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a b s t r a c t 

Multi-view clustering has received an increasing attention in many applications, where different views of 

objects can provide complementary information to each other. Existing approaches on multi-view clus- 

tering mainly focus on extending Non-negative Matrix Factorization (NMF) by enforcing the constraint 

over the coefficient matrices from different views in order to preserve their consensus. In this paper, we 

argue that it is more reasonable to utilize the high-level manifold consensus rather than the low-level 

coefficient matrix consensus (as conducted in state-of-the-art approaches) to better capture the underly- 

ing clustering structure of the data. For this purpose, we propose MMRSC (Multiple Manifold Regularized 

Sparse Coding), which aims to preserve the consensus over multiple manifold structures from different 

views. Experimental results on two publicly available real-world image datasets demonstrate that our 

proposed approach can significantly outperform the state-of-the-art approaches for the multi-view image 

clustering task. Moreover, we also conduct computational complexity analysis and the result shows that 

MMRSC can effective handle the multi-view clustering problem without increasing the computational 

cost as compared to GraphSC. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

In the past decade, people have witnessed an increasing

mount of available image data which are comprised of multi-

le views (or representations). For example, on Flickr, an image

an be represented by its visual contents, annotated tags, social

omments, and so on. These different image views usually pro-

ide complementary information to each other, and a fundamental

roblem is how to integrate the multiple image views effectively

n order to obtain a better representation. 

Many research efforts have been devoted to clustering objects

ased on their multiple representations, referred to as multi-view

lustering. A straightforward solution is to convert these multiple

epresentations of objects into a unified long feature vector by sim-

ly concatenating all representations. However, in most real-world

pplications, multiple views would have different properties, thus

his simple solution may not work effectively. Recently, a num-

er of research work has appeared in the literature for address-
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ng the multi-view clustering problem, and the state-of-the-art ap-

roaches are these Non-negative Matrix Factorization (NMF) based

odels [1–3] . The hypothesis of these methods is that different

iews should reflect the same underlying clustering structure of

he data. These studies resort to extending the NMF algorithm to

andle multi-view clustering by enforcing different consensus con-

traints over the coefficient matrices learnt from different views.

or example, Akata et al. [1] adopt a hard-consensus constraint by

tilizing a shared common coefficient matrix for different views.

ome researchers [2,3] also attempt to employ a soft-consensus

onstraint by enforcing the coefficient matrices learnt from differ-

nt views either towards a common consensus [2] or to be simi-

ar to each other [3] . Although these NMF-based approaches have

chieved promising results in several studies, it would be not opti-

al to apply these techniques to the domain of multi-view image

lustering because: (1) the properties of different views of image

ay vary greatly (e.g., varying from visual features to textual fea-

ures), and make it improper to learn a representation by using

he low-level coefficient matrix consensus over different views. (2)

he noise issue, which has been reported as one of the frequently

aced problems in image processing [4] , has been largely ignored

n existing NMF-based approaches. 

https://doi.org/10.1016/j.neucom.2020.03.052
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Fig. 1. Comparison of the frameworks of (a) previous NMF-based approaches (e.g., CollNMF, MultiNMF and CoNMF) and (b) our proposed approach MMRSC. Previous NMF- 

based approaches seek to utilize the low-level coefficient matrix consensus constraint over different views by enforcing either a hard-consensus constraint (e.g., CollNMF) 

or a soft-consensus constraint (e.g., MultiNMF and CoNMF). In contrast, our MMRSC resorts to adopting the high-level manifold consensus over different views, in which 

the learnt representation can reflect the intrinsic clustering structure of different views. In addition, MMRSC also adopts the sparse coding framework instead of NMF-based 

framework in order to make the learnt representation more robust to noise. 
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In this paper, we propose to leverage the high-level manifold

consensus instead of the low-level coefficient matrix consensus

to handle the multi-view image clustering. To this end, we ex-

tend the GraphSC (Graph regularized Sparse Coding) in order to

have a capability to enforce the learnt representation to be consis-

tent with the underlying manifold structures from different views.

It is worth noting that GraphSC is specifically designed for deal-

ing with a single-view scenario, and it is impractical to directly

apply GraphSC to handle the multi-view image clustering prob-

lem, which has been verified in our experiments. By utilizing the

high-level manifold consensus, MMRSC can effectively deal with

the limitation of existing state-of-the-art approaches which en-

force consensus constraint over the low-level coefficient matrices.

In MMRSC, we construct a set of graph Laplacians to represent

the underlying manifold structures of different views, and incor-

porate them into our optimization process. Through this process,

the learnt representation can better reflect the intrinsic clustering

structures of different views and preserve the high-level manifold

consensus. In addition, since MMRSC is based on a sparse coding

framework, which leads to the learnt image representation to be

more robust to noise. To the best of our knowledge, this is the

first work on utilizing the high-level manifold consensus as well

as sparse coding for multi-view image clustering problem. Fig. 1

shows a comparison between these NMF-based Multi-View Clus-

tering methods (i.e., CollNMF [1] , MultiNMF [2] and CoNMF [3] )

and our proposed MMRSC. 

The major contributions of this paper are summarized as fol-

lows: (1) exploiting the intrinsic manifold structures from differ-

ent views to capture their underlying clustering structures, and ad-

dressing the multi-view image clustering problem by incorporating

the high-level manifold consensus constraint rather than the low-

level coefficient matrix consensus as adopted in state-of-the-art

approaches. (2) Proposing the MMRSC by extending the GraphSC

to have a substantial capability for addressing the multi-view im-

age clustering problem. (3)Providing the computational complex-

ity analysis of MMRSC. (4) Evaluating the performance of our ap-

proach on two real-world image datasets, which have quite dif-

ferent properties, and experimental results show that our method

consistently outperforms the state-of-the-art multi-view clustering

approaches. 
The rest of the paper is organized as follows. Section 2 de-

cribes the related work. In Section 3 , we discuss the details of

ur proposed approach. The experimental results are reported in

ection 4 . In the end, Section 5 concludes the work and discusses

ome future work. 

. Related work 

In this section, we will discuss previous works which are most

elated to our proposed approach. These works can be generally

rouped into two categories, namely, multi-view clustering and

parse coding. 

.1. Multi-view clustering 

Recently, multi-view clustering [5,6] has received a lot of atten-

ions. Previous approaches of multi-view clustering can be briefly

rouped into three categories: early integration, intermediate inte-

ration, and late integration approaches. Early integration methods

ttempt to first integrate multiple views into a unified view, and

hen apply existing clustering algorithm on the integrated view.

or example, Chaudhuri et al. [7] learn a low-dimensional subspace

y applying Canonical Correlation Analysis (CCA) over multi-view

ata, and employ k-means on the subspace to obtain the clus-

ering. Intermediate integration algorithms [8,9] integrate multiple

iews during the clustering process, e.g., Ramage et al. [9] propose

o extend LDA by assuming topics from different views sharing

 common underlying distribution. At last, late integration meth-

ds [10,11] conduct clustering over each view individually, and

hen fuse these results towards a common consensus. For exam-

le, Greene et al. [11] construct an intermediate matrix represen-

ation of these clustering results from each view, and then apply a

actorization procedure over the new representation for clustering.

The works most closely related to our work are the NMF-based

ulti-view clustering approaches. Akata et al. [1] propose to learn

 shared coefficient matrix across different views through a joint

on-negative matrix factorization process, referred to as CollNMF.

owever, enforcing such a hard-consensus constraint often leads to

oor performance due to the fact that distinct views would carry
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ifferent properties. It also has been identified that when no nor-

alization is carried out, this method is equivalent to conducting

MF on a concatenated representation of all views. To address this

ssue, Liu et al. [2] propose an extended joint matrix factorization

ethod, named MultiNMF. Instead of learning a common shared

oefficient matrix, MultiNMF introduces a soft-consensus regular-

zation into the matrix factorization process in order to enforce the

earnt coefficient matrices from different views towards a common

onsensus matrix. He et al. [3] further relaxes the constraint of

ultiNMF by employing co-regularization in the factorization pro-

ess and propose a novel multi-view clustering algorithm, called

oNMF. In CoNMF, they introduce two instantiations (i.e., pair-wise

oNMF and cluster-wise CoNMF) to co-regularize on each pair of

iews. Xu et al. [12] employs the l 2,1 -norm to constrain the canon-

cal loadings, measure the canonical correlation loss term, as well

s tackle noise issue to some degree. 

Although these algorithms have demonstrated promising per-

ormance, they will inevitably suffer from the limitation that en-

orcing the consensus constraint via the low-level coefficient ma-

rix. It will restrict its capability to effectively represent multiple

mage views, in which the clustering quality of different views

aries considerably. In our approach, we seek to address the multi-

iew image clustering problem by introducing consensus con-

traint through a high-level manifold consensus. It is worth not-

ng that Gao et al. [13] also consider the manifold information

n their model, but this model relies on class label information

hich is not available in the multi-view clustering scenario. While

ur method is learned in an unsupervised mode, which does not

ely on any class label information. Another difference between

13] and our work is that in [13] it aims at making use of hyper-

raph to deal with noise issue while we leverage sparse coding

nstead. Although hypergraph is considered more clean than tra-

itional nearest graph, constructing a hypergraph is computational

xpensive as it needs to solve a linear regression problem, i.e., a

parse regression problem or an elastic-net regularized linear re-

ression problem. 

.2. Sparse coding 

Sparse coding (SC) [14,15] has been successfully employed in

any applications, such as face recognition [16,17] , image cluster-

ng [18] , image classification [19] , etc. The limitation of sparse cod-

ng is that it needs to solve a nondifferentiable � 1 -norm problem,

hile the computational cost is very expensive. Several research

ork has been proposed to solve this optimization problem effec-

ively. For example, Lee et al. [15] accelerate the optimization pro-

ess by adopting a feature-sign search method, which can reduce

he nondifferentiable problem to an unconstrained quadratic pro-

ramming (QP). To improve the quality of sparse representations,

ecently, many variants of sparse coding methods have been pro-

osed via imposing additional constraints into the objective func-

ion. For example, Liu et al. [20] extend sparse coding by adding

 nonnegative constraint. Kavukcuoglu et al. [21] enforce a spa-

ial consistent constraint to learn local invariant sparse represen-

ations. Zheng et al. [18] incorporate the manifold structure into

he sparse coding and propose graph regularized method, called

raphSC. 

It is worth noting that our MMRSC is an extension of GraphSC

y incorporating multiple graph Laplacian regularizers into the

bjective function, and aims to preserve the high-level manifold

onsensus across multiple views. Although MMRSC takes a simi-

ar form to that of GraphSC, the key difference comes from the

ubstantial capability of MMRSC on handling multi-view cluster-

ng problem. To the best of our knowledge, this is the first work

hat employing sparse coding, instead of NMF-based framework,
o cope with the multi-view clustering issue. By further introduc-

ng the sparsity constraint into the objective function, it makes the

earnt coefficient matrix of MMRSC have a nice sparsity property,

hich can be computationally more efficient and more robust to

oise. Although there are some extensions of GraphSC, which are

ubstantially different to ours. For example, in [22] , Long et al. ex-

end GraphSC for transfer learning through taking into account the

inimization of distribution divergence between labeled and unla-

eled data. 

. Our proposed approach 

In this section, we first briefly introduce of the concept of

parse Coding, and then we formally illustrate our proposed ap-

roach. 

.1. Sparse coding(SC) 

Given a set of data points X = [ x 1 , . . . , x n ] ∈ R 

d×n , where n is

he number of data points and d is the dimensionality of the fea-

ure space, let B = [ b 1 , . . . , b m 

] ∈ R 

d×m be the dictionary (or basis)

atrix, where each column b i represents a basis vector in the dic-

ionary, and S = [ s 1 , . . . , s n ] ∈ R 

m ×n be the coefficient (or coding)

atrix, where each column s i is a sparse representation for a data

oint x i . SC aims to represent the input dataset as a sparse linear

ombination of the basis vectors in the dictionary, where each data

oint x i is well represented by only a small number of non-zero

oefficients, i.e., x i ≈
∑ m 

j=1 b j s 
( j) 
i 

= B s i . To this end, SC needs to find

 good representation which can minimize the reconstruction er-

or, as well as selecting only a few basis vectors to linearly recon-

truct the original feature vectors [18,23,24] . The objective function

f SC can be formulated as follows: 

min 

B,S 
|| X − BS|| 2 F + β

n ∑ 

i =1 

|| s i || 1 
.t. || b i || 2 ≤ c, i = 1 , . . . , m (1) 

here || · || F denotes the matrix Frobenius norm, β is a tunable pa-

ameter for controlling the trade-off between reconstruction error

nd sparsity, and constant c is used to impose a norm constraint

or the basis vectors. 

.2. Multi-manifold regularized sparse coding 

In our approach, we aim at learning a new representation

hich can better capture the underlying clustering structure of

ach view. The basic assumption is that the learnt representation

hould vary smoothly along the manifolds of different views, i.e., if

wo data points x i and x j are close in more view geometries, their

orresponding coefficients s i and s j should be more close to each

ther with respect to the new basis B . 

.2.1. Objective function 

To this end, we propose to exploit the manifold structure em-

edded in each view and incorporate them as set of graph Lapla-

ian constraints into the sparse coding framework. 

Formally, let X (1) , X (2) , . . . , X (n v ) denote the n v views. Here for

he v th view, we build a k-nearest neighbor graph, denoted as G 

( v ) ,

o encode its manifold information. Let W 

( v ) be the weight ma-

rix corresponding to G 

( v ) , where w 

(v ) 
i j 

= 1 if x i and x j are among

he k-nearst neighbors of each other with respect to the v th view,

therwise w 

(v ) 
i j 

= 0 . We then define the Laplacian matrix as L (v ) =
 

(v ) − D 

(v ) , where D 

( v ) is a diagonal matrix with ( i, i )-element

qual to the sum of the i th row of W 

( v ) . 
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In order to preserve the manifold structures of multiple views,

we represent these manifold structures as a set of graph Lapla-

cian constraints, which can be easily formalized as 1 
2 

∑ n 
i, j=1 || s i −

s j || 2 W 

(v ) 
i j 

= T r(SL (v ) S T ) , v = 1 , . . . , n v , and incorporate these con-

straints into the objective function in Eq. (1) . Therefore, the ob-

jective function of MMRSC can be formalized as: 

min 

B,S 
|| X − BS|| 2 F + 

n v ∑ 

v =1 

αv T r(SL (v ) S T ) + β
n ∑ 

i =1 

|| s i || 1 
s.t. || b i || 2 ≤ c, i = 1 , . . . , m (2)

where X is the original data representation 

1 , n v is the number of

graph Laplacian constraints, and αv ≥ 0 is the graph regulariza-

tion parameter of the v th manifold. When we increase αv in Eq.

(2) , the influence of the v th manifold regularizer increases, and

the corresponding effect is that s i and s j become more similar to

each other if they are close in the v th view. On the other hand,

when we decrease αv , the influence of the v th manifold regular-

izer will decrease as well. In an extreme case, if we set all αv = 0 ,

v = 1 , . . . , n v , our approach will regress to the standard sparse cod-

ing. In Section 4.6 , we will discuss in detail the impact of parame-

ters on the performance of our method. 

The objective function in (2) is convex either in B or in S , while

it is not convex in both of them simultaneously. For learning S

and B , we resort to an iteratively optimization method as proposed

in [15] . The optimization contains two steps: (1) fix the dictio-

nary B while learning coefficients S ; then (2) fix the coefficients

S while learning the dictionary B . We iteratively execute these two

steps until convergence, or until a pre-specified iteration number

is reached. 

3.2.2. Learning sparse coefficient matrix S 

In this section, we consider how to learn the sparse coefficient

matrix S by fixing the dictionary B . For this purpose, the optimiza-

tion problem (2) becomes: 

min 

S 
|| X − BS|| 2 F + 

n v ∑ 

v =1 

αv T r(SL (v ) S T ) + β
n ∑ 

i =1 

|| s i || 1 (3)

In order to facilitate manipulations in vector form, we rewrite

the problem (3) as: 

min { s i } 

n ∑ 

i =1 

|| x i − Bs i || 2 + 

n ∑ 

i, j=1 

( 

n v ∑ 

v =1 

αv L 
(v ) 
i j 

) 

s T i s j + β
n ∑ 

i =1 

|| s i || 1 (4)

Regarding the regularization terms 
∑ n 

i, j=1 ( 
∑ n v 

v =1 
αv L 

(v ) 
i j 

) s T 
i 

s j in the

problem (4) , each s i is coupled with other coefficient vectors

{ s j } j � = i . In order to solve this problem, we optimize over each s i 
individually by keeping other coefficient vectors fixed, and get the

following optimization problem for each s i : 

min 

s i 
f (s i ) = || x i − Bs i || 2 + 

( 

n v ∑ 

v =1 

αv L 
(v ) 
ii 

) 

s T i s i + s T i h i + β
m ∑ 

j=1 

| s ( j) 
i 

| 
(5)

where h i = 2 
∑ 

j � = i ( 
∑ n v 

v =1 
αv L 

(v ) 
i j 

) s j , and s 
( j) 
i 

is the j th coefficient of

s i . 

Since problem (5) with � 1 -regularization is non-differentiable

when s i has values of 0, we cannot adopt the standard uncon-

strained optimization methods to solve this problem. Several ap-

proaches are available for solving this problem [15,25,26] . In this

paper, we follow an efficient solution proposed in [15] , and use

the feature-sign search algorithm to solve the problem (5) . 
1 In this paper, we leverage the concatenated representation as X . Note that other 

representations can also be considered as X . 

t  

B

B  
To simplify notation, we define g(s i ) = || x i − Bs i || 2 +
( 
∑ n v 

v =1 
αv L 

(v ) 
ii 

) s T 
i 

s i + s T 
i 

h i , then f (s i ) = g(s i ) + β
∑ m 

j=1 | s ( j) 
i 

| . Let

 

( j) 
i 

| s i | be the sub-differentiable value of the j th coefficient of

 i . If | s ( j) 
i 

| > 0 , then the absolute value function | s ( j) 
i 

| is differen-

iable, thus ∇ 

( j) 
i 

| s i | = sign (s 
( j) 
i 

) , and the corresponding optimality

ondition is ∇ 

( j) 
i 

g(s i ) + βsign (s 
( j) 
i 

) = 0 . If | s ( j) 
i 

| = 0 , the absolute

alue function | s ( j) 
i 

| becomes non-differentiable. We then set

 

( j) 
i 

| s i | to [ −1 , 1] , and the corresponding optimality condition is

∇ 

( j) 
i 

g(s i ) | � β . 

Here, we consider the case when the optimality condition is vi-

lated, i.e., |∇ 

( j) 
i 

g(s i ) | > β, when | s ( j) 
i 

| = 0 . Without loss of gener-

lity, we suppose ∇ 

( j) 
i 

g(s i ) > β, and it means ∇ 

( j) 
i 

f (s i ) > 0 regard-

ess of the sign of s 
( j) 
i 

. In order to reduce f ( s i ), we should decrease

 

( j) 
i 

. Thus we take sign (s 
( j) 
i 

) = −1 as s 
( j) 
i 

starts at zero. Similarity, if

 

( j) 
i 

g(s i ) < −β, then we can take sign (s 
( j) 
i 

) = 1 . 

Assuming we have known the sign (s 
( j) 
i 

) at the optimal value,

hen each item | s ( j) 
i 

| of the � 1 -form in the problem (5) can be re-

laced by 
 

 

 

s ( j) 
i 

if s ( j) 
i 

> 0 

−s ( j) 
i 

if s ( j) 
i 

< 0 

0 if s ( j) 
i 

= 0 

(6)

herefore, the problem (5) can be reduced to a standard, uncon-

trained quadratic optimization problem (QP), which can be solved

nalytically and efficiently. To sum up, the algorithmic procedure

an be described as: 

• for each s i , we search for { sign (s 
( j) 
i 

) } j=1 , ... ,m 

; 

• get the optimal coefficient s ∗
i 

by solving the reduced QP prob-

lem; 

• return the optimal coefficients matrix S ∗ = [ s ∗
1 
, . . . , s ∗n ] . 

The feature-sign search algorithm maintains an active set A �
 j| s ( j) 

i 
= 0 , |∇ 

( j) 
i 

| > β} of potentially nonzero coefficients and their

orresponding signs θ = [ θ1 , . . . , θm 

] while updating each s i , and

t then systematically searches for the optimal active set and co-

fficient signs. In particular, this algorithm consists of a series of

feature-sign steps”, and for each step: 

• given a current setting for the active set and the signs, it com-

putes the analytical solution ˆ s new 

i 
to the resulting unconstrained

QP; 

• then it updates the solution, the active set and the signs using

an efficient discrete line search between the current solution

and ˆ s new 

i 
. 

Each feature-sign step strictly reduces the objective f ( s i ), and

he overall algorithm will converge to a global optimum in a finite

umber of steps [15] . 

.2.3. Learning dictionary B 

For solving the optimization problem in (2) over the dictionary

 , we fix the coefficients S and the problem reduces to a least

quares problem with quadratic constraints: 

min 

B 
|| X − BS|| 2 F 

.t. || b i || 2 ≤ c, i = 1 , . . . , m. (7)

There are several methods can be used for solving this opti-

ization problem, in this paper, we choose the more efficient La-

range dual method to solve the optimization problem [15] . Due to

he limitations of space, here we only give the optimal solution for

 as follows: 

 = X S T · (SS T + �) −1 (8)
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here � = diag( � λ) , � λ = [ λ1 , . . . , λm 

] T , and each λi ≥ 0 is a dual

ariable. We refer the reader to Ref. [15] for more details. 

.2.4. Computational complexity analysis 

The computational complexity of MMRSC consists of three

arts. First, it takes O ( 
∑ n v 

v =1 
d (v ) log (k ) n log (n )) to build multiple k-

earest neighbor graphs 2 to encode the manifold information from

 v views, where d ( v ) is the dimensionality of the v th view. Second,

MRSC adopts an iterative way to learn B and S . Specifically, in

ach iteration, MMRSC involves computing a � 1 -regularized least

quares problem ( S ), and a least squares problem with quadratic

onstraints ( B ). For learning S , MMRSC uses the state-of-the-art so-

ution, i.e., the feature-sign search algorithm [15] , and the compu-

ational cost is O ( nmK ), where K is the number of non-zero entries

f S . For learning B , the computational cost is O ( nmd ). Thus the

verall computational complexity of the second part is O (t 1 m (K +
) n ) , where t 1 is the number of iterations and d = 

∑ n v 
v =1 

d (v ) . At

ast, we adopt the k-means for clustering on the learnt sparse rep-

esentation, and the cost is O ( t 2 cmn ), where t 2 is the number of

terations in k-means, and c is the number of clusters. Putting ev-

rything together, the computational complexity of MMRSC 

3 is 

 

( 

n v ∑ 

v =1 

d (v ) log (k ) n log (n ) + t 1 m (K + d) n + t 2 cmn 

) 

ote that, the computational complexity of MMRSC is equivalent

o that of GraphSC. Without increase the computational complex-

ty, MMRSC can outperform GraphSC by capturing structure infor-

ation over the view-level rather than over the mixed space as in

raphSC. 

.3. Image clustering 

For clustering image data, similar to Ref. [7] , we first utilize the

roposed approach to project multi-view image data into a sparse

nd lower dimensional representation, then apply any clustering

lgorithm such as k-means to conduct clustering. It is worth noting

hat, in this work, we leverage the concatenated representations of

ll different views to construct X, which is simple but effective.

ote that we can also employ other ways to construct X. As it is

ot the main concern of this work, we may explore alternatives as

art of future work. 

As the main concern of this work is to learn powerful image

epresentations for image clustering, fair comparison of the perfor-

ance of different methods can only be ensured when employing

he same clustering method. Otherwise, differences in performance

ay be due to the different learnt representations or due to the

lustering method, resulting in inconclusive experiments. For this

eason, we employ k-means as the same clustering method, which

s a simple, established and widely used clustering method. It is

lso interesting to employ additional clustering methods, such as

-means++ [27] and x-means [28] . As it is out of the scope of this

aper, we will explore them in the future work. 

It is worth noting that we can also learn a new representation

ith the same dimension as the number of ground-truth clusters

here each dimension represents a cluster membership, and then

elect the maximal dimension as the final cluster label. Due to the

imitation of space, we only report the results of applying k-means

n the learnt representation since it achieves better performance

n our experiments. 
2 The ball tree structure was utilized to construct the k-nearest neighbor graph. 
3 In practice, we could apply PCA to reduce the dimension of the data in order 

o accelerate the computation. For clarity, here we only report the general compu- 

ational complexity. 

o  

p  
. Experiments 

In this section, we empirically evaluate the proposed multi-

iew image clustering algorithm on two real-world image datasets.

he experimental results demonstrate the effectiveness of our pro-

osed algorithm. 

.1. Datasets 

The datasets used in our experiments are the Handwritten Dig-

ts dataset and the MirFlickr dataset, where the former is ho-

ogeneous and the latter is heterogeneous. Here, the homoge-

eous and heterogeneous datasets reflect their degree of difference

mong different views. Homogeneity means that the views are

rom fewer different representation spaces, such as the Handwrit-

en Digits dataset, where all views are visual features. In contrast,

eterogeneity indicates that the difference among views are large,

s is the case with the MirFlickr dataset, where views vary from

extual descriptions to visual descriptions. Through these different

ettings, we would like to verify whether our approach works well

n different scenarios. It is worth noting that, although our method

an be naturally applied to more views, here we only consider two

iews since it is more straightforward to compare the performance

f different approaches in the two scenarios. The statistics of the

wo datasets used in our experiments are summarized in Table 1 . 

Handwritten digits. This dataset is from the UCI repository 4 , and

onsists of 20 0 0 images of digits with 200 images for each of the

en digit classes. For this dataset, similar to Ref. [2] , we use two

ypes of feature sets (i.e., fourier and pixel) as the two views in our

xperiments. The fourier view consists of 76 fourier coefficients

f the character shape, which are rotation invariant features (e.g.,

amples from class ‘6’ and class ‘9’ can not be distinguished based

n these features). The pixel view consists of 240 features which

ere extracted by splitting the image of 30 × 48 pixels into 240

iles of 2 × 3 windows. 

MirFlickr. This dataset [29] comprises 25,0 0 0 images from the

lickr 5 and the associated tag annotations contributed by users. We

lean the raw tag data by removing stop words, converting letters

nto lower case, and ignoring non-English tags. Moreover, we fur-

her disregard tags with a frequency less than 3 and images with

ess than 2 tags in order to reduce the noise. As in MirFlickr an

mage may belong to multiple categories, we select 10 categories,

hich are less correlated to each other (i.e., tree, night, clouds,

ower, food, dog, car, bird, baby, lake ), as ground-truth clusters and

etain only images which belong to a single category, in order to

acilitate a hard clustering evaluation. Finally, 7425 images are ob-

ained and distributed in 10 categories. The tags are weighted by

sing the TF-IDF weighting scheme [30] . For the visual features in

his dataset, we use Lire [31] to extract 305-D global features, in-

luding the 192-D Fuzzy Color and Texture Histogram [32] , 33-D

PEG-7 Color layout [33] , and 80-D MPEG-7 Edge Histogram [33] .

inally, we have two views of MirFlickr dataset, one is the 8,740

imensional tag view and the other is the 305 dimensional visual

iew. 

.2. Baseline 

To demonstrate the performance of our proposed model, we

ompare it with 7 baseline approaches. These approaches can

e grouped into two categories: traditional single-view methods

Kmeans, NMF, SC, GraphSC) and state-of-the-art multi-view meth-

ds (CollNMF, MultiNMF, CoNMF). In order to make a fair com-

arison for traditional single-view approaches, in the multi-view
4 https://archive.ics.uci.edu/ml/datasets.html . 
5 https://www.flickr.com/ . 

https://archive.ics.uci.edu/ml/datasets.html
https://www.flickr.com/
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scenario, we concatenate different views together, and then apply

Kmeans, NMF, SC, and GraphSC on the concatenated data repre-

sentation. For clarity, we call Kmeans, NMF, SC, and GraphSC on

the concatenated data representation as ConcatKmeans, Concat-

NMF, ConcatSC, Concat GraphSC, respectively. The details of these

baseline approaches are given as follows: 

• ConcatKmeans: This method is a naive solution, which directly

runs the k-means clustering algorithm over the concatenated

data representation without conducting any factorization. 

• ConcatNMF: This method applies non-negative matrix factor-

ization (NMF) over the concatenated data representation in or-

der to learn a new representation of the data. In contrast to

k-means, this method first factorizes the original data represen-

tation into a basis matrix and a coefficient matrix, and then ap-

plies k-means over the learnt coefficient matrix for clustering. 

• ConcatSC: This method employs sparse coding over the con-

catenated data representation as to learn a sparse representa-

tion, and then carries out k-means algorithm over this sparse

representation for clustering. Compared to ConcatNMF, Con-

catSC incorporates the sparsity constraint into the objective

function to enforce the learnt coefficient matrix to be sparse. 

• ConcatGraphSC [18] : This method is an extension of ConcatSC,

which further incorporates the local manifold structure as an

additional constraint in the objective function. 

• CollNMF [1] : This method employs NMF for multi-view clus-

tering by applying a joint matrix factorization process to learn

the new presentation. In particular, it enforces different views

to share the same coefficient matrices. 

• MultiNMF [2] : This method is an extension of CollNMF, which

relaxes the constraint of requiring the learnt coefficient matri-

ces to be identical, by restricting the learnt coefficient matrices

across different views towards a common consensus matrix. In

MultiNMF, the regularization parameter is set to be 0.01, as sug-

gested by the authors. 

• CoNMF [3] : This method further relaxes the consensus con-

straint used in MultiNMF. Specifically, instead of enforcing dif-

ferent learned coefficient matrices towards a common consen-

sus matrix, CoNMF employs co-regularization in the factoriza-

tion process through two paradigms (i.e., pair-wise CoNMF and

cluster-wise CoNMF). In the following experiments, we only re-

port the results conducted by pair-wise CoNMF as it performs

much better than cluster-wise CoNMF in all setting of our ex-

periments. As mentioned before, the learned coefficient matrix

of each view can be used for clustering and there are no guide-

lines for selecting the best performing coefficient matrix, we re-

port the results of both the best and the worst performing coef-

ficient matrices, which are referred to as CoNMF-B and CoNMF-

W, respectively. The regularization parameters are set to be 1 as

suggested by the authors. 

For implementation, we first apply all methods except Con-

catKmeans to learn a new representation with the same dimen-

sion (e.g., a 64-dimensional vector) for the data, and then apply

k-means algorithm on the new representation for clustering. We

carry out the experiments by conducting 20 test runs with differ-

ent initializations [7] . To illustrate the improvements of MMRSC

over all baseline methods, we also conducted the statistical sig-

nificance test t -test at p -value < 0.05 (5% significance level). In

MMRSC, the parameters β and k are empirically set as 0.1 and

3, respectively, and the parameters αv (v = 1 , . . . , n v ) are uniformly

set as 1. For simplicity, we use α instead of αv (v = 1 , . . . , n v ) for

all views. In Section 4.6 , we give a detailed discussion about the

sensitivity of MMRSC with respect to these parameters. 
.3. Evaluation metrics 

For evaluation, two standard clustering metrics, the accuracy

AC) and the normalized mutual information (NMI), are used to

easure the performance. 

Given an image x i , let r i and l i be the predicted cluster and the

round-truth cluster provided by the dataset, respectively. The AC

s defined as follows: 

C = 

∑ n 
i =1 δ(l i , map(r i )) 

n 

(9)

here n indicates the total number of images and δ( x, y ) is the

elta function that equals 1 if x = y, and equals 0 otherwise, and

ap ( r i ) is the mapping function that maps each predicted cluster

 i to the best ground-truth cluster. The Kuhn–Munkres algorithm

34] is used to find the best mapping. 

For two clusters C and C ′ , their mutual information metric MI ( C,

 

′ ) is defined as follows: 

I (C, C ′ ) = 

∑ 

c i ∈ C,c ′ 
j 
∈ C ′ 

p(c i , c 
′ 
j ) · log 2 

p(c i , c 
′ 
j 
) 

p(c i ) p(c ′ 
j 
) 

(10)

here p ( c i ) and p(c ′ 
j 
) are the probabilities that a sample arbitrarily

elected from the dataset belongs to the clusters c i as well as c ′ 
j 

at

he same time. We define the normalized mutual information NMI

s follows: 

MI (C, C ′ ) = 

MI (C, C ′ ) 
max (H(C) , H(C ′ )) (11)

here H ( C ) and H ( C ′ ) are the entropies of C and C ′ , respectively.

MI takes values between 0 and 1, with higher values indicating a

loser match to the true clustering. 

.4. Single-view clustering 

In this subsection, we compare the performance of three differ-

nt single view clustering algorithms: k-means, NMF and MMRSC,

hich allows us to get a better understanding of properties of

hese methods on a single view. It is worth noting that, for

ingle-view clustering, these NMF-based multi-view clustering ap-

roaches (e.g., CollNMF, MultiNMF, and CoNMF) will regress to

MF. 

From Fig. 2 (a), we observe that the views of Handwritten Digits

re relatively homogeneous and of high quality. For example, the

ccuracies of conducting k-means on fourier view and pixel view

re 0.728 and 0.786, respectively. And the pixel view is better than

ourier view with an improvement of accuracy around 8%. The ac-

uracy of NMF on each view of Handwritten Digits is worse than

hat of k-means. This is because that mapping the original rep-

esentation into a latent low-rank space would cause the loss of

nformation. In contrast, the accuracy of MMRSC on each view is

omparable to that of k-means, and the reason is that the bene-

t of incorporating the sparsity and structure constraints can com-

ensate for the loss of information during the factorization process.

On the MirFlickr dataset (see Fig. 2 (b)), the views are heteroge-

eous and of low quality. For instance, the accuracies of k-means

n tag view and visual view are only 0.244 and 0.295, respectively.

he tag view is superior to the visual view with an improvement

f accuracy up to 21%. Fig. 3 shows some sample images from

he two datasets, and we observe that the images from the Mir-

lickr dataset are more complex than that of the Handwritten Dig-

ts dataset. For example, images from the same class (e.g., class

bird’) in the MirFlickr dataset often have different backgrounds

hile images from the same class (e.g., class ‘2’) in the Handwrit-

en Digits dataset share an identical background. Besides, the views

f Handwritten Digits (e.g., fourier view and pixel view) are both
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Fig. 2. Clustering performance of three methods (k-means, NMF and MMRSC) on each single view for two datasets. 

Fig. 3. Sample images from two datasets. (a) Handwritten digits and (b) MirFlickr. 

Table 1 

Statistics of the two datasets: Handwritten Digits and MirFlickr. 

Dataset #Image View #Cluster 

Name #Feature 

Digits 2000 fourier 76 10 

pixel 240 

MirFlickr 7425 visual 305 10 

tag 8740 
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Table 2 

Clustering performance (mean ± standard deviation) on the Handwritten Digits 

dataset. Performance metrics Accuracy and Normalized Mutual Information (NMI) 

are shown. Paired t-tests are performed and the symbol † indicates that MMRSC 

is significant better than the corresponding algorithm at p -value < 0.05. The best 

performance is indicated in bold. 

Dataset Handwritten Digits 

Method Accuracy (%) NMI (%) 

ConcatKmeans 77.3 ± 5.2 † 74.4 ± 2.3 † 

ConcatNMF 71.2 ± 6.5 † 68.8 ± 4.2 † 

ConcatSC 81.8 ± 5.2 † 76.3 ± 2.9 † 

ConcatGraphSC [18] 83.2 ± 6.5 † 77.4 ± 3.4 † 

CollNMF [1] 70.1 ± 7.0 † 63.7 ± 4.1 † 

MultiNMF [2] 87.5 ± 0.8 † 79.4 ± 0.7 † 

CONMF-W [3] 84.2 ± 4.8 † 77.3 ± 2.6 † 

CONMF-B [3] 84.3 ± 5.9 † 78.7 ± 3.1 † 

MMRSC 90.5 ± 4.9 86.3 ± 2.6 
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xtracted from visual contents, while the views of MirFlickr (e.g,

isual view and tag view) are much more heterogeneous, which

re extracted from visual and textual contents, respectively. On the

irFlickr dataset, the accuracy of NMF is better than that of k-

eans, because MirFlickr contains relatively more noise, and rep-

esenting the original view by a compact representation learnt by

MF can help to alleviate the noise problem. Similar to the results

n Handwritten Digits, MMRSC can achieve a significant better per-

ormance (paired t -test with p -value < 0.05) as compared to that

f k-means on each view of the MirFlickr dataset. 

In summary, on both datasets, MMRSC can achieve significant

etter or competitive performance as compare with k-means on

oth data set, while NMF demonstrates an unstable performance. 

.5. Multi-view clustering 

Comparison on Handwritten Digit. Table 2 summarizes the clus-

ering results of all methods on the Handwritten Digits dataset.

s mentioned above, the top 4 baseline methods (i.e., ConcatK-

eans, ConcatNMF, ConcatSC, and ConcatGraphSC) in Table 2 are

pplied directly on a concatenated feature representation. It is in-

eresting to see that the performance of ConcatNMF is even worse

han that of ConcatKmeans which performs the k-means cluster-

ng algorithm directly on the concatenated representation without

ny factorization. This result shows that the representation learnt

y applying ConcatNMF over the combined view cannot effectively

eal with the multi-view clustering problem. 
Both ConcatSC and ConcatGraphSC are better than ConcatK-

eans, with an improvement of accuracy up to 5.8% and 7.6%,

espectively. The reason is that SC enforces the learnt coefficient

atrix to be sparse. This sparsity property makes the new rep-

esentation more robust and has been shown to achieve encour-

ging performance in many applications, like image denoising [4] .

oncatGraphSC further improves the performance by incorporat-

ng the local manifold information of the concatenated represen-

ation. It is worth noting that the Handwritten Digits dataset is a

omogeneous dataset, where the qualities of each view are nearly

quivalent, therefore incorporating the manifold information of the

oncatenated representation can benefit the performance. As we

ill discuss later on the MirFlickr dataset, which is a heteroge-

eous dataset, this type of manifold constraint would hurt the

erformance if directly incorporated into the objective function of

parse coding. 

It is surprising to see that the performance of CollNMF is even

orse than that of ConcatKmeans. This is due to the fact that the

onstraint adopted by CollNMF is too strong, since it enforces a

hared coefficient matrix across all views. MultiNMF achieves the

est performance among all baseline methods, because it relaxes

he constraint of CollNMF by enforcing the coefficient matrices of

ifferent views towards a common consensus matrix. This result

hows that MultiNMF can have a promising performance when the

ataset is homogeneous. CoNMF is another extension of CollNMF

nd it relaxes the constraint by employing the co-regularization

n the factorization process. Although both CoNMF-B and CoNMF-

 perform worse than MultiNMF, they still obtain the second

est performance among all baseline approaches. Our proposed

ethod, MMRSC, consistently significantly (paired t -test was con-

ucted at p -value < 0.05) outperforms all the competing methods,

ith an improvement of accuracy up to 3.4% over the best per-

orming baseline method MultiNMF. 
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Table 3 

Clustering performance (mean ± standard deviation) on the MirFlickr dataset. Per- 

formance metrics Accuracy and Normalized Mutual Information (NMI) are shown. 

Paired t -tests are performed and the symbol † indicates that MMRSC is significant 

better than the corresponding algorithm at p -value < 0.05. The best performance is 

indicated in bold. 

Dataset MirFlickr 

Method Accuracy (%) NMI (%) 

ConcatKmeans 28.5 ± 3.2 † 13.3 ± 4.8 † 

ConcatNMF 31.4 ± 3.7 † 16.4 ± 4.5 † 

ConcatSC 35.7 ± 2.5 † 22.2 ± 3.3 † 

ConcatGraphSC [18] 33.4 ± 2.5 † 18.7 ± 2.5 † 

CollNMF [1] 31.5 ± 2.0 † 17.1 ± 2.1 † 

MultiNMF [2] 24.0 ± 0.9 † 12.0 ± 2.3 † 

CONMF-W [3] 21.0 ± 1.3 † 6.6 ± 0.6 † 

CONMF-B [3] 36.6 ± 3.6 21.5 ± 3.1 † 

MMRSC 37.9 ± 1.9 23.2 ± 1.3 
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This is because MMRSC introduces a set of high-level structure

constraints, which can preserve the manifold structures of differ-

ent views. Moreover, it employs sparse coding rather than NMF to

learn a new representation, and can further take advantage of spar-

sity property to better deal with the noise issue. It suggests that

employing the high-level structure constraints is more effective

than imposing the consensus constraint directly over the low-level

coefficient matrices as conducted in these NMF-based approaches. 

Comparison on MirFlickr. As can be seen from Table 3 , on the

MirFlickr dataset, we find that the performance of ConcatNMF

is better than that of ConcatKmeans. This shows that when the

dataset is heterogeneous, directly applying the k-means clustering

algorithm over a concatenated representation may not work effec-

tively. Unsurprisingly, both ConcatSC and ConcatGraphSC are better

than ConcatNMF and ConcatKmeans, due to the incorporation of

the sparsity property. One interesting result is that ConcatGraphSC

is worse than ConcatSC on MirFlickr, this is because the manifold

structure based on the combined view is unreliable. Similar to the

results on Handwritten Digits, the performance of CollNMF is com-

parable to that of ConcatNMF. This is also consistent with the anal-

ysis that CollNMF is equivalent to conducting NMF on a combined

view [2] . The performance of MultiNMF is worse than ConcatK-

means because MultiNMF can perform well only when the dataset

is homogeneous. Regarding the CoNMF method, it is interesting to

see that the performance of CoNMF-W and CoNMF-B vary greatly.

CoNMF-B outperforms all other baseline methods, reach an accu-

racy of 0.366, while CoNMF-W underperforms all other baseline

methods, with an accuracy of 0.21. As we mentioned before, the

drawback of CoNMF is that it is impractical to select the best per-

forming coefficient matrix, thus limits its application. MMRSC sig-

nificantly outperforms CoNMF-B for the NMI metric (paired t -test,

p -value < 0.05), and also has a better performance than CoNMF-B

for the Accuracy metric with a p -value = 0.08. It shows that on the

heterogeneous dataset Mirflickr, MMRSC can still achieve a better

performance. 

It is worth noting that the clustering performance of the pro-

posed method over the MirFlickr dataset is not very high, as it is a

quite challenging task due to the heterogeneous multi-modalities,

noise, and issues with incompleteness. The motivation to utilize

this dataset are two-fold: (1) we want to verify the performance of

our algorithm on some very challenging clustering tasks; (2) auto-

matically organizing social media data, like the MirFlickr dataset,

is critical for helping users to easily understand the complex data

pattern and make decisions. 

4.6. Impact of parameters 

In this section, we conduct experiments to analyze the sensitiv-

ity of our methods with respect to the parameters: α, β , and k . 
.6.1. Parameter α
The parameter α controls the influence of the multiple graph

aplacian constraints. We vary α as {0, 0.01, 0.05, 0.1, 0.2, 0.5, 1,

, 5, 10, 20, 50}, while fixing the other parameters to the follow-

ng values: β = 0 . 1 and k = 3 . Fig. 4 (a) shows the impact of α to

MRSC on the Handwritten Digits dataset. We can observe that

he performance increases as we increase α, and reaches the best

erformance when α varies from 0.05 to 1, which is followed by

 considerable drop of performance. This is because when α = 0 ,

MRSC regresses to the standard sparse coding model SC where

o manifold constraint is involved. When we increase α, the multi-

le manifold structures from different views are preserved. The re-

ults show that these manifold structures are beneficial for MMRSC

hen they are incorporated as a set of graph Laplacian regulariz-

rs in the objective function. When α is too large, like α > 5, the

erformance will drop significantly. Fig. 4 (d) demonstrates the im-

act of α to MMRSC on the MirFlickr dataset, and similar results

re observed. 

.6.2. Parameter β
The parameter β reflects the influence of the sparsity con-

traint. We vary β as {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

.0, 2.0, 5.0} while fixing other parameters (i.e., α = 1 and k = 3 ).

he results on Handwritten Digits are shown in Fig. 4 (b), and we

bserve an increase of performance when introducing the sparsity

onstraint (e.g., β > 0). Moreover, the performance of MMRSC is

ot very sensitive to β when we vary β from 0.1 to 2, and it

ends to drop if we further increase the value of β (e.g., when

= 5 ). While on the MirFlickr dataset as shown in Fig. 4 (e), we

bserve that MMRSC is more sensitive to β and demonstrates an

arly drop in performance as compared to the results on Hand-

ritten Digits. In particular, the performance of MMRSC continues

o rise and reaches a peak when β = 0 . 3 . Then it begins to drop

radually with the increase of β , and encounters a dramatically de-

rease after β > 0.9. This is because the dimension of MirFlickr is

uch higher than that of Handwritten Digits, and a strong spar-

ity constraint (i.e., a large value of β) will limit the complexity

f MMRSC to model this high-dimensional data representation. In

eneral, incorporating sparsity constraint can improve the perfor-

ance, and keeping a relatively small β (e.g., 0.1 ≤ β ≤ 0.3) is

ecessary to ensure a better trade-off between sparsity and model

omplexity. 

.6.3. Parameter k 

The parameter k is the number of nearest neighbors for the

onstruction of manifolds, which are then incorporated as a set of

raph Laplacian constraints in the objective function (see Eq. (2) )

f MMRSC. We vary k as {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 50} while

eeping other parameters fixed: α = 1 , and β = 0 . 1 . The results on

andwritten Digits and MirFlickr are shown in Fig. 4 (c) and (f), re-

pectively. On the Handwritten Digits dataset, the performance of

MRSC first increases quickly until k = 3 and then becomes sta-

le. After k exceeds 10, it starts to decrease. The reason is straight-

orward: when k > 10, the possibility that noisy relationships are

dded into the manifold, which will potentially affect the perfor-

ance of our method. 

The performance on the MirFlickr dataset demonstrates similar

rend, with the exception that there is just a slight increase when

 varies from 1 to 3. The reason is that the MirFlickr dataset are

ollected from various scenarios (see Fig. 3 (b)) and are supposed

o be more diverse as compared to the Handwritten Digits dataset,

hich would lead to more noisy manifolds (e.g., the manifold from

isual view) when k is small and degrade the effect of the manifold

onstraint. 
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Fig. 4. The impact of parameters ( α, β , and k ) to MMRSC on Handwritten Digits (above) and MirFlickr (below). 
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. Conclusions 

In this paper, we have studied the problem of multi-view im-

ge clustering. We propose MMRSC, a novel framework that incor-

orates the high-level manifold consensus constraint in order to

apture the underlying clustering structures of different views. In

ddition, we also take the sparsity issue into account and resort

o exploiting the sparse coding framework, instead of utilizing the

MF framework, to deal with the multi-view clustering problem.

xperimental results show that the proposed approach consistently

utperforms the baseline methods in terms of both accuracy and

ormalized mutual information for the multi-view image cluster-

ng task. For future work, we intend to apply our MMRSC model

n multi-view classification, where the label information could be

ntroduced as an additional regularization term to generate proper

epresentation. For example, we can modify our MMRSC model by

nforcing a class consensus assumption, i.e., for the learnt repre-

entation, the distance of data points from the same class should

e more closer than the distance of data points from different

lasses. 
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