

MDEC 80.60 52.65 87.31

The bold numbers indicates the best results among all methods

may be due to the fact that SEC adopts a linear mapping to project the original data into
a low dimensional subspace. AE + KMeans outperforms both KMeans and SEC on all
datasets. It demonstrates that adopting the embedded representations from a pre-trained
stacked autoencoder is helpful as it can preserve the data generating distribution. It is worth
noting that autoencoder employs a nonlinear embedding strategy, which differentiates it from
the linear mapping based method SEC. Among all baseline methods, the unified end-to-end
framework DEC and its variant IDEC achieve superior performance. This is mainly due
to the fact that they jointly conduct feature learning as well as clustering. The difference
between DEC and IDEC is that IDEC simultaneously minimizes the reconstruction loss and
clustering loss, whileDEC ignores the reconstruction constraint and only uses an autoencoder
for pre-training an initial feature representation.

Compared to all baseline methods, our proposed method MDEC demonstrates the best
performance, substantially outperforming the state-of-the-art methods, such as DEC and
IDEC. This result verifies the effectiveness of exploiting the geometric structure of data as
supervision. Please note that IDEC can be considered as a special case of our proposed
MDEC (i.e., MDEC will reduce to IDEC if γ is set to zero). In Table 3, similar results are
observed in terms of NMI.

4.6 Parameter Sensitivity Analysis

In this section, we study the sensitivity of the proposed MDEC framework to the three
parameters γ , δ, and k. When we vary one parameter, the other two parameters are fixed
to the optimal values so that only one of them would influence the results.1 We only report
results in terms of Accuracy as similar findings are observed in terms of NMI. Figure 2
shows the performance of MDEC under different settings of k, γ and δ.

1 Optimal values of parameters can be found using grid search.
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Fig. 2 The performance of MDEC under different settings of k (top row), γ (middle row) and δ (bottom row)
on three datasets (USPS, REUTERS-10K, MNIST)

We first look into the parameter k which is number of nearest neighbors for constructing
the k-nearest neighbor graph.We vary k values from 0 to 9 with γ and δ fixed as their optimal
values (0.1 and 0.3, respectively). The top row of Fig. 2 shows the clustering performance,
we can observe that incorporating a manifold constraint, i.e., when k is larger than 0, can
help to boost the Accuracy performance by a considerable margin, especially when k varies
from 3 to 7. If we keep increasing k, the performance will start to decline. This changing
trend is reasonable because useful geometric structure information is leveraged when k is
larger than 0. When k becomes too large, unreliable manifold constraint would be injected
into the training procedure and hurt the performance of our method.

We then study the impact of the other two parameters γ , δ in Eq. (9). γ is the weight
parameter used to determine the importance of utilizing the cluster-oriented supervisory
information for guiding the training procedure. The higher the value of γ , the more emphasis
MDECputs on the cluster-oriented supervisory signal. Themiddle row of Fig. 2 demonstrates
the Accuracy values when varying γ from 0.05 to 5 with interval 0.05 (k and δ are fixed to
3 and 0.3, respectively). We observe that the highest accuracy is achieved when γ is around
0.1 for all datasets. When γ becomes larger, there is a slight decrease of the performance.
Similarly, δ is the weight parameter to control the influence of manifold constraint. A higher δ
value indicates that more emphasis of MDEC will be put on the geometric structure-oriented
supervision. The bottom row of Fig. 2 show the Accuracy values obtained by varying δ from
0 to 0.9 by fixing other two parameters (k = 3 and γ = 0.1). We can see that increasing
the δ value can generally lead to improvements of performance. When δ gets too large the
performances will start to drop. Generally speaking, there is a wide range of δ (i.e., from 0.2
to 0.8) that MDEC performs well with.
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Fig. 3 Accuracy and NMI versus epochs

4.7 Convergence Study

To explore the convergence speed, we plot the results on the dataset USPS through different
epochs. Figure 3 shows the learning curve of DEC, IDEC and MDEC. As shown in Fig. 3,
DEC converges very fast, but with the lowest performance on both metrics Accuracy and
NMI. IDEC shows a slower convergence speed compared with DEC as it needs to simulta-
neously manipulate both clustering loss as well as the reconstruction loss during the training
procedure. The convergence speed of MDEC is faster than IDEC due to the incorporation of
the additional manifold loss.

We can also observe that, during the initial iterations (i.e., from 0 to 720), IDEC performs
worse than DEC on both metrics. This is mainly caused by the fact that, in the beginning, the
parameters of both clustering constraint and the reconstruction constraint are just initialized
and most likely disagree with each other. After sufficient iterations (e.g., approximately 750
iterations), IDEC demonstrates consistently superior performance than DEC. The perfor-
mance of MDEC is better than IDEC as it surpasses DEC with less iterations, e.g., only after
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Fig. 4 t-SNE visualization comparison of the embedding feature space learned by three different methods
DEC, IDEC andMDEC as the number of epochs increases (each color denotes a cluster). (Color figure online)

around 360 iterations. It is also interesting to see that at for all iterations, MDEC demon-
strates a consistent superior performance than IDEC, which shows that further leveraging
the underlying geometric structure of the input data can considerably benefit the clustering
capacity of MDEC.

4.8 Effect of the Learned Embedding

Figure 4 shows the 2-D embedding feature space of three different methods DEC, IDEC
and MDEC by using t-SNE [22] on a random subset of USPS with 1000 samples. From
Fig. 4, we can observe that DEC would lead to undesirable embedding results, for example,
the cluster colored by yellow (digit 0) will become less differentiable (i.e., mixed with more
points from other clusters) when the training epochs increase from 15 to 30. This would
caused by the fact that the training procedure of DEC is only guided by the cluster-oriented
constraint while ignoring the intrinsic properties of the data space, such as the intrinsic
structural signals. IDEC addresses this issue by resorting to incorporate the reconstruction
loss which is considered to be able to preserve the local structure of the data-generating
distribution. The learned embedded feature space from IDEC is more separable as compared
with that of DEC, e.g., these improper data points mixed with yellow cluster are largely
reduced. For our proposed method MDEC, the learned embedded feature space has better a
differentiating capability. For an instance, only a very few improper data points, which are
mixed with the yellow cluster, are observed. This is because MDEC benefits from exploiting
the underlying geometric properties of the data.
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5 Conclusions

In this paper, we present MDEC, a unified end-to-end framework for unsupervised clustering
problems. Different to conventional deep embedded clustering methods such as DEC and
IDEC,MDEC incorporates a manifold constraint to preserve the underlying geometric struc-
ture of data. The objective of MDEC simultaneously considers data reconstruction, cluster
assignment consistency, aswell as geometric structure of data. Empirical experimental results
on three real-world datasets (i.e., USPS, REUTERS-10K and MNIST) demonstrate that our
approach outperforms the current state-of-the-art approaches.
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