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ABSTRACT
Reading comprehension (RC) aims to locate a text span from a
context passage to answer the given question. Despite the effec-
tiveness of modern neural RC models, most existing work relies
on maximum likelihood estimation (MLE) and ignores the struc-
ture of the output space. That is during training, one treats all the
text spans do not match the ground truth as equally poor, leading
to overconfident predictions on ground truth labels and reduced
generalization ability in test. One way to bridge the gap between
training and test is to take into account the task reward of alter-
native outputs using the reinforcement learning (RL) algorithms,
which is often deficient in optimization as compared with MLE. In
this paper, we propose a new learning criterion for the RC task
which combines the merits of both MLE and RL-based methods.
Specifically, we show that we are able to derive the distribution of
the outputs, i.e., label distribution, using their corresponding task
rewards based on the decomposition property of the RC problem.
We then optimize the RC model by directly learning towards the
auxiliary label distribution, instead of the ground truth label, using
the MLE framework. In this way, we can make use of the structure
of the output space for better generalization (as RL) via efficient
optimization (as MLE). We name our approach as Label Distribution
augmented MLE (LD-MLE), which is a general learning criterion
that could be adopted by almost all the existing RC models. Exper-
iments on three representative benchmark datasets demonstrate
that RC models learned with the LD-MLE criterion can achieve
consistently improved results over those based on the traditional
MLE and RL-based criteria.

CCS CONCEPTS
• Information systems → Question answering.
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1 INTRODUCTION
Reading comprehension (RC), aiming to understand natural texts
to answer questions, is a challenging task in natural language pro-
cessing [10, 13, 16, 27, 28] and has became an important component
in QA system [1]. Without loss of generality, the major task of
RC can be defined as an answer span prediction problem, i.e., to
predict the start and end positions of an answer span in a context
passage given a question. With the development of deep learning
techniques, state-of-the-art performances have been achieved by
modern neural RC models [4, 11, 20, 40, 42].

Despite the effectiveness of neural RC models, most existing
work relies on maximum likelihood estimation (MLE) for learning
and ignores the structure of the output space. That is during train-
ing, RC models focus on maximizing the likelihood of the target
answer span (i.e., the ground truth start and end labels). They treat
all the text spans that do not match the ground truth as equally
poor, regardless of their structural proximity to the ground truth.
For example, as shown in Figure 1, given the context passage and
the question, the ground truth answer is “18th and 19th centuries”
labeled by the pair (s = 135, e = 138), where s and e denotes the
start and end position of the answer span, respectively. Considering
two alternative outputs, i.e., “the 18th and 19th” (s = 134, e = 137)
and “no continuity” (s = 143, e = 144), apparently Span 1 is prefer-
able to Span 2 since it overlaps with the ground truth span. Such
preference is usually reflected in evaluation with metrics based on
n-grams. However, these two outputs are equally punished during
training under the MLE criterion, making it inconsistent with the
test evaluation. As a result, RC models learned under the MLE crite-
rion may become overconfident on the ground truth label [34, 42],
leading to overfitting and reduced generalization ability on test
instances.

One way to eliminate this discrepancy between training and test
in RC is to take into account the alternative outputs beyond the
ground truth and optimize the task reward (e.g., F1) that matters for
test evaluation over them. However, since such task reward is usu-
ally not differentiable, reinforcement learning (RL) techniques have
been adopted to maximize the expected reward [11, 42]. For exam-
ple, DCN+[42] proposed to use self-critical policy learning [15, 33]
to optimize the expected reward in RC. R.M-Reader [11] further
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Context:... Johannes Wallmann argues that Luther’s writings
against the Jews were largely ignored in the 18th and 19th
centuries, and that there was no continuity between Luther’s
thought ...
Question: When was Luther’s writings about the Jews ignored,
according to Johannes Wallmann ?
Answer span: 18th and 19th centuries (s=135,e=138)
Span 1: the 18th and 19th (s=134,e=137)
Span 2: no continuity (s=143, e=144)

Figure 1: An example from the SQuAD dataset. Span 1 and
Span 2 are two alternative outputs beyond the ground truth
answer span. s and e denotes the start and end position of
the answer span in the context passage, respectively.

leveraged dynamic-critical reinforcement learning to address the
convergence suppression problem occurred in DCN+. However,
these RL-based methods face significant challenges in optimiza-
tion [23]: gradients need to be estimated via sampling from the
model output, which is a non-stationary distribution, leading to
high variance in gradients and difficulty in convergence.

In this paper, we introduce a new learning criterion for the RC
task which combines the merits of bothMLE and RL-based methods,
namely label distribution augmented MLE (LD-MLE for short). It is
also a general learning criterion that could be adopted by almost all
the existing RC models. Specifically, we show that the traditional
MLE objective in RC can be viewed as optimizing the KL-divergence
between the target distribution and the model’s distribution, where
the target distribution is a Dirac distribution on the ground truth
answer span. To make use of the structure of the output space, we
aim to take into account the task reward of alternative outputs
beyond the ground truth as RL-based methods. Different from the
RL-based methods which relies on sampling, we show that we can
derive a new target (label) distribution that summarizes the task
rewards of all the possible outputs based on the decomposition
property of the RC problem. In this way, we can replace the original
Dirac distribution with this new label distribution in MLE for direct
optimization. As we can see, our LD-MLE takes into account the
structure of the output space within MLE framework, thus com-
bines the advantages of RL-based methods with the computational
efficiency and simplicity of MLE.

We conduct empirical experiments to verify the effectiveness of
our proposed LD-MLE criterion. We take into account a variety of
representative neural RC models, including BiDAF [30], SAN [20]
and BERT [4]. We also use several widely adopted benchmark
datasets, including the SQuAD dataset [28] which represents a
basic RC task, and the MS MARCO [22] and CoQA [29] datasets
which represent two popular variants of the RC task. We show that
neural RC models learned with the LD-MLE criterion can achieve
consistently improved results over those based on the traditional
MLE and RL-based criteria on all these benchmark datasets. We
also conduct extensive analysis to gain a better understanding of
the advantage of the LD-MLE criterion.

The remainder of this paper is organized as follows. In Section 2,
we introduce some backgrounds of our work. We then describe our
LD-MLE method in detail and discuss its connection and difference
with several existing techniques in Section 3. The experimental
results are reported in Section 4. We review the related work in
Section 5, and conclude the whole paper in Section 6.

2 BACKGROUND
Before diving into our method, we first introduce some background
work in this section, including the formulation of the RC task and
the MLE learning criterion.

2.1 Reading Comprehension
Reading comprehension has embraced a booming in recent NLP
research thanks to a variety of publicly available benchmark col-
lections [1], e.g., CNN/DAILY [10], SQuAD [28], and NewsQA
[35]. Although there have been different variants of the RC task
[22, 29, 44], a basic definition of RC is to locate the answer for a
given question from a context passage. Formally, the context pas-
sage C = {c1, c2, . . . cm } consists of a sequence ofm words and the
question Q = {q1,q2, . . . ,qn } consists of a sequence of n words.
The answer A = {cs , . . . , ce } is assumed to be a contiguous text
span in the context passage, where s and e denotes the correspond-
ing start and end position, respectively. In the following, we will
use a = (s, e) to denote the answer span position and a∗ = (s∗, e∗)
to denote the ground truth.

Typically, an RC model f takes Q and C as inputs and produces
two vectors s ∈ Rm and e ∈ Rm ,

s, e = f (Q,C), (1)

where si and ei denotes the possibility of position i in the context
passage to be the start and end term of an answer span, respectively.

The predicted answer position is then obtained by

ŝ, ê = argmaxi, j si · ej , subject to i < j,

and the predicted answer text is Â = {cŝ , . . . , cê }.
Recently, RCmodels with deep learning techniques have achieved

a great success [29]. Without loss of generality, a neural RC model
often consists of four stacked layers, namely the embedding layer,
the encoding layer, the interaction layer, and the answer layer.

• The embedding layer converts each word in the context
passage and the question into a real-valued vector to obtain
the embedding matrix EC ∈ Rm×d and EQ ∈ Rn×d , where
d denotes the embedding dimension.

• The encoding layer attempts to encode the context informa-
tion to enrich the representation of each word in the context
passage and the question.

• The interaction layer makes the question and the context
passage interact with each other through certain attention
mechanism to obtain a question-aware passage representa-
tion HC ∈ Rm×h .

• The answer layer then predicts the vectors s and e based on
the passage representation HC .

Most RC models follow this design paradigm but apply different
structures in each layer, e.g., BiDAF [30], SAN [20] and Fusion-
Net [12]. BERT [4] is a little bit different, but can be viewed as
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merging the encoding layer and the interaction layer together via
the Transformer structure.

2.2 The MLE Criterion
Most existing neural RC models rely on MLE for model learning.
Specifically, the MLE criterion is to maximize the log-likelihood of
the ground truth answers as follows:

LMLE (θ ) = − logp(a∗ |Q,C;θ )
= − logps (s∗ |Q,C;θ )pe (e∗ |s∗,Q,C;θ )

(2)

where

ps (·|Q,C;θ ) = softmax(s),pe (·|Q,C;θ ) = softmax(e),
ps denotes the predicted probability of the start position , and
pe denotes the predicted probability of the end position. In most
existing RC work, the coupled prediction problem ps (s)pe (e |s) is
usually turned into two de-coupled ones, i.e., ps (s) and pe (e), by
implicitly modeling the dependence via the dependent computation
of the vector e and the vector s [30]. In this way, the above MLE
learning objective turns into the following simplified form,

LMLE (θ ) = − logps (s∗ |Q,C;θ )pe (e∗ |Q,C;θ )
= − logps (s∗ |Q,C;θ ) − logpe (e∗ |Q,C;θ ).

(3)

It is worth to note that the MLE objective can also be written in the
form of the KL divergence,

LMLE (θ ) = −
∑
s

δs∗ (s) logps (s |Q,C;θ )

−
∑
e

δe∗ (e) logpe (e |Q,C;θ )

= −
∑
s

δs∗ (s) log
ps (s |Q,C;θ )

δs∗ (s)
+
∑
s

δs∗ (s) logδs∗ (s)

−
∑
e

δe∗ (e) log
pe (e |Q,C;θ )

δe∗ (e)
+
∑
e

δe∗ (e) logδe∗ (e)

=DKL(δs∗ | |ps ) + DKL(δe∗ | |pe ) + const ,
(4)

where δs∗ and δe∗ denotes the Dirac distribution of ground truth
start and end position respectively, i.e.,δs∗ (s∗) = 1 else δs∗ (s) = 0 for
other s . We can clearly see that MLE is to minimizing the distance
between the target δs∗ /δe∗ distribution and model’s distribution
ps /pe .

While there has been a lot of effort dedicated to designing new
neural RC model structures, little has been made on the learning
criterion of neural RC models, which is the focus of this paper.

3 OUR METHOD
In this section, we describe the Label Distribution augmented Max-
imum Likelihood Estimation (LD-MLE) in detail. We also provide
some discussions to show the connections and differences of LD-
MLE with some related techniques.

3.1 LD-MLE
As aforementioned, theMLE learning criterion ignores the structure
of the output space by treating all the outputs that do not match
the ground truth as equally poor, regardless of their structural

proximity to the ground truth. This brings the discrepancy between
training and test, leading to overfitting on the ground truth labels
and reduced generalization ability.

In this work, we aim to take into account the alternative out-
puts beyond the ground truth for better model learning, meanwhile
attempt to keep the optimization procedure simple and efficient.
The key idea is that if we can derive a better target (label) distri-
bution, which can convey the information of the output structure,
we can then directly replace it into the MLE objective as shown in
Equation (4) to achieve our purpose.

In the following, we try to derive the new target distribution.
The overview of the derivation process is illustrated in Figure 2,
which consists of the following three steps.

1. Define output distribution
Without loss of generality, given a ground truth answer a∗ and

a reward function r (e.g., the evaluation metric F1 as defined in
Equation (8), we can calculate the reward for each possible output
answer span a as r (a,a∗). Note that we can assign large negative
number to those illegal spans (i.e., s > e) to exclude them. Following
the idea in [3, 5], we normalize these reward scores to obtain the
distribution of the outputs as

qa (a |a∗;τ ) =
exp(r (a,a∗)/τ )∑
a exp(r (a,a∗)/τ )

, (5)

where τ is the hyper-parameter which controls the concentration
of the distribution around a∗. Obviously, this distribution reflects
how the task rewards distributed in the output space.

2. Decompose to label distribution
Based on the de-couple idea in RC as shown in Equation (3), we

can obtain the following start/end label distribution by marginaliz-
ing Equation (5) with respect to all the possible end/start positions.

qs (s |a∗;τ ) =
∑
e

qa (s, e |a∗;τ )

=

∑
e exp(r (s, e,a∗)/τ )∑

s
∑
e exp(r (s, e,a∗)/τ )

,

qe (e |a∗;τ ) =
∑
s
qa (s, e |a∗;τ )

=

∑
s exp(r (s, e,a∗)/τ )∑

s
∑
e exp(r (s, e,a∗)/τ ) ,

The above marginalization step could be efficiently computed with
the computational complexity of O(m2) given the ground truth label
a∗ and the evaluation metric r , wherem denotes the length of the
context passage which typically small in practice. Note that these
two label distributions have summarized the reward information
of all the possible outputs with respect to each term position in the
context passage.

3. Integrate into MLE criterion
Now we replace the above two derived label distributions into

Equation (4) and obtain our LD-MLE learning criterion as follows

LLD−MLE (θ ) = −
m∑
s=1

qs (s |a∗;τ ) logps (s |Q,C;θ )

−
m∑
e=1

qe (e |a∗;τ ) logpe (e |Q,C;θ ).
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Context Passage:
…

Nevertheless, his misguided agitation 
had the evil result that Luther fatefully 
became one of the 'church fathers' of 
anti-Semitism and thus provided 
material for the modern hatred of the 
Jews, cloaking it with the authority of 
the Reformer." Johannes Wallmann
argues that Luther's writings against 
the Jews were largely ignored in the 
18th and 19th centuries, and that 
there was no continuity between 
Luther's thought and Nazi ideology. …

Question: When was Luther’s 
writings about the Jews ignored,
according to Johannes Wallmann ？

Answer span:  18th and 19th centuries

… writings against the jews …

… in the 18th and 19th centuries …

… largely ignored in the 18th …

𝑞𝑎 𝑎 𝑎
∗; 𝜏 =

exp(𝑟(𝑎, 𝑎∗)/𝜏

 𝑎 exp(𝑟(𝑎, 𝑎
∗)/𝜏

… anti-Semitism and thus  …

…
…

… …
…

…
…

…

（1） Define output distribution
in the
18th
and
19th
centuries
,ignored
largely

in the
18th
and
19th
centuries
, and
the

… … …

𝑞𝑠(𝑠|𝑎
∗; 𝜏) 𝑞𝑒(𝑒|𝑎

∗; 𝜏)

…

（2）Decompose to label distribution

ℒ𝐿𝐷−𝑀𝐿𝐸 𝜃 = − 

𝑠

𝑞𝑠(𝑠|𝑎
∗; 𝜏) 𝑙𝑜𝑔𝑝𝑠(𝑠|𝑄, 𝐶; 𝜃)

− 

𝑒

𝑞𝑒(𝑒|𝑎
∗; 𝜏) 𝑙𝑜𝑔𝑝𝑒(𝑒|𝑄, 𝐶; 𝜃)

ℒ𝑀𝐿𝐸 𝜃 = − 

𝑠

𝛿𝑠∗ (𝑠) 𝑙𝑜𝑔𝑝𝑠(𝑠|𝑄, 𝐶; 𝜃) −

 

𝑒

𝛿𝑒∗ (𝑒)𝑙𝑜𝑔𝑝𝑒(𝑒|𝑄, 𝐶; 𝜃)

（3）Integrate into MLE criterion
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Figure 2: The derivation procedure of the LD-MLE learning criterion.

Nowwe can directly optimize this new label distribution augmented
objective function for learning the RC model. It is not difficult to
check that even though we replace the original (Dirac) distribution
with the new augmented label distribution, the optimal solution
of LD-MLE remains the same as the MLE criterion (i.e., a∗) which
is an expected property of LD-MLE. Besides, we can see that this
learning criterion is easy to implement in practice. It is also a general
learning criterion that could be adopted by almost all the existing
RC models.

3.2 Discussion
From the learning objective of LD-MLE, people might connect
our method to the well-known Label Distribution Learning (LDL)
approaches [6–8]. However, LDL mainly focuses on the scenario
where one cannot obtain exact or complete labels to the task. For
example, in facial age estimation, it is difficult to obtain exact and
sufficient training data [8]. Therefore, some manually designed
label distributions [6], e.g., normal distribution, are introduced to
tackle that problem. Different from LDL, we introduce the label
distribution to characterize the structure of the output space. The
label distribution is derived based on the ground truth labels and
the evaluation metrics.

Ourmethod also shares some similar idea as label smoothing [34].
Label smoothing is a kind of regularization technique to encourage
the model to be less confident on the ground truth labels to achieve
better generalization ability. For example, in image classification,
label smoothing takes part of the probability from the correct label
to assign it to other labels equally [34]. Our LD-MLE method shares
some similary to label smoothing in the sense that the derived
label distribution could be viewed as the smoothing of the ground
truth labels. However, our LD-MLE method smooths the target

Table 1: Statistics of different RC datasets.

Dataset #Question #Passage #terms
P Q A

SQuAD 98,169 20,963 116.6 10.1 3.2
MS MARCO 808,731 8,069,749 56.4 6.4 9.2

CoQA 116,630 7,699 271.0 5.5 2.7

distribution with respect to the task reward, while traditional label
smoothing usually does not take that into account.

Another line of highly related work to our method is the study
on the reward augmented maximum likelihood (RAML) [3, 23].
However, existing work on RAML still requires sampling from the
output space for optimization, which is apparently deficient. Such
methods have only been applied on the machine translation task.
To our best knowledge, our work is the first work to incorporate the
task rewards over the output space into MLE for the RC problem.

4 EXPERIMENTS
In this section, we conduct empirical experiments to verify the
effectiveness of the LD-MLE criterion. Besides, we also provide
in-depth analysis to gain a better understanding of the advantages
of our method.

4.1 Experimental Settings
In this part, we describe the experimental settings, including the
datasets, evaluation metrics, baseline methods, RC models, and
their implementation details.

4.1.1 Datasets. We choose three representative RC datasets to
conduct the experiments. Among these datasets, SQuAD is the
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primary RC task, while MS MARCO and CoQA are two popular
variants of RC tasks. The detailed descriptions of the three datasets
are as follows:

• SQuAD [28] is a typical RC dataset that has been widely
studied in academia [30, 38, 42]. Each context passage in
SQuAD is a paragraph from Wikipedia articles and the an-
swer to the question is guaranteed to be a span in the context.
Note here we use the SQuAD version 1.1 dataset, rather than
SQuAD 2.0, since we do not focus on the unanswerable ques-
tion detection problem.

• MS MARCO [22] is a large scale real-world RC dataset
where the questions are collected from anonymous user logs
from the Bing search engine. MS MARCO is not a typical
RC dataset, since each question is paired with ten candidate
passages which need an additional ranking step. In most
existing works[19, 43], MS MARCO has been formed as an
extractive neural RC dataset where the ground truth answer
is typically defined as the span that has the max overlap with
the human-written answer.

• CoQA [29] is also a variant dataset for the RC study. Differ-
ent from the SQuAD dataset, CoQA contains sequentially
dependent question-answer pairs in each context passage.
Moreover, it requires the annotators to highlight the evi-
dence in the context passage and provide a natural language
answer to the question.

The detailed statistics of these datasets are shown in Table 1. We
can see that these datasets differ with each in the length of context
passsage, ranging from 56 terms to 270 terms. All these datasets
contain more than 90,000 instances which can well support the
development of neural RC models.

4.1.2 Evaluation Metrics. For evaluation, we take F1 score and Ex-
act Match (EM) as the metrics. F1 score measures the average term-
level overlap between the predicted answer and the ground truth
answer. Specifically, given a predicted answer Â = {cŝ , . . . , cê } and
its ground truth answerA∗ = {cs∗ , . . . , ce∗ }, F1 is defined as follows

Precision =
|Â ∩A∗ |

|Â|
, (6)

Recall =
|Â ∩A∗ |
|A∗ | , (7)

F1 =
2 ∗ Precision ∗ Recall
Precision + Recall

. (8)

EMmeasures the percentage of the exact extraction of the ground
truth answer,

EM = I(A∗ = Â).
Besides, for the MS MARCO dataset, since the answers are usu-

ally long, and the term order matters. Thus, we follow the previous
work [19, 43] to take the ROUGE-L [18] as the evaluation metric:

Rlcs =
LCS(A∗, Â)

|A∗ | , (9)

Plcs =
LCS(A∗, Â)

|Â|
, (10)

ROUGE − L =
(1 + β2)RlcsPlcs
Rlcs + β

2Plcs
, (11)

where LCS is the longest common sequence algorithm which mea-
sures the overlaps between two sequences.

4.1.3 Baselines. We compare our LD-MLE with existing learning
criteria for the RC task, including the maximum likelihood method,
and two existing RL-based methods.

• MLE denotes the maximum likelihood estimation objective
widely used in most neural RC models.

• SCST is a RL-based objectivewhich is proposed inDCN+ [42]
for RC. It optimizes the expected reward (i.e., the expected
F1 score) by sampling from model output distribution. To
overcome the unstable nature of the RL methods, it needs to
be combined with the MLE objective while in learning.

• DCRL is another RL-based objective for RC proposed in R.M-
Reader [11]. It tackles the convergence suppression problem
in SCST through dynamic-critical reinforcement learning.
Note that DCRL also needs to combine the RL-based objec-
tive with MLE to keep learning stable.

4.1.4 RC models. We test the above training objectives based on
three representative neural RC models. We will introduce these
models in detail under the four layers framework, as is described
in section 2.1.

• BiDAF [30] introduces bi-direction attention to improve
question-context interaction. Concretely, character-level em-
bedding and pre-trained word-level embeddings are con-
catenated to represent the word. These word embedding
are passed to the encoding layer, which is implemented as
an LSTM layer. In the interaction layer, the bi-direction at-
tention mechanism is used to interact the context with the
question in bi-direction. BiDAF is a representative RC model
aiming to improve the interaction layer.

• SAN [20] proposes a stochastic answer network for itera-
tive reasoning. SAN uses a similar layer structure with the
BiDAF except for the answer layer. In the answer layer, an
iterative answer module conducts multiple reasoning and
produces a series of probability distributions of the start
and end positions. These distributions are averaged to form
the final distribution. While in training, they also applied
a dropout layer on the outputs. SAN is a representative RC
model aiming to improve the answer layer.

• BERT [4] is a multi-layer Transformer encoder based on the
original implementation described in Vaswani et al. [36] and
pre-trains parameter based on the masked language object
and next sentence prediction task. Individually, on RC task,
it packs the question and the context as a whole sequence,
and encode the sequence using BERT encoder with the pre-
trained parameters. Then a classification layer is applied on
the encoded representations to get the probability distribu-
tions of the start and end positions. BERT is a representative
work involving transfer learning in the RC.

4.1.5 Implementation Details. We use the official implementation
of BiDAF 1 , SAN 2 , and BERT 3 from their original authors, and we
apply different learning objectives on them. We train these models
1https://github.com/allenai/allennlp
2https://github.com/kevinduh/san_mrc
3https://github.com/google-research/bert
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Table 2: Overall results on the SQuAD 1.1 dataset. The improvements of all the methods over MLE are shown in the brackets.
∗ and ∗∗ indicates statistically significance with p-value < 0.05 and p-value<0.01, respectively.

Metrics Methods BiDAF SAN BERT

F1

MLE 79.6 84.1 88.1
SCST 79.7∗(0.13%) 84.5∗(0.48%) 88.6∗(0.57%)
DCRL 79.7∗(0.13%) 83.8(-0.36%) 88.6∗(0.57%)

LD-MLE 80.2∗∗(+0.75%) 84.6∗∗(+0.60%) 89.0∗∗(+1.02%)

EM

MLE 70.2 76.2 80.8
SCST 70.3∗(0.14%) 76.8∗∗(0.79%) 81.2∗(0.5%)
DCRL 70.3∗(0.14%) 76.0∗(-0.26%) 81.4∗(0.74%)

LD-MLE 71.0∗∗(+1.14%) 77.3∗∗(+1.44%) 82.0∗∗(+1.49%)

Table 3: Results of BERT onMSMARCO and CoQA datasets.

Methods MS MARCO CoQA
Rouge-L EM F1

MLE 47.3 69.5 78.8
SCST 47.8∗∗(+1.10%) 70.0∗(0.72%) 79.2∗(+0.51%)
DCRL 47.9∗∗ (+1.20%) 70.1∗(0.86%) 79.2∗(+0.51%)

LD-MLE 48.2∗∗(+1.90%) 70.6∗∗(+1.58%) 79.7∗∗(+1.14%)

on the training set and report the result on the dev set as in most
previous works [20, 30]. Note that we don’t report the result of test
sets of these datasets, as we aim to verify the effectiveness of the
learning objective which can be applied to almost all existing RC
model. The test sets of these datasets are not available and we do
not submit the system to the leaderboard system. We use Adam [14]
optimizer with the learning rate set as 5e-5. Other hyper-parameters
keep the same as the original implementation. We re-implement
SCST and DCRL based on the description in DCN+ [42] and R.M-
Reader [11]. All the code will be released soon after the anonymous
review.

4.2 Main Results
4.2.1 Comparisons on the Basic RC Task. The main results on the
SQuAD dataset are summarized in Table 2. As we can see: 1) The
BERT model performs the best compared with the other models in
terms of both F1 and EM metrics. This demonstrates the power of
the deep contextual representation learning in RC task. 2) The RL-
based criteria (i.e., SCST and DCRL) can outperform the basic MLE
criterion on some RC models. However, we also observe that the
performance of the RL-based criteria drops below the MLE method
sometimes. For example, the performance of SAN with the DCRL
criterion is slightly lower than that with theMLE criterion. Thismay
be due to the fact that RL-based methods rely on sampling from the
non-stationary distribution which is often unstable in learning [23].
3) The LD-MLE method can achieve consistently better results on
all the four RC models as compared with all the baseline criteria. All
the improvements of LD-MLE criterion against the MLE criterion
are statistically significant (p-value < 0.01). For example, BERT
achieves 1.49% and 1.02% performance improvement in terms of
EM and F1 respectively when the learning objective changes from

Table 4: Results of MLE, ULS-MLE, Gaussian-MLE and LD-
MLE methods on SQuAD dataset based on BERT.

EM △EM F1 △F1
MLE 80.8 - 88.1 -
ULS-MLE 81.0 +0.25% 88.5 +0.45%
Gaussian-MLE 81.2 +0.5% 88.4 +0.34%
LD-MLE 82.0 +1.45% 89.0 +1.02%

MLE to LD-MLE. 4) Although our LD-MLE objective is derived
based on the F1 metric, it is interesting to see that our method
can also improve the EM metric with a substantial margin. For
example, the improvement of SAN and BERT with LD-MLE against
MLE is about 1.44% and 1.49% in terms of EM, respectively. This
demonstrates that LD-MLE could improve the generalization ability
of the RC model. All these results demonstrate the effectiveness of
our LD-MLE criterion.

4.2.2 Comparisons on the Variant RC Tasks. To investigate how
the LD-MLE method performs on different types of RC tasks, we
conduct experiments on two variants of RC tasks, namely multi-
passage RC task (i.e., MS MARCO dataset) and conversational RC
task (i.e., CoQA dataset). Here we only take BERT as the RC model
since BERT is the state-of-the-art model on these datasets. The
results are shown in Table 3. We can see RL-based methods have
very close results on the two variant tasks, which are slightly better
than the MLE criterion. Moreover, the LD-MLE method can achieve
the best performance among all the criteria, and can significantly
outperform (i.e., p-value < 0.01) the MLE criteria in terms of all
the evaluation metrics over the two variant RC tasks. The results
indicate that although the LD-MLEmethod is proposed for the basic
RC task, it can also help improve more complicated RC tasks by
taking into account the structure of the output space. It is worth to
note that the MS MARCO dataset and CoQA dataset contain more
noises compared with SQuAD dataset, which demonstrate that our
LD-MLE is robust as it improves the performances consistently
over MLE on all three datasets.

4.3 Detailed Analysis
Question: How about applying other types of label distribu-
tion?
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what who when which where why
LD-MLE 88.5 91.7 94.8 89.3 86.6 76.4
SCST 87.8 90.7 94.2 89.2 84.7 75.5
DCRL 88.0 91.2 95.2 89.2 85.7 74.9
MLE 87.7 91.2 93.6 88.3 85.3 74.9
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100
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MLE

(a) Performance breakdown by question type with BERT.
Question Type what who when which where why
Percentage 57.46 11.75 6.78 6.09 4.36 1.42

(b) Statistics of different question types.

Figure 3: Performance comparison over different question
types on SQuAD dataset.

In the LD-MLE criterion, the label distribution is defined based on
the evaluation metric (i.e., F1 metric). As discussed in previous sec-
tion, our method is related to the label smoothing technique. Here,
we try to investigate different heuristic distributions rather than
the evaluation metric in the LD-MLE. We consider two alternative
distributions over the labels as the target distribution. Specifically,
the first one is to directly take part of the probability from the
ground-truth label, and uniformly assign it to each term in the span.
We name this method as Uniform Label Smoothing-based MLE
(ULS-MLE for short). The second one utilizes the Gaussian distri-
bution to smooth the probability of ground truth, where the mean
is the ground truth label and the variance is a hyper-parameter
to be tuned. We name this method as Gaussian-MLE. The results
are shown in Table 4. From the results, we can see that the ULS-
MLE and Gaussian-MLE can slightly improve the performance
against MLE criterion. This is due to the fact that smoothing target
distribution could increase the model’s generalization ability [34].
Moreover, the LD-MLE, which incorporates the evaluation metric
in the learning objective, obtains the best performance against all
the baseline methods. The results indicate that it is more effective
to leverage evaluation-dependent task reward to define the target
distribution.

Question:Howdoes themodel performunder different ques-
tion types?
To examine how the LD-MLE criterion performs in terms of differ-
ent types of questions, we divide the development set of SQuAD
by question type based on their respective WH-words, such as
“what” and “when”. The F1 scores and statistics of question types
are shown in Figure 3. From the results, we can see that RL-based

1 2 3 4 5 6 7 >7
LD-MLE 90.2 90.2 89.7 89.3 89.42 85.4 82.7 79.1
SCST 89.4 88.8 89.2 88.6 89.4 85.4 81.9 80.2
DCRL 89.5 89.4 89.5 89.5 87.7 84.8 81.9 79.8
MLE 89.0 89.1 89.2 88.1 89.0 84.2 82.5 79.7
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85.0

87.5

90.0

92.5

95.0
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MLE

(a) Performance breakdown by answer length with BERT.
Answer length 1 2 3 4 5 6 7 >7
Percentage 32.4 27.2 16.0 8.0 4.7 2.9 2.0 6.7

(b) Statistics of different answer lengths.

Figure 4: Performance comparison over different answer
length on SQuAD dataset.

methods can achieve good performance on a few question types. For
example, the SCST can outperform MLE on question type “when”,
“which”, and “why”. However, there are some types of question that
RL-based methods are less effective than the MLE method, e.g., the
question type “where” and “who”. For our LD-MLE criterion, we
can observe that it can consistently outperform MLE on all the
types of questions. This result demonstrates that LD-MLE is more
stable compared with the RL-based methods. From the statistics
of frequency, “what”-type question and “who”-type question are
about 57% and 11% among the total. LD-MLE outperforms RL-based
method on these major type questions, which shows the advantage
of the LD-MLE criterion in capturing the major patterns in the data.

Question:Howdoes themodel performunder different lengths
of answers?
Here, we aim to understand the impact of the answer length on dif-
ferent training criteria. We conduct experiments on SQuAD dataset
with all baseline methods. Here we only show the results of F1 met-
ric as the EM metric will obtain similar conclusions. The statistics
of the answer length are shown in Figure 4 (b). We can see that
most of the answers are very short, e.g., there are about 75.6% of
the answers with less than three terms. The F1 results are shown in
the Figure 4 (a). We can see that in general the RL-based criteria can
achieve better performance than the MLE criteria on questions with
different lengths of answers, but may fail at some long answers,
e.g., the answer length at 5 or 7. Moreover, the LD-MLE criterion
obtains larger improvements than RL-based methods against MLE
on questions with shorter answer spans. When the answer length
becomes longer, the improvements reduce accordingly. For answers
with length more than 7 terms, the LD-MLE criterion may also
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becomes slightly worse than the MLE criterion. A possible reason
is that the LD-MLE criterion will use much smoother distribution
when the answer span becomes longer. In this way, it may suffer
from the loss of discrimination between the ground truth answer
span and other structure proximal spans. Therefore, further consid-
ering the answer length information in the label distribution may
help improve the performance of LD-MLE, and we leave it as our
future work.

5 RELATEDWORK
In this section, we first review previous works on improving the
model structures of the RC task. We then describe existing cri-
teria for learning RC models and discuss their connections and
differences with LD-MLE.

5.1 Reading Comprehension Model
Generally, the RC models consist of four conceptual layers, namely
embedding layer, encoding layer, interaction layer, and answer
layer. Most of existing works devoted their effort on improving the
interaction layer or the answer layer to achieve better performance.
Thus, we will describe these works in these two directions.

For improving the interaction layer, most works focus on the
attention mechanism to better model the question and passage in-
teraction. For example, Wang and Jiang [38] proposed conditional
attention mechanisms in the Match-LSTM encoder. BiDAF [30]
applied bidirectional attention flow to attend to the question and
document simultaneously. RNet [40] further introduced the self-
attention mechanism on the context passage and enhanced the
LSTM with gating mechanism to amplify useful information. Fu-
sionNet [12] and SLQA [39] incorporated hierarchical attention
mechanism to interact multi-level representations of the question
and context passage. They also applied a complex fusion function
to combine the attended vectors and encoded vectors.

For improving the answer layer, the works aim to improve the an-
swer prediction step based on the passage representation. SAN [20]
is a typical work which proposed to iteratively predict multiple
distributions and drop some of them to get the final result. Rea-
soNet [32] made use of multi-turn reasoning module to iteratively
find the answer from the context passage with reinforcement learn-
ing. In this way, the ReasoNet can dynamically determine whether
to continue the reasoning or to terminate reading. These works
usually make multiple predictions to correct the error in single
prediction.

There are also another line of works which employ transfer
learning techniques to improve the RC models, such as CoVE [21],
ELMo [25], GPT [26], and BERT [4]. These models pre-trained part
of the parameters on other tasks with large corpus, e.g., various
language modeling tasks or the machine translation task. They have
achieved a great success on many natural language processing tasks
recently [37, 41]. Especially, ELMo pretrained the bi-direction RNN
language model and is used as auxiliary contextual embeddings
in existing models [12, 20]. The BERT model, which pretrained
the parameters on a novel mask language model, has achieved
state-of-the-art performance on the RC task [28].

In this paper, we select three representative RC models which
have focused on improving different part of the RC model, i.e.,

BiDAF mainly improved the interaction layer, SAN improved the
answer layer, and BERT incorporated the transfer learning tech-
niques. We apply our LD-MLE objective and other baseline objec-
tives over these models to validate the effectiveness of the proposed
criterion.

5.2 Learning Criteria for RC Task
Most existing RC models relied on the MLE criterion for the opti-
mization, such as Fusionnet [12] ,DrQA [1] and documentqa [2].
They trained the model output to maximize the ground-truth po-
sition while minimizing all alternative outputs, even if they are
similar to the ground-truth answer.

One way to improve the MLE is to incorporate the evaluation
metric into the training objective. This line of works includes mini-
mal risk training [31], maximum expected reward [9, 17, 24], and
expected loss optimization [45]. These methods have been explored
in the sequence to sequence model and certain computer vision
task. There are also a few works attempt to address these problem
in the RC task [11, 42]. For example, DCN+ model [42] proposed a
mixed objective that combines cross-entropy loss and self-critical
policy learning derived from word overlap to improve MLE. R.M-
reader [11] introduced dynamic-critical reinforcement learning to
further address the convergence suppression problem occurred
in DCN+ model. However, these RL-based methods suffer from
training inefficiency as they relied on sampling from the model
output. They have to both append the original MLE loss to keep the
training process stable. In this work, we improves MLE in a simple
and stable way by taking an auxiliary label distribution in the MLE
framework.

6 CONCLUSION
In this paper, we proposed a new learning criterion LD-MLE for the
RC task by taking into account the structure of the output space.
This learning criterion can be applied over almost all the existing
RCmodels to improve their optimization process. Our experimental
results demonstrated the effectiveness of our LD-MLE method over
the traditional MLE and RL-based methods. We encourage future
neural RC models to use this criterion to replace the simple MLE
for better model learning. In future work, we will try to investigate
other label distributions on the learning performance.
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