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Abstract—Graph mining is one of the most important cate-
gories of graph algorithms. However, exploring the subgraphs of
an input graph produces a huge amount of intermediate data.
The “think like a vertex” programming paradigm, pioneered
by Pregel, cannot readily formulate mining problems, which is
designed to produce graph computation problems like PageRank.
Existing mining systems like Arabesque and RStream need large
amounts of computing and memory resources.

In this paper, we present Kaleido, an efficient single machine,
out-of-core graph mining system which treats disks as an ex-
tension of memory. Kaleido treats intermediate data in graph
mining tasks as a tensor and adopts a succinct data structure
for the intermediate data. Kaleido implements half-memory-half-
disk storage for storing large intermediate data, which treats the
disk as an extension of the memory. Kaleido adopts a lightweight
isomorphism checking strategy which uses an eigenvalue-based
algorithm for small graphs and solves tree isomorphism for
the other graphs. Comparing with two state-of-the-art mining
systems, Arabesque and RStream, Kaleido outperforms them by
a GeoMean 13.2× and 64.8× respectively.

Index Terms—graph mining, exploration, isomorphism, out-of-
core

I. INTRODUCTION

Graphs data is ubiquitous in a broad range of fields such as

social networks, web networks, financial networks, biological

networks, and the analysis of graphs is becoming increasingly

important. Generally, we divide graph analysis problems into

two major types, graph computation and graph mining. Graph

computation aims to compute some meaningful values of

vertices in a graph. For example, calculate the PageRank [26]

value of a web graph to obtain the top-k valuable web pages;

given two vertices in an input graph, calculate the shortest

path between them. In contrast, graph mining aims to discover

structural patterns to meet the user’s interest criteria. For

example, mine frequent subgraphs in the biological data to

discover highest gene expression [17]; extract the frequency

distribution of all motifs that occur in PPI network [28];

discover cliques in financial networks to detect frauds [11].

A. Problem statement

Graph computation problems can be represented through

linear algebra over an adjacency matrix-based representation

of the graph. Many practical solutions, like PowerGraph [14],

Ligra [35], GraphX [15], Chaos [31], Gemini [39], etc., follow

a simple “think like a vertex (TLV)” programming paradigm

Fig. 1. Graph mining concepts: a graph, a pattern and embeddings. Numbers
denote vertex ids; colors represent labels. Pattern p is a template graph. Graph
a, b and c are instances of pattern p in the input graph. These instances are
called embeddings. Isomorphic embeddings a and b have same pattern p. The
same embedding b and c also are called automorphic.

pioneered by Pregel [23], in which each vertex of the input

graph is a processing element holding local state and commu-

nicating with its neighbors. TLV is suitable for applications

which perform value computations around vertices of the input

graph, like PageRank.

There are several significant graph mining problems, such

as frequent subgraph mining, which aim to discover subgraphs

of the input graph and collect the statistics of subgraphs

which meet the user’s criteria. However, the TLV programming

paradigm cannot readily formulate these graph mining prob-

lems. Given an input graph, these graph mining problems often

require exponential combinations around vertices and edges to

explore all possible subgraphs. Treating each subgraph as the

basic processing element is more convenient, which is also

known as the subgraph-centric model.
In this paper, we use pattern and embedding to denote

two types of subgraphs in an input graph. A pattern is a

template, while an embedding is an instance. We denote k-

embedding for an embedding contains k vertices. Embeddings

are isomorphic if they contain different vertices and edges but

they have the same pattern. Figure 1 illustrates these concepts

in graph mining problems. To identify which pattern is fre-

quent in an input graph, we should explore all embeddings,

then patternize each embedding and statistic all patterns. The

exploration of subgraphs can be executed as vertex-induced
and edge-induced. A vertex-induced exploration expands one

vertex to an embedding in each iteration, while an edge-
induced exploration expands one edge.

The first challenge in graph mining applications is how
to build a compact data structure for the intermediate data
(embeddings) and process them efficiently. In querying a k-

vertex-pattern in a graph with N distinct vertices, the time

complexity is O(N · d̄k−1), in which d̄ is the average degree
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of the graph [2]. Generally, we have up to O(N · d̄k−1)
different embeddings of size k in this graph. For example, the

exploration of 4-embeddings over Patent (3.8 M vertices, 16.5

M edges) [22] produces 13.5 billion embeddings. The second

challenge is how to efficiently test embedding isomorphism
in computing patterns. The graph isomorphism problem (GI)

belongs to NP but it is unknown whether GI belongs to

NP-complete and no polynomial time algorithm is known

[34]. The fastest proven running time for GI has stood at

eO(
√
n logn) [6], in which n is the vertex number of the graph.

There are state-of-the-art softwares for GI which solve GI in

a quasi-polynomial-time, such as Nauty [24] and Bliss [19].

These softwares use a practical approach named “canonical

labeling”, in which a graph is relabeled and isomorphic graphs

can be identified.

B. Limitations of State-of-the-Art Systems

Recent graph mining systems use declarative models to

solve mining problems. Arabesque [36] proposes a natural

programming paradigm, “think like an embedding (TLE)”,

which is also called the subgraph-centric model. RStream [37]

employs a GRAS programming model that uses a combina-

tion of “gather-apply-scatter” (GAS) and relational algebra to

support mining algorithms.

Arabesque is a Giraph-based distributed graph mining sys-

tem. Arabesque designs a prefix-tree-liked embeddings data

structure. It stores k arrays for k-embeddings, in which the

ith array contains the ids of all vertices in the ith position

in any embedding. Vertex v in the ith array is connected

to vertex u in the (i + 1)th array if there exists at least

one canonical embedding with v and u in position i and

i+ 1 respectively in the original set. However, in the pattern

aggregation phase, an extra canonically checking for each

embedding is inevitable. For the experiment of Arabesque,

the extra checking still accounts for around 5% of the run-

time in mining applications. On the other hand, Arabesque is

a distributed system which suffers from the unbalanced graph

partitioning and computation. For example, running 3-Motif

over Patent, Arabesque uses 60.2s, 47.0s, 46.6s, 46.4s on 1,

2, 4 and 8 nodes respectively. The linear scalability is limited

by the unbalanced partition.

RStream is a single-machine graph mining system based

on X-Stream [32]. It only supports edge-induced embedding

exploration. When solving some vertex-based applications,

like the motif counting and the clique discovery, it needs more

iterations and more disk I/O. For example, to find 4-motifs in

an input graph, RStream iterates 6 times to explore all kinds

of 4-motifs (
(
4
2

)
= 6). To explore all possible embeddings,

RStream executes the operation of all-join in the relational

algebra, which produces a huge amount of intermediate data.

For example, running the 4-motifs counting on RStream over

MiCo (100 K vertices, 1.1 M edges) [12] produces around

1.64 TB intermediate data, while the amount of 4-motifs in

MiCo is around 11 billion.

Both Arabesque and RStream use a graph library, Bliss [19],

which is an open-source tool for computing graph isomor-

(a) Adjacency matrix (b) 3-Embedding cube
Fig. 2. Adjacency matrix and the 3-embedding cube. The black blocks in
Figure (a) indicate edges in the graph. Figure (b) indicates a cube (tensor) of
3-embeddings and an operation of extracting an arbitrary embedding.

phism problems. For each input graph, Bliss builds a search

tree, then permutes this graph to obtain its canonical form. If

two graphs contain the canonical form, they are automorphic.

However, building the search tree brings frequently memory

allocating and de-allocating which slow down the processing

of hashing patterns and consumes a huge amount of memory.

For example, the overhead of allocation and de-allocation are

more than 53% in running 3-FSM over Patent graph (37 labels)

with support 1 and it consumes 16.1 GB memory for total

25,083 patterns. For other graph isomorphism softwares, like

Nauty [24] and Trace [27] both of which are implementations

of the search tree as well, the memory consumption is even

higher. Besides, both Nauty and Trace only suit for the

unlabeled graphs.

C. Our Approaches

To address the limitations of existing systems, we propose

Kaleido, a single-machine, out-of-core graph mining system.

Kaleido adopts the subgraph-centric computation model and

presents a general programming API which fits most of graph

mining applications.

Kaleido treats the intermediate data of the ith exploration

as an i-dimension tensor and designs a succinct data structure
for the intermediate data. Intuitively, the set of 1-embeddings

is the vertex set of the input graph; the set of 2-embeddings is

the edge set without duplicated edges of the input graph, which

can be represented by an adjacency matrix (see Figure 2a); the

set of 3-embeddings contains 3-chains and triangles, which

can be represented by a cube (see Figure 2b). In other words,

each vertex-induced expanding of embeddings is equivalent to

ascending a dimension for the intermediate data. Inspired by

compressed sparse column (CSC) for sparse matrices [33], we

design a level-by-level succinct data structure of intermediate

embeddings, which is called compressed sparse embedding
(CSE). Each iteration of the exploration ascends a dimension

for the intermediate data and expands a level in CSE.

Kaleido adopts a hybrid storage for the intermediate em-
bedding when the scale of the input graph or the exploration

depth increases. According to the level-by-level structure of

CSE, when the memory is insufficient to afford the whole

intermediate data, the hybrid storage stores large levels of CSE

on disk. To balance the workload in processing the intermedi-

ate data on disk, Kaleido predicts the capacity of embeddings

candidate in the next iteration, then divides the exploring tasks

to each thread evenly according to the prediction.

Kaleido designs a lightweight isomorphism checking strat-
egy to solve the labeled graph isomorphism problem. The
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strategy is departed into three parts: (i) eigenvalue-based

isomorphism checking algorithm for small embeddings; (ii)

specially checking isomorphism for tree-shape-embeddings

(k-embedding with k − 1 edges) and (iii) using Bliss to

check the rest embeddings. The key optimization in graph

mining applications is to prune as early as possible, therefore

Kaleido adopts an efficient algorithm to check isomorphism

over small graphs. Harary et al. [16] proved that if two k-

embeddings (k < 8) have the same vertex degrees and the

same eigenvalues, they are isomorphic. However, Harary et al.
only discussed the isomorphism of unlabeled graphs. Kaleido

combines the label information and the degree information

of vertices in each pattern and eigenvalues of the adjacency

matrix to identify isomorphic graphs. The space usage of

Kaleido is O(n), while the space usage of Bliss is O(n+m) in

which n,m are the number of vertices and edges of the input

graph respectively. On the other hand, we observe that the

tree-shape-embeddings hold a large proportion in exploring

natural graphs (67.8% and 98.7% tree-shape-embeddings in

the 10th exploration of Patent in the vertex-induced and the

edge-induced exploration respectively). The time complexity

of state-of-the-art solution of tree isomorphism is O(n), in

which n is the number of vertices in the tree [8]. Kaleido

extends the tree isomorphism algorithm to support labeled

trees.
To summarize, we make the following contributions:

• We design an API for popular graph mining applications,

which enables embedding exploration and pattern aggre-

gation to be expressed effectively (Section III).

• We propose a novel succinct embeddings data structure,

compressed sparse embedding. We implement hybrid

storage for the large intermediate data in using disks and

design a prediction strategy for load balancing (Section

IV).

• We propose a lightweight graph isomorphism checking

strategy for solving graph mining problems. We design an

eigenvalue-based algorithm to solve graph isomorphism

for small labeled graphs. We analyze the proportion of

tree-shape-embeddings in the exploration and extend the

classic tree isomorphism algorithm (Section V).

II. PRELIMINARIES

A graph G = (V,E, L) consists of a set of vertices V ,

a set of edges E and a labeling function L that assigns

labels to vertices and edges. A graph G′ = (V ′, E′, L′) is a

subgraph of graph G = (V,E, L), i.e., V ′ ⊆ V , E′ ⊆ E and

L′(v) = L(v), ∀v ∈ V ′. A pattern is a template graph, while

an embedding is an instance. In this paper, the vertex-induced

embedding is noted as e = 〈v1, ..., vk〉. If an embedding

contains k vertices, we say that the size of embedding e is

k. The edge-induced embedding is analogous.

Definition 1. We say that a graph Ga = (Va, Ea, La) is
isomorphic to another graph Gb = (Vb, Eb, Lb) if and only if
there exists a bijection fab between Ga and Gb, such that (i)
La(v) = Lb(fab(v)), ∀v ∈ Va, and (ii) (fab(u), fab(v)) ∈ Eb

and La(u, v) = Lb(fab(u), fab(v)), ∀(u, v) ∈ Ea.

Fig. 3. Architecture of Kaleido.

Two graphs are automorphic if and only if they contain the

same edges and vertices. As shown by Figure 1, subgraphs

b and c contain the same edges and vertices, thus they are

automorphic.

Definition 2. We say an embedding e = 〈v1, ..., vn〉 of graph
G = (V,E) is canonical if (i) ∀i > 1 it holds vi > v1; (ii)
∀i > 1, ∃j < i satisfies that (vj , vi) ∈ E; (iii) ∀va, vb, vc if
a < b < c, (va, vc) ∈ E and �d < a satisfies that (vd, vc) ∈
E, it holds vb < vc.

In other words, if an embedding is canonical, it should hold

the following three properties. (i) The id of the first vertex in

the embedding is the minimum value. (ii) Each vertex in the

embedding must be a neighbor of the vertex which is indexed

a smaller id, except the first vertex. (iii) There exists an edge

in the embedding, (va, vc), a < c and all of vertices before va
are not neighbor of vc, therefore if any vertex exists between

va and vc, it must holds that vb < vc.

III. SYSTEM ARCHITECTURE AND API

We now present the system architecture of Kaleido, demon-

strate the API for graph mining problems and introduce

implementations of popular graph mining applications.

Kaleido adopts the subgraph-centric computation model and

divides the processing of the graph mining problems into

the embedding exploration phase and the pattern aggregation
phase. Figure 3 illustrates the architecture of Kaleido. To

execute a mining application, Kaleido reads the input graph

and mines it in several iterations. In each iteration, Embedding
Explorer explores and stores all possible embeddings under the

user-defined filter firstly; next, Pattern Aggregator computes

the pattern of each embedding and aggregates them; if the end

condition is reached, Kaleido outputs the results; otherwise,

explorer and aggregator update their corresponding filters in

the next iteration according to the results and the user’s criteria.

The API of Kaleido is illustrated in Listing 1.

EmbeddingFilter works to exploring (k+1)-embeddings

from k-embeddings: the Embedding e is a k-embedding

and the Vertex v (Edge <u, v> in the edge-induced

exploration) is a candidate vertex which is a neighbor of

e normally. In addition, the canonical filter is built-in.

Pattern Filter works to aggregating patterns, in or-

der to prune ineligible patterns. AggregatingMapper and

AggregatingReducer (Mapper and Reducer in short)

must be implemented by customized applications. Mapper is

calculated in ResultAggregator concurrently. Reducer
aggregates PatternMaps returned by Mapper, and prunes
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patterns which are incompatible of PatternFilter, then

returns results in form of PatternMap.

Listing 1. Kaleido API
// Optional user defined filter functions
bool EmbeddingFilter(Embedding e, Vertex v)
bool EmbeddingFilter(Embedding e, Edge <u,v>)
bool PatternFilter(Pattern p)

// 2 functions of aggregation phases
PatternMap AggregatingMapper(Embedding e)
PatternMap AggregatingReducer(List<PatternMap>

pMaps, PatternFilter pFilter)

// Main processing function in applications
List<Embedding> Init(Graph g, int depth)
List<Embedding> EmbeddingsExplorer(Graph g,

List<Embedding>, EmbFilter eFilter)
PatternMap ResultAggregator(AggregatingMapper

mapper, AggregatingReducer reducer)

Frequent Subgraph Mining. To early prune infrequent

patterns, we use the minimum image-based (MNI) support
[7] as the frequency of each pattern, which counting the

minimum number of distinct mappings for any vertex in the

pattern. The support measure is anti-monotonic. We implement

an edge-induced version of FSM in Kaleido as illustrated

in List 2. Given an input graph, the edge number of the

query pattern k and a threshold of the support, it returns

frequent k-patterns whose support is beyond the threshold. To

prune infrequent patterns, we loop Mapper and Reducer
in each iteration. In each iteration of embedding exploration,

EmbeddingExplorer expands each embedding by adding

a frequent edge. EmbeddingFilter checks if the candi-

date edge is frequent. Mapper patternizes each embedding,

calculates the MNI support for each pattern. Reducer prunes

infrequent patterns and its corresponding embeddings and

returns all the frequent patterns in the last iteration.

Listing 2. FSM (edge-induced exploration)
List<Embedding> Init(Graph g, int depth) {

return frequentEdges;}
bool EmbeddingFilter(Embedding e, Edge <u,v>) {

return isFrequent(<u,v>);}
bool PatternFilter(Pattern p) {

return pMap[p] >= threshold;}
PatternMap AggregatingMapper(Embedding e) {

Pattern p = toPattern(e);
Support s = MNISupport(p, e);
return pattern2SupportMap;}

PatternMap AggregatingReducer(List<PatternMap>
pMaps, PatternFilter pFilter) {
PatternMap pMap = MergePatternMap(pMaps,

pFilter);
return pMap;}

Motif Counting. This application counts the frequency of

each k-motif in the given graph . As we know exactly each

shape of k-motifs like (2 kinds of 3-motifs, 6 kinds of 4-motifs

and 21 kinds of 5-motifs, etc.), we stop embeddings generating

if (k − 1)-embeddings are generated. Mapper explores all

canonical k-embeddings from each (k − 1)-embedding, then

calculates the hash value of each k-embedding. Reducer
aggregates k-motifs.

Clique Discovery. This application discoveries all k-cliques

in the input graph. EmbeddingFilter(e,v) checks if the

candidate vertex v is neighbor of each vertex in embedding

Fig. 4. Procedure of vertex-based generating canonical 3-embeddings. 2-
embeddings and 3-embeddings in the figure are arrays of vertices ids, and the
order of each embedding is immutable.

e. EmbeddingExplorer prunes illegal embeddings and

explores all k-cliques after k − 1 iterations and returns them.

Reducer return k-cliques.

IV. EMBEDDING EXPLORATION PHASE

In this section, we introduce the procedure of the embedding

exploration phase including the design of the compact data

structure of embeddings and solutions in facing out of memory.

A. The Procedure of the Exploration

Given the size of embedding, the goal is to generate all of

the possible and unique embeddings. According to the user’s

criteria, we eliminate embeddings which are ineligible. We

introduce the canonical filter which guarantees that embed-

dings are complete and unique. According to Definition 2,

an embedding e is canonical if and only if its vertices were

visited in the following order: start by visiting the vertex with

the smallest id and then recursively add the neighbor of e with

the smallest id that has not been visited yet.

Figure 4 illustrates the process of a series of vertex-based

explorations to 3-embeddings. Without loss of generality,

consider an exploration of a 2-embedding s8 = 〈2, 3〉. First,

neighbors or candidates of s8 in G are {1, 4, 5}, thus pos-

sible 3-embeddings generated by s8 are 〈2, 3, 1〉, 〈2, 3, 4〉
and 〈2, 3, 5〉. This step guarantees the completeness of this

exploration. Next, according to Definition 2, 〈2, 3, 1〉 does not

satisfies property (i) of canonical embedding, for 1 < 2 and 2
is the first vertex of s8, while both 〈2, 3, 4〉 and 〈2, 3, 5〉 are

canonical. Therefore s17 and s18 are generated.

As discussed in Section I, the complexity of exploring k-

embeddings is O(N · d̄k−1). The goal of storing embeddings

is divided into two parts: (i) minimizing memory usage and

(ii) extracting an arbitrary embedding as fast as possible. Like

an adjacency matrix form of a graph, a k-embedding set can

be treated as an adjacency k-dimension tensor (see Figure

2). Kaleido stores the graph structure in compressed sparse
column (CSC), which is equivalent to the sparse adjacency

matrix of the graph. Inspired by CSC, we design a succinct

data structure for embeddings, which is called compressed
sparse embedding (CSE). If a k-embedding set is stored in

CSE, we call it k-CSE.

As illustrated in Figure 5, Kaleido stores embeddings level-

by-level. In each level, the structure of embeddings is stored

in two arrays. Vertex array (vertl) indicates the last vertex
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(a) 2-Embeddings (b) 3-Embeddings
Fig. 5. The structure of compressed sparse embedding (CSE). The gray array
vert1 does not really store in Kaleido; it indicates the relationship between
vertex array and offset array. The dotted lines divide CSE into different levels.

of each embedding in level l. Offset array (offl) indicates

the start offset offl(i) and end offset offl(i + 1) in vertex

array of level l. A slice of vertex array,
[
offl(i), offl(i +

1)
)
, indicates that these vertices possesses same embedding

prefix. For example, in Figure 5a, the first two elements of

offset array are 0 and 2 which indicates a slice of vertex array

{vert2(i)|i ≥ 0, i < 2} = {2, 5}. It correspond to s6 and

s7 illustrated in Figure 4, which possess the same embedding

prefix {1}. Therefore each vertex in vertex array corresponds

to a unique embedding in the current level and an embedding

prefix of next level. Therefore the length of vertex array in

level i is equal to the length of offset array in level i + 1
minus 1 (to compute conveniently, the last element indicate

the length of verti).
Now given an arbitrary offset of vertex array in level k, we

can obtain the k-embedding corresponding to this offset. For

example, given offset 5 of vertex array in level 3 in Figure

5b, the goal is to find the corresponded 3-embedding. First,

we note the last element of this embedding is vert3(5) = 5,

〈·, ·, 5〉. Then we find that offset 5 is greater than off3(2) = 4
and less than off3(3) = 6, thus the coordinate of offset 5 in

offset array in level 3 is 2. Next, we do this processing again

in level 2, and the offset of the vertex array is 2. At last, we

obtain the 3-embedding 〈2, 3, 5〉, which corresponds to s18 in

Figure 4.

Complexity: Each iteration of the embedding exploration

extends O(d̄) space (d̄ is the average of vertex degree and

d̄ ∝ |E|/|V |). Thus the space complexity of k-CSE is

O(|E|k−1/|V |k−2). Given an arbitrary offset of vertex array

in level k, the time complexity of obtain the corresponding

embedding is O(k log d̄) = O(log(|E|/|V |)).
B. Hybrid Storage

According to the space complexity of CSE, exploring

(k+1)-embeddings from k-CSE needs extra O(|E|k/|V |k−1)
space. The memory would be insufficient when the exploration

depth increases. Thanks to the level-by-level structure of CSE,

Kaleido stores large levels of CSE on disk intuitively. We call

this half-memory-half-disk storage the hybrid storage.

First, Kaleido partitions vertk into several parts contin-

uously and evenly and assigns to each thread. Then each

thread calculates the (k+1)th elements of each k-embedding

and records the offset when all canonical candidates of a

k-embedding are enumerated. Finally, each thread appends

their part of vertk+1 to the writing queue and the writing

queue flushes these parts to disk (see Figure 6). If memory

is sufficient, Kaleido merges t parts of offk+1 in memory,

Fig. 6. Exploration on Hybrid CSE. The first k levels are stored in memory.
The (k+ 1)th level is stored on disk in t parts (in this example, t equals to
the thread number).

otherwise appends each part of offk+1 to the writing queue.

When Kaleido explores (k+2)-embeddings and constructs the

(k + 2)th level of embeddings, load the first part of vertk+1

and offk+1 (if exists) on disk. Then Kaleido executes the

former process again and stores vertk+2 and offk+2 to disk

part by part, until it finishes the last part of vertk+1.

To explore deeper embeddings or process embeddings in the

hybrid storage, Kaleido adopts the sliding window strategy

to hide the overhead of I/O. When processing the hybrid

storage embeddings, Kaleido maintains h windows for h
levels stored on disk. Each window respectively loads two

parts of a level of CSE, which are produced by t threads as

shown in Figure 6. When all the first parts (main part) of

h windows are loaded, Kaleido processes all embeddings in

current windows in parallel, while the h windows load the

second parts (candidate part) in its corresponding level. If

the main part of a window is processed, Kaleido slides this

window to the next position (swaps the main part and the

candidate part, then abandons the candidate part). Repeat this

procedure until all parts on disk are processed.

Load-balance of Hybrid Storage. In each iteration of the

embedding exploration, Kaleido expands a neighbor vertex or

edge for each embedding. Similar to the definition of the vertex

degree, We say an embedding degree is the neighbors’ number

of the embedding. One of the hallmark properties of natural

graphs is their skewed power-law degree distribution [13].

The degree distribution of embeddings is also skewed power-

law distribution. When the RAM can afford the embeddings

data, Kaleido adopts a work-steal strategy to deal with the

load-balance problem in the exploration. However, when the

RAM is insufficient, Kaleido stores the high-level embeddings

on disk in several parts. The unbalanced partition strategy of

the embedding exploration would produce huge parts which

cannot load to the memory once. The work-steal strategy

can only balance the execution of the exploration but cannot

balance the size of each part.

To balance the workload in the exploration of the (k+1)th

level, Kaleido predicts the size of vertk+1. Figure 7 illustrates

an example of the prediction. According to the structure of

CSE, the neighbor set of the embedding 〈1, 2, 3〉 is the union

of the neighbor set of 〈1, 2〉 and the neighbor set of 〈3〉.
From offset arrays in CSE, we easily obtain the degree of

〈1, 2〉 and 3. Kaleido predicts the candidate size accurately by

merging the two sources of the candidate. The time complexity
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Fig. 7. An example of the prediction of the candidate size of embedding
〈1, 2, 3〉. Candidates of 〈1, 2, 3〉 is the union of the neighbor set of 〈1, 2〉
and the neighbor set of 〈3〉.
of the merging is O(d̄). According to the prediction, Kaleido

partitions the exploration tasks evenly to each thread.

V. PATTERN AGGREGATION PHASE

After k iterations of the embedding exploration, Kaleido

collects all possible canonical embeddings in the input graph,

whose size is no more than k. Then in the pattern aggregation

phase, Kaleido calculates the pattern of each embedding and

aggregates them.

In this section, we introduce the design of a compact data

structure for the pattern and a lightweight strategy for checking

graph isomorphism. The solution of GI problem is departed

into three parts: (i) eigenvalue-based isomorphism checking al-

gorithm for small embeddings (k < 8); (ii) specially checking

isomorphism for tree-shape-embeddings and (iii) using Bliss

to check the rest embeddings.

A. The Compact Pattern

Patterns are stored in a simple compact data structure. The

data structure contains each pattern’s label information and

structural information. Generally, we use an adjacency matrix

to indicate the structural information of this pattern and a label

array to indicate vertex labels. The order of labels matches

with an adjacency matrix. Kaleido stores the up-triangle part

of adjacency matrix in the form of 1-dimension array and

stores it as a bitmap. Obviously, storing a k-pattern in this

data structure needs a label array whose size is k, and a bitmap

whose size is 1
2 (k(k − 1)).

B. Eigenvalue-based isomorphism Checking

Algorithm 1 illustrates the solution of the GI problem in

Kaleido where the size of embedding is less than 8. Kaleido

maintains the vertex label array L in ascending order (lines 30-

31) and the degrees (D) of the same label vertices in ascending

order as well (lines 32-33). Note that Swap function also

maintains the adjacency matrix A, so that the vertex order in

A is consisting with L and D. Then Kaleido builds a weighted

adjacency matrix M (line 34, lines 12-18) whose edge weights

is a concatenation of two vertex labels (lines 16-17). Note that

label li is no more than label lj after the sorting in lines 29-

33. Next, Kaleido calculates eigenvalues of the matrix M. To

simplify the calculation of eigenvalues, Kaleido calculates the

normalized characteristic polynomial of the matrix M by the

Faddeev-LeVerrier algorithm (line 35, lines 19-26). Finally,

Kaleido compares the label array L, the degree array D and the

characteristic polynomial P of two input embeddings to check

the isomorphism. Note that for unlabeled graphs, Kaleido sets

the label of each vertex as a fixed value. For edge labeled

Algorithm 1: The graph isomorphism checking in Kaleido

Input: Embeddings ea, eb
Output: true iff ea is isomorphic to eb

1 Func Init(e):
2 Label array L← {li = label(vi)|vi ∈ e, ∀i ∈ [1, k]}
3 Adjacency matrix A← {ai,j = CheckLink(vi, vj)|vi, vj ∈

e, i < j, ∀i, j ∈ [1, k]}
4 Degree array D ← {di = deg(vi)|vi ∈ e, ∀i ∈ [1, k]}
5 return L,A, D

6 Func Swap(i, j):
7 Swap li and lj
8 for 1 ≤ t ≤ k do
9 Swap ai,t and aj,t

10 Swap at,i and at,j

11 Swap di and dj

12 Func WeightedAdjMatrix(L,A):
13 M← {mi,j = 0|∀i, j ∈ [1, k]}
14 for 1 ≤ i < j ≤ n do
15 if ai,j = 1 then
16 mi,j ← li|lj
17 mj,i ← li|lj
18 return M

19 Func CharPloynomical(M):
20 Characteristic polynomial P ← {pi = 0|∀i ∈ [1, k]}
21 C←M
22 for 1 ≤ i ≤ k do
23 if i > 1 then
24 C←M · (C+ pk−i+1Ik)

25 pi−k = − tr(C)
k

26 return P

27 Func Eigen(e):
28 L,A, D ← Init(e)
29 for 1 ≤ i < j ≤ n do
30 if li > lj then
31 Swap(i, j)
32 else if li = lj and di > dj then
33 Swap(i, j)

34 M← WeightedAdjMatrix(L,A)
35 P ← CharPloynomical(M)
36 return L,D, P

37 La, Da, Pa ← Eigen(ea)
38 Lb, Db, Pb ← Eigen(eb)
39 return La = Lb and Da = Db and Pa = Pb

graphs, Kaleido sets values of the weighted adjacency matrix

as edge labels of the input graph (line 16-17).

Theorem 1. Let ea = (Va, Ea) and eb = (Vb, Eb) be two
k-embeddings of an undirected graph G, k < 8. Let L,D, P
denote the label array, the degree array and the characteristic
polynomial of the weighted adjacency matrix of an embedding
e respectively and are calculated by Eigen(e) in Algorithm
1 (lines 27-36). Embedding ea is isomorphic to embedding eb
if and only if La = Lb, Da = Db and Pa = Pb.

Proof. Necessity. In Algorithm 1, Ma and Mb denote the

weighted adjacency matrices of the input embedding ea and eb
respectively. According to Definition 1, the isomorphism leads

to La = Lb, Da = Db and Ma can be transformed to Mb

by a similarity transformation. Thus there exists a permutation

matrix P, such that Mb = PMaP
−1. Thus Ma and Mb are

similar. Similar matrices have the same eigenvalues. Note that,
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in this paper, we say that graphs have the same eigenvalues

implies that their algebraic multiplicities are the same as well.

Therefore Pa = Pb.

Sufficiency. According to the necessity, if eigenvalues of

two patterns are different, it holds that these patterns are non-

isomorphic. Unfortunately, there exist non-isomorphic graphs

which have the same eigenvalues. Harary et at. [16] listed

counterexamples of non-isomorphic graphs with the same

eigenvalues.Harary et at. also proved that if two k-embeddings
(k < 6) have the same eigenvalues, they are isomorphic; if two
k-embeddings (k < 8) have the same vertex degrees and the
same eigenvalues, they are isomorphic. The proof of Harary

et at. is under the constraint that input graphs are unlabeled.

Next, we prove the sufficiency in labeled graphs.

Note εa = (Vεa , Eεa) as a graph which contains the same

vertex permutation with ea. The vertices of εa are unlabeled,

while edges are labeled and the weighted adjacency matrix

is the same as Ma. Note εb = (Vεb , Eεb) symmetrically.

According to the conclusion of Harary et at., Da = Db and

Pa = Pb guarantee that εa and εb are isomorphic. Thus, there

exists a bijection, f(u) = v, ∀u ∈ Vεa , ∀v ∈ Vεb , between

Vεa and Vεb , such that (f(u), f(v)) ∈ Eεb and L(u, v) =
L(f(u), f(v)), ∀(u, v) ∈ Eεa . Note that the label of an edge

in εa or εb indicates labels of vertices which are linked by this

edge (Algorithm 1 lines 16-17). Then combining La = Lb and

Da = Db, it leads that L(u) = L(f(u)), ∀u ∈ Va. Therefore

ea is isomorphic to eb.

C. Deal with Tree-shape-embeddings

In the procedure of exploring natural graphs, we have

observed an interesting fact that the tree-shape-embeddings
account for a large proportion of all explored embeddings.

On the other hand, the time complexity of state-of-the-art
solution of tree isomorphism is O(n), in which n is the
number of vertices in a tree-shape-graph. The solution firstly

finds the root of a tree-shape-graph which stands at O(n),
then canonizes the rooted tree which stands at O(log n) [8].

Therefore, solving tree isomorphism is theoretically easier

than graph isomorphism. Thus Kaleido specially checks tree

isomorphism in exploring embeddings.

In Section I, we discuss the exponential growth of the

embeddings. It is very difficult to statistic the precise distri-

bution of the shape of relative large embeddings. To simulate

the distribution of the shape of embeddings, we design an

experiment to sample embeddings over 4 natural graphs.

We use k steps to generate a k-embedding randomly.

Initially, choose a random vertex as a 1-embedding. In the

ith step, choose a random neighbor of the (i− 1)-embedding

and unite them as an i-embedding. Once the kth step is fin-

ished, a random k-embedding is generated. Then statistic the

proportion of tree-shape-embeddings in the whole generated

embeddings.

Figure 8 illustrates the proportion of tree-shape-embeddings

from the 8th to the 15th iterations of the vertex-induced explo-

ration and the edge-induced exploration over 5 natural graphs

(see Table I). In the vertex-induced exploration over Twitter,
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Fig. 8. The proportion of tree-shape-embeddings in the exploration. The x-
axis indicates the iteration of exploration. The y-axis indicates the proportion
of tree-shape-embeddings in all embeddings.
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Fig. 9. Encode a tree-shape-embedding. Colors indicate labels of each node.
The bold lines and vertices indicate the longest path in the embedding. The
right figure indicates the rooted tree. The gray node denotes the fake point.

the tree-shape-embeddings account for 88.9% to 51.1% (the

largest proportion over 5 natural graphs). The result over MiCo

shows that the proportions are 66.5% to 39.1% (the lowest

proportion over 5 natural graphs). Though the result reveals a

downtrend of the proportion in the vertex-induced expression,

the tree-shape-embeddings still account for a considerable

proportion. In the edge-induced explorations, the tree-shape-

embeddings account for 99.9% to 99.7% over Twitter and

98.8% to 97.6% over MiCo. As discussed in Section I, the

complexity of k-vertex-embeddings is O(N · d̄k−1). The kth

iteration of the edge-induced exploration generated k-edge-

embeddings in which only the tree-shape-embeddings are k-

vertex-embeddings. Therefore the tree-shape-embeddings ac-

count for the vast majority in the edge-induced exploration.

The tree isomorphism problem is well studied. Kaleido

adopts the AHU algorithm [3] to solve the tree isomorphism

problem and canonizes a tree-shape-embedding in next steps.

Original AHU algorithm solve the unlabeled tree isomorphism

problem. To deal with labeled trees, we extend the AHU

algorithm (see Figure 9). First, find the longest path in a tree-

shape-embedding; if the length of this path is odd, mark the

central point as the root, otherwise, break the edge linked

the two central points and link this points to a fake point,

then mark this fake point as the root (the gray node in

Figure 9). Then recursively mark neighbors of the root as

the root of the corresponding subtree. A rooted tree of this

tree-shape-embedding is built. We note a rooted tree as T , the

immediate subtrees as S1, ..., Sc, in which c is the number of

the children of the root. The canonical form CanT is defined

as Lr0CanSi1
...CanSic

1, in which Lr indicates the label of

the root, the lexicographical order of Can(S1), ..., Can(Sc)
determines the order of Si1 , ..., Sic . Kaleido compares the

canonical form of the rooted tree to check tree isomorphism.

For edge labeled trees, assign the edge label to the vertex

which is near the leaf in the rooted tree. If there exist two

central points, assign both of them the label of the broken

edge. Then remove the label on edges and an edge labeled

tree transforms to a vertex labeled tree.
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TABLE I
DATASET USED IN EVALUATION

Dataset Vertices Edges Labels Avg. Degree

CiteSeer 3,312 4,536 6 3
MiCo 100,000 1,080,298 29 22
Patent 3,774,768 16,518,948 37 9

Youtube 22,763,734 195,996,204 29 17
Orkut 3,072,441 117,185,083 - 76

Twitter 41,581,361 1,468,365,183 - 73

VI. EVALUATION

In this section, we evaluate Kaleido. First, we compare

Kaleido with the state-of-art graph mining systems. Then we

compare the graph isomorphic checking algorithm in Kaleido

with Bliss. Next, we test the scalability of Kaleido in different

applications. Finally, we test the I/O performance in the hybrid

storage. Our experiments are performed on a single machine

with Intel(R) Xeon(R) Gold 5117 CPU (2 nodes; 56 hyper-

threads), 128GB memory, and 1 SSD with 480GB disk space

(read bandwidth: 360MB/s, write bandwidth: 480MB/s). The

operating system is CentOS 7.

A. Experimental Setup

Datasets: We use 6 datasets as showed in Table I. CiteSeer

[12] has publications as vertices, with their Computer Science

area as a label, and citations as edges. MiCo [12] models

the Microsoft co-authorship and consists of an undirected

graph whose nodes represent authors and are labeled with the

author’s field. Patents [22] includes all citations made by US

Patents granted between 1975 and 1999; the year the patent

was granted is considered to be the label. Youtube [10] lists

crawled video ids and related videos for each video posted

from February 2007 to July 2008. The label is the category of

each video. Orkut [25] is a relatively dense user friendship

network. Twitter [21] is a relatively large unlabeled graph

which represents the Twitter social network.

Applications: We test 4 mining applications, FSM, Motif

Counting, Clique Discovery and Triangle Counting. For k-

FSM, we mine the frequent subgraphs which k − 1 edges

and at most k vertices. In our experiments, we run 3-, 4-, 5-

FSM over several datasets. Motif Counting executions are run

with subgraphs whose number of vertices is 3, 4 or 5. Clique

Discovery executions are run with subgraphs whose number

of vertices is 3, 4 or 5. Triangle Counting counts the number

of triangles in the input graph.

B. Comparisons with Mining Systems

We ran all applications on Kaleido and compared it with

three state-of-the-art systems, Arabesque [36], RStream [37]

and ScaleMine [1]. Note that ScaleMine was designed spe-

cially to mine frequent subgraphs, and hence we could only

obtain FSM’s performance for it. Other mining systems are

either not publicly available, such as NScale [29], or do not

support FSM and motif counting, such as G-Miner [9]. We ran

all these testing cases in a single node server with full usage of

56 threads. As we discussed the limitations of distributed sys-

tems in Section I, we focus on the performance of Arabesque

and ScaleMine on a single node. We deployed the Hadoop
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Fig. 10. Comparisons of Memory Consumption with Arabesque, RStream
and ScaleMine. These figures indicate the memory reduction factor of the
mining algorithms in Table II. Each x-axis indicates the argument of each
algorithm. Failed executions are omitted.

2.7.7 in the experimental environment and put datasets on the

local hdfs system, then Arabesque reads input graphs from the

hdfs system. In testing RStream, the partition number of each

algorithm was set to 10, 20, 50, 100 respectively, then chose

the fastest result. In testing ScaleMine, the number of worker

nodes was set to 1, 2, 4, 8, 16 respectively, then chose the

fastest result. Table II reports the running time of the three

systems and Figure 10 reports the memory consumptions.

Note that in this set of experiments, Kaleido, Arabesque

and ScaleMine run all applications in memory, while RStream

writes its intermediate data to disk. Kaleido outperforms both

Arabesque, RStream and Scale in all cases. Excluding the

small graph CiteSeer, Kaleido outperforms Arabesque by an

overall (GeoMean) of 13.2×, outperforms RStream by an

overall of 64.8× and outperforms ScaleMine by an overall

of 36.6×; the memory consumption of Kaleido is reduced by

7.2× over Arabesque, 9.9× over RStream and 2.6×. Note that

RStream uses std::set to maintain the graph topological

structure, therefore it fails in loading Youtube in our 128 GB

memory environment. The triangle counting in RStream uses

another data structure of the graph and counting strategy, and

it runs normally with the GRAS model. ScaleMine runs out

of memory over Youtube as well.

FSM: As discussed earlier, we ran FSM by exploring

embeddings in edge-induced strategy and we used the MNI

support metric. We explicitly state the support used in each

experiment, since this parameter is sensitive to the input graph.

Theoretically, the smaller support is, the more computation

is needed. However, the calculation of MNI support for

each pattern needs much more computation resources. In the

implementation of the FSM in Kaleido, we do not statistic the

accurate MNI support of each pattern. Instead, when the MNI

support of any pattern reaches the threshold given by the user,

we mark this pattern a frequent pattern and prune it from the

candidate. Therefore the run-time of the FSM computation

in Kaleido does not decrease monotonically as the support

increases. It will increases to peak time, due to meeting the

pruning threshold is getting harder, then decreases normally

because the frequent vertices and edges are more and less.

As discussed in Section IV-A, comparing with the interme-

diate data structure of Arabesque ODAG, the structure of em-

beddings CSE in Kaleido saves time from the extra canonical

checking when travel the embeddings, but it trades some space

of the intermediate data to obtain more efficient performance
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TABLE II
COMPARISONS OF RUNNING TIME BETWEEN KALEIDO (KA), ARABESQUE (AR) AND RSTREAM (RS) ON FOUR MINING ALGORITHMS, 3-FREQUENT

SUBGRAPH MINING (FSM, OPTION: SUPPORT), MOTIF COUNTING (MOTIF, OPTION: k), CLIQUE DISCOVERY (CLIQUE, OPTION: k) AND TRIANGLE

COUNTING (TC) OVER THE FORMER DATASETS, CITESEER (CS), MICO (MC), PATENTS (PA), YOUTUBE (YT). EACH RESULT INDICATES THE RUNNING

TIME OF THE APPLICATION IN SECOND. ‘OOM’ INDICATES THE EXECUTION RUNS OUT OF THE MEMORY. ‘/’ INDICATES THE EXECUTION RUNS OUT OF

THE SSD. ‘-’ INDICATES THE SYSTEM DOES NOT SUPPORT THE APPLICATION.

CS MC PA YT
Apps Op KA AR RS SM KA AR RS SM KA AR RS SM KA AR RS SM
FSM 300 0.04 23.0 0.14 1.18 5.6 101.7 330.7 275.1 15.3 139.8 1228 2417 127.4 587.0 oom oom
FSM 500 0.04 17.1 0.14 1.13 6.0 70.7 326.2 170.1 16.5 133.0 1220 2318 130.3 504.6 oom oom
FSM 1000 0.03 17.0 0.14 0.16 5.7 46.6 316.6 48.3 18.3 119.4 1222 2116 132.2 498.1 oom oom
FSM 5000 0.02 17.0 0.14 0.16 2.7 29.6 261.7 7.4 20.2 102.6 1179 779 160.8 496.1 oom oom
Motif 3 0.03 23.4 0.11 - 0.9 28.3 73.9 - 4.2 60.2 100.6 - 38.9 443.2 oom -
Motif 4 0.06 26.1 0.42 - 219.4 284.7 / - 253.2 634.5 / - 6576 oom oom -
Clique 3 0.02 23.0 0.02 - 0.07 27.9 4.8 - 0.56 60.5 95.3 - 3.79 342.3 oom -
Clique 4 0.03 27.0 0.03 - 0.82 37.7 167.2 - 1.14 79.6 196.3 - 9.39 573.4 oom -
Clique 5 0.04 29.9 0.04 - 34.2 299.0 oom - 1.46 84.8 212.9 - 17.5 697.3 oom -

TC 0.02 23.2 0.05 - 0.07 25.1 2.7 - 0.52 70.1 5.41 - 2.24 287.1 39.7 -

since the space complexity of ODAG is O(|V |2). Even so,

Kaleido saves considerable space comparing Arabesque over

MiCo and Patent, because Arabesque needs a huge amount of

memory to establish its based system, Giraph [5], and graph

data structure and the isomorphism checking library Bliss also

consumes considerable space.

We found that in the relational phase of RStream [37],

the shuffling operation and the aggregating operation produce

many memory allocations and deallocations. The shuffling

operation turns each tuple into a quick pattern, which allocates

and deallocates memory frequently. The aggregating operation

builds a hashmap to statistic the support of each pattern in

using Bliss. We will discuss the comparison with Bliss in

Section VI-C.

ScaleMine gets benefits of its approximate phase and prun-

ing strategy when the number of frequent patterns decreases.

However, when frequency support cannot filter most of the

explored embeddings, ScaleMine needs more time to figure

out frequent patterns.

Motif Counting: 4-Motif in RStream needs 6 iterations to

explore all of 4-embeddings and writes too much intermediate

data to disk, so that our 480 GB SSD cannot afford it.

Thus we tested 4-Motif in RStream over MiCo and Patent

on another server, which has an Intel(R) Xeon(R) E5-2640

v4 CPU with a total of 40 threads, 128 GB RAM and 4

TB Seagate ST4000NM0024-1HT HDD disk (read bandwidth:

130MB/s, write bandwidth: 130MB/s). The test was fully used

40 threads and the result shows that RStream produces 1.64

TB and 549.15 GB intermediate data over MiCo and Patent

respectively and finishes in 114,917s and 19,740s.

Clique Discovery: To discover k-cliques, RStream uses

a tricky solution with only k iterations of the edge-induced

exploration. However, it still performs than Arabesque except

3-clique over MiCo and produces many intermediate data. For

example, it produces 51.2 GB intermediate data in 4-clique

over MiCo.

Triangle Counting: To counting triangles in a given graph,

Kaleido treats each edge as a 2-embedding and counts the

common adjacency vertices in this embedding. Both RStream

and Arabesque scale poorly to larger graphs. The memory
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Fig. 11. Comparisons of isomorphism checking algorithms with Bliss, Nauty
and Trace. The upper figures compare the run-time; the lower figures compare
the memory consumption. Each x-axis indicates the application argument and
dataset. The supports of 3-, 4-, 5-FSM are 300, 100k, 100 over corresponding
graphs. 3-FSM in Kaleido with Bliss over YT ran out of memory.

consumption of Kaleido is reduced by 22.3× over Arabesque

and 7.3× over RStream.

C. Comparisons with Isomorphism Checking Algorithms

In this section, we compare our isomorphism checking

algorithm with the state-of-the-art softwares, Bliss [19], Nauty

[24] and Trace [27]. To test these softwares, we replace

the isomorphism checking algorithm in Kaleido with them.

To fully evaluate the performance of isomorphism checking

algorithms in Kaleido, we compared 3-FSM, 4-, 5-FSM and

Motif Counting respectively over different datasets. Note that

both Nauty and Trace only suit for unlabeled graphs, therefore

we only tested these softwares in Motif Counting. Figure 11

reports result of the comparisons.

Eigenvalue-based. For motif counting, the speedup of Bliss,

Nauty and Trace is 6.8×, 9.4× and 16.6× respectively but

the memory consumption is similar. For FSM, the speedup

of Bliss is 2.7× and the memory consumption reduces by

3.1×. The reason is that the pattern considered by motif

counting only contains the structural information of subgraphs,

while it contains the label information in FSM. Kaleido builds

the weighted adjacency matrix for each pattern, while others

build search trees. In FSM, Bliss needs larger hash space and
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Fig. 12. CPU utilization breakdown during FSM (F), motif counting (M) and
clique discovery (C) over CS, MC and PA. Options and dataset are stated in
the brackets.

consumes more memory than motif counting. On the other

hand, motif counting is a simple statistic of the occurrence

of each motif, while FSM calculates the MNI support of

each pattern and this calculation needs quite an amount of

computation resources.

Tree isomorphism. Figure 11 also compares the tree

isomorphism strategy with the softwares. It illustrates that

the running time and memory usage is negative relative to

the proportion of tree-shape-embeddings. To fully test the

performance of tree isomorphism in large embeddings, we

tested 8-FSM with support 250 over CiteSeer. The tree-

shape-embeddings account for 98.9%. Kaleido runs this task

in 890.3s and consumes 26GB memory, while it fails in

using Bliss for the out-of-memory. Figure 12 shows the CPU

utilization breakdown of this execution. Even though the non-

tree-shape-embeddings account for 1.1%, running Bliss still

takes a significant fraction of the CPU utilization.

D. Execution time breakdown

The CPU utilization breakdown of Figure 12 shows that

the embedding exploration phase (exploration and canoni-

cal checking) and the pattern aggregation phase (computing

support, isomorphism checking and aggregation) occupies a

predominant fraction of CPU utilization. Both tests show that

aggregation takes a significant fraction of CPU utilization.

Kaleido uses std::unordered_map to statistic patterns or

cliques, therefore the aggregation would be faster if the more

efficient hashmap are used. Besides, isomorphism checking

takes a significant fraction of CPU utilization in testing FSM,

while the embedding exploration phase occupies a predomi-

nant fraction in testing motif counting and clique discovery.

E. Scalability

To evaluate the scalability of Kaleido, we tested 3-FSM with

5000 support, 3-Motif and 5-Clique over Patent in varying

numbers of threads. Figure 13 illustrates Kaleido’s run-time

and memory consumption for this experiment. It illustrates

that motif counting and clique discovery scale ideally both

in the run-time and the memory consumption. While FSM

only performs sublinearly in the run-time and the memory

consumption increases as the number of threads grows. The

implementation of FSM causes this phenomenon. To avoid

using concurrent hashmap in the statistic of frequent patterns,

we calculate the support of each pattern in every thread

independently. It avoids the synchronization over each thread,

but it consumes more memory in the pattern computation

phase. The overhead of merging aggregating hashmap for FSM

in multi-thread is inevitable in our implementation. If we could

replace it by an efficient concurrent hashmap, the scalability

of FSM in Kaleido would near linear scaling.
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Fig. 14. I/O of 4-FSM over Patent with support 100k. These four figures
show the I/O in limiting the memory cache of Kaleido with cgroup. The
x-axis indicates the run-time of FSM; the y-axis indicates the reading and
writing speed.

F. I/O and Load-balance in Hybrid Storage

To evaluate the performance of hybrid storage of the inter-

mediate data, we ran 4-FSM over Patent with 50k and 100k

supports and 4-Motif over Patent and MiCo in memory and on

the hybrid storage respectively. In the hybrid storage testing,

we stored the last layer of CSE on SSDs. Table III reports the

result of these applications. It illustrates that the performance

attenuation of using hybrid storage in Kaleido is acceptable

(lower than 20% in these applications). For 4-FSM over Patent,

the memory consumption reduced by the size of the last layer

in CSE. For 4-Motif over MiCo, the memory consumption

increases, because we built a buffer in fixed size for each

thread (in these applications, 16 MB) and the total size of

buffers is larger than the last layer of embeddings. Note that

k-Motif only stores k − 1 layers embeddings in Kaleido.

TABLE III
PERFORMANCE OF KALEIDO ON THE HYBRID STORAGE IN 4-FSM (F)

OVER PATENT WITH 50K AND 100K SUPPORTS AND 4-MOTIF (M) OVER

PATENT AND MICO.

Applications F(PA,50K) F(PA,100K) M(PA) M(MC)

In-Memory Yes No Yes No Yes No Yes No

Times(s) 312 363 126 136 253 260 219 229

Memory(GB) 76.7 14.7 32.8 11.4 2.5 1.9 0.6 1.4

For 4-FSM over Patent with 100k support, the memory

consumption is 11.4 GB and the size of the intermediate data is

less than our experimental server (128 GB). To fully evaluate

the design of embedding hybrid storage in Kaleido, we used

cgroup in Linux to limit the maximum RAM of Kaleido in

our experimental environment.

Figure 14 illustrates the I/O of this application in different

limitations of max RAM. When the limitation of maximum

RAM is larger than 24 GB, the intermediate data will be

fully cached in memory. Figure 15 illustrates the run-time

of different limitations of max RAM. When the limitation of

maximum RAM is lower than 20 GB, the application reads
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Fig. 15. Run-time of 4-FSM over Patent with 100k support in the different
limitation of maximum RAM. The x-axis indicates the limitation of max
RAM; the y-axis indicates the run-time.

the intermediate data from the disk and the run-time increases

within 20%.

Load-balance. We evaluated the load-balance in hybrid

storage by verifying the effectiveness of the prediction of the

candidate size. We ran 4-FSM with support 50 K and 100 K

over Patent and 4-Motif over Patent and MiCo. The result is

illustrated in Figure 16.

0s
100s
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300s
400s

M(MC) M(PA) F(PA,50k)F(PA,100k)

Prediction

(a) Run-Time

Non-Prediction

0%
25%
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100%

M(MC) M(PA) F(PA,50k)F(PA,100k)

(b) CPU Utilization Rate
Fig. 16. The comparison of prediction and non-prediction in hybrid storage.
The first two columns in Figure (a) and (b) compare the 4-Motif over MiCo
and Patent; the last two columns compare the 4-FSM over Patent with supports
50 K and 100 K.

G. Larger Graphs with Kaleido

We complete our evaluation by testing Kaleido over large

graphs. We use Orkut and Twitter graphs for this evaluation,

both of which are relatively dense graphs with an average

degree of 76 and 73. For these two graphs, we don’t have

real-world labels, so we focus on graph mining problems that

look for structural patterns, such as Motif Counting and Clique

Discovery.

Table IV reports the running time, the maximum memory

used and the number of interesting embeddings that Kaleido

processed. For each application, the result reveals that the

running time is positive corresponding to the number of

embeddings. Overall, the result shows that Kaleido can process

large dense graphs with a single commodity server that we use.

TABLE IV
PERFORMANCE OF KALEIDO ON RELATIVE DENSER AND LARGER

GRAPHS.

Applications Times Memory Embeddings

3-Motif(Orkut) 580.9s 8.9GB 44× 109

5-Clique(Orkut) 254.9s 47.4GB 15× 109

3-Motif(Twitter) 9h 724s 109.5GB 128× 1012

3-Clique(Twitter) 1097s 109.5GB 93× 109

VII. RELATED WORK

Over the last decades, graph mining has emerged as an

important research topic. Here we discuss the state-of-the-art

for the graph mining problems tackled in this paper.

Graph Mining Algorithms gSpan [38] is an efficient fre-

quent subgraph mining algorithm designed for mining multiple

input graphs. However, gSpan is designed for multiple graphs

of mining problems. If we have a single input graph, we

have to find multiple instances in the same graph, therefore

it complexes the problem. Michihiro et al. [20] first proposed

algorithms to mine patterns from a single graph. They use

an expensive anti-monotonic definition of support based on

the maximal independent set to find edge-disjoint embeddings.

GraMi [12] proposes an effective method in the single large

graph and presents an extended version with supporting struc-

tural constraints and an approximate version. Pržulj et al. [28]

introduces the motif counting problem. Ribeiro et al. [30]

presents G-Tries which is an effective approach for storing and

finding the frequency of motifs. Aparı́cio et al. [4] designs and

implements a parallel version of G-Tries. Maximal clique is a

well-studied problem.

Graph Mining Systems Arabesque [36] is a distributed

graph mining system which supports popular mining algo-

rithms. Arabesque proposed a graph exploration model with

the concept of embeddings. Arabesque explores all the em-

beddings under constraining of user-defined filters and the

developer processes each embedding with a filter-process pro-

gramming model. Compared with Kaleido, Arabesque needs

another canonically checking of each embedding in traveling

embeddings. ScaleMine [1] is a parallel frequent subgraph

mining system, which computes the approximate solution of

frequent patterns firstly and statistics the exact solution by

using the results of the first step to prune the search space.

NScale [29] is designed to solve graph mining problems

using MapReduce framework. It proposes a neighborhood-

centric model, in which a k-hop neighborhood subgraph

of an interest-point is constructed with k rounds of Map-

Reduce and each round of Map-Reduce extends the 1-hop new

neighbors. However, the overhead of MapReduce in processing

candidate subgraphs is very high. G-Miner [9] is a distributed

graph mining system, which models subgraph processing as

independent tasks and designs suitable scheduling for the

task pipeline. However, G-Miner does not support FSM and

motif counting. ASAP [18] is a distributed, sampling-based

approximate computation engine for graph pattern mining.

ASAP leverages graph approximation theory and extends it to

general patterns in a distributed setting. It allows users to trade-

off accuracy for result latency. However, ASAP only counts

the interest of the user with an acceptable error, like motif

counting and pattern matching, but cannot return the exact

result of frequent patterns. RStream [37] is the first single-

machine, out-of-core graph mining system. RStream employs

a GRAS programming model which combines GAS model

and relational algebra to support a wide variety of mining

algorithms. However, the join of subgraphs and edges of the

input graph in RStream is still an expensive operation. The

edge-induced exploration of subgraphs also complexes some

mining problems, like motif counting and clique discovery.

Graph Isomorphism Checking Libraries The most com-

mon practical approach for the graph isomorphism problems

is canonical labeling, a process in which a graph is relabeled

in such a way that isomorphic graphs are identical after

relabeling. The main strategy of the canonical labeling is

building a search tree for the input graph. Nauty [24] is the first

program that could handle large automorphism groups; it uses
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automorphism to prune the search in testing automorphism.

Nauty generates the search tree in depth-first order, while

Trace [27] introduces a breadth-first search in generating the

search tree. However, these libraries focus on the checking of

the automorphism, which only suit for unlabeled graphs. Bliss

[19] supports the isomorphism checking of labeled graphs.

However, building the search tree brings frequently memory

allocating and deallocating which slow down the processing

and consume a huge amount of memory. Besides, Bliss is

designed for the large graph isomorphic checking, while the

eigenvalue checking strategy is sufficient in the mining scenes.

VIII. CONCLUSION

In this paper, we present Kaleido, a single-machine, out-

of-core graph mining system. Kaleido follows the subgraph-

centric model and provides a user-friendly simple API that

allows non-experts to build graph mining workloads easily. To

efficiently store and process the huge amount of intermediate

data, Kaleido builds a succinct intermediate data structure

and adjusts the storage in memory or out-of-core smoothly

according to the scale of intermediate data. Kaleido designs a

lightweight isomorphism checking strategy to solve the labeled

graph isomorphism problem. Experimental results demonstrate

that Kaleido is more efficient than the state-of-the-art graph

mining systems in most cases. The isomorphism checking

algorithm in Kaleido is more efficient and consumes less

memory than state-of-the-art graph libraries.
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