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Abstract

Headline generation is an important problem in natural lan-
guage processing, which aims to describe a document by a
compact and informative headline. Some recent successes on
this task have been achieved by advanced graph-based neural
models, which marry the representational power of deep neu-
ral networks with the structural modeling ability of the rela-
tional sentence graphs. The advantages of graph-based neural
models over traditional Seq2Seq models lie in that they can
encode long-distance relationship between sentences beyond
the surface linear structure. However, since documents are
typically weakly-structured data, modern graph-based neu-
ral models usually rely on manually designed rules or some
heuristics to construct the sentence graph a prior. This may
largely limit the power and increase the cost of the graph-
based methods. In this paper, therefore, we propose to incor-
porate structure learning into the graph-based neural mod-
els for headline generation. That is, we want to automati-
cally learn the sentence graph using a data-driven way, so
that we can unveil the document structure flexibly without
prior heuristics or rules. To achieve this goal, we employ a
deep & wide network to encode rich relational information
between sentences for the sentence graph learning. For the
deep component, we leverage neural matching models, ei-
ther representation-focused or interaction-focused model, to
learn semantic similarity between sentences. For the wide
component, we encode a variety of discourse relations be-
tween sentences. A Graph Convolutional Network (GCN) is
then applied over the sentence graph to generate high-level
relational representations for headline generation. The whole
model could be optimized end-to-end so that the structure
and representation could be learned jointly. Empirical studies
show that our model can significantly outperform the state-
of-the-art headline generation models.

1 Introduction

Headline generation is a task to generate a fluent and con-
densed headline for a document, with the constraint that only
a short sequence of words is allowed to generate. Previous
efforts on headline generation can be categorized to extrac-
tive and abstractive methods. Extractive methods directly
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extract sentences from the original document and then ex-
ploit sentence compression techniques to produce the head-
line. They have the advantage of producing fluent sentence
and preserving the meaning of original documents, but also
inevitably suffer from generating less informative headlines.
Recently, thanks to the popularity of neural network models
and their ability to learn continuous representations without
preprocessing tools, abstractive methods have become pop-
ular in headline generation, which aim to generate the head-
line based on understanding the document.

Without loss of generality, a good understanding of the
document should consist of not only the language model-
ing (Rush, Chopra, and Weston 2015), but also the structure
modeling, i.e., capturing the intrinsic relationships between
sentences. The headline generation task is generally formu-
lated as a sequence-to-sequence (Seq2Seq) learning problem
and a wide range of neural Seq2Seq models have been ap-
plied to solve it. Specifically, Seq2Seq models only capture
the surface linear structure of the document, which can not
model the long-distance relationship between sentences. To
address this issue, some recent studies (Yasunaga et al. 2017;
Fernandes, Allamanis, and Brockschmidt 2019) begin to fo-
cus on the graph-based neural models, which are inspired
by modeling highly-structured objects (e.g., entity relation-
ships and molecules) using graphs (Kipf and Welling 2017).
These methods exploit the representational power of deep
neural networks and the structural modeling ability of the
relational sentence graphs, which can encode long-distance
relationship between sentences. However, since documents
are typically weakly-structured data, these graph-based neu-
ral models usually rely on manually designed rules (e.g., dis-
course relations) or some heuristics (e.g., tf-idf cosine simi-
larity) to construct the sentence graph a prior. This may re-
sult in the limitation of flexibility in modeling different rela-
tionships between sentences. Furthermore, it could increase
the cost of designing the sentence graph.

In this work, we propose a Structure Learning based
Generation model, named SLGen, which incorporates sen-
tence graph learning into the graph-based neural models
for headline generation. We represent document sentences
as nodes in a graph with undirected edges as links be-
tween sentences. To learn the sentence graph, we employ
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a deep & wide network including deep component and wide
component, to encode rich relational information between
sentences in a principled way. Specifically, for the deep
component, we introduce two different neural matching
models, i.e., representation-focused model or interaction-
focused model, to learn the semantic similarity between
sentences. Representation-focused model aims to conduct
matching based on the sentence representations by a rela-
tively simple matching function. Interaction-focused model
first builds local interactions between two sentences, and
then uses deep neural networks to learn hierarchical interac-
tion patterns for matching. For the wide component, we en-
code various discourse relations between sentences. In this
way, our model can learn the intrinsic sentence graph of the
input document, thus incorporating well-established insights
from earlier work.

Given the sentence graph, our SLGen model applies a
Graph Convolutional Network (GCN) (Kipf and Welling
2017), which takes in sentence representations induced from
the deep & wide framework as input node features. Through
multiple layer-wise propagation, the GCN generates high-
level relational representations for sentences that capture
high order neighborhoods information. To have a global
view of the entire document, we obtain the document rep-
resentation by computing the weighted sums of sentence re-
lational representations, where the weight of each sentence
is measured by computing its degree centrality. Finally, we
employ the unmodified decoder with the attention mecha-
nism (Bahdanau, Cho, and Bengio 2014) to focus on sen-
tence relational representations for better generation. To the
best of our knowledge, this is the first study to automatically
learn the underlying document structure and apply a GCN
architecture over the sentence graph in a data-driven way
for headline generation.

We evaluate our model on a public benchmark collec-
tion, i.e., the New York Times (NYT) Annotated corpus. For
evaluation, we compare with several state-of-the-art meth-
ods to verify the effectiveness of our model. Empirical re-
sults demonstrate that our model can well learn the sentence
graph and outperform all the baselines significantly.

2 Related Work

In this section, we briefly review two lines of related work,
i.e., headline generation and graph neural networks.

2.1 Headline Generation

Existing methods on headline generation can be generally
categorized into extractive methods and abstractive meth-
ods. Extractive methods try to extract the most important
sentences in the document and rearranging them into a new
headline. Early works mainly define surface features for un-
supervised learning (Luhn 1958; Edmundson 1964). Later,
graph-based methods are applied broadly to rank sentences
(Erkan and Radev 2004; Mihalcea and Tarau 2004). Re-
cently, neural Seq2Seq models have also been investigated
for the extractive task (Nallapati, Zhai, and Zhou 2017).

Abstractive methods, on the other hand, aim to generate
more novel headline based on understanding the document.

Banko, Mittal, and Witbrock (2000) viewed the task as a
problem analogous to statistical machine translation for con-
tent selection and surface realization. Woodsend, Feng, and
Lapata (2010) proposed a quasi-synchronous grammar ap-
proach to produce clear headline. Later, the task is formu-
lated as a Seq2Seq learning problem and neural models have
been adopted to solve it. For example, Rush, Chopra, and
Weston (2015) trained an attention-based encoder-decoder
framework in a data-driven way. Chopra, Auli, and Rush
(2016) extended this work with an attentive RNN frame-
work, and incorporated the position information of words.
See, Liu, and Manning (2017) used the pointer-generator
network that can copy words from the document to solve the
out-of-vocabulary words. Moreover, recent studies focus on
using reinforcement learning to combine extractive and ab-
stractive methods. (Hsu et al. 2018; Chen and Bansal 2018).
However, these abstractive models still capture the surface
linear structure of the input document.

2.2 Graph Neural Networks

Early studies about graph neural networks learned the repre-
sentation of a node by propagating neighbor information via
recurrent neural networks in an iterative manner until a fixed
point is reached (Micheli 2009; Scarselli et al. 2008). How-
ever, this process is computationally expensive. Inspired by
the huge success of convolutional networks in the com-
puter vision area, many works related to Graph Convolu-
tional Networks (GCN) have been rapidly developed (Kipf
and Welling 2017; Hamilton, Ying, and Leskovec 2017;
Niepert, Ahmed, and Kutzkov 2016) to improve efficiency,
which directly perform the convolution in the graph.

The GCN has been introduced in several NLP tasks,
e.g., text classification (Yao, Mao, and Luo 2019), machine
translation (Bastings et al. 2017), reading comprehension
(De Cao, Aziz, and Titov 2019) and semantic role label-
ing (Marcheggiani and Titov 2017), where GCN is used
to encode the syntactic structure of sentences. Specifically,
headline generation can be viewed as a text summarization
problem (Tan, Wan, and Xiao 2017), with the constraint
that only a short sequence of words is allowed to gener-
ate to preserve the essential topics of a document. Some re-
cent studies also explored GCN for text summarization. Ya-
sunaga et al. (2017) presented a novel multi-document sum-
marization system that incorporates pre-designed sentence
relation graphs. Fernandes, Allamanis, and Brockschmidt
(2019) presented a framework for extending sequence en-
coders with a graph component that can leverage rich ad-
ditional structure. Different from these previous efforts, our
model automatically learns the sentence graph without prior
rules for better generation.

3 Our Approach
In this section, we introduce the SLGen model, a novel
structure learning based generation method designed for the
headline generation task.

3.1 Model Overview

Formally, given an input document D = {s1, . . . , sL} with
L sentences, where each sentence si ∈ D contains a se-
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Figure 1: The overall architecture of SLGen model.

quence of Ti words wit (t ∈ [1, Ti]), SLGen aims to generate
a headline Y for the document D.

Basically, our SLGen model could be decomposed into
three dependent components: 1) Deep & Wide Network: to
automatically construct the sentence graph; 2) Graph Con-
volution Network: to generate high-level relational represen-
tations for sentences; 3) Headline Decoder: to generate the
headline for the input document. The overall architecture of
SLGen is depicted in Figure 1, and we will detail our model
as follows.

3.2 Deep & Wide Network

This component is to automatically learn the sentence graph
for unveiling the document structure. Formally, given the in-
put document D, we aim to construct the sentence graph G
where the nodes V are the set of L sentences and the undi-
rected edges E denote the link between two nodes.

Here, we employ a deep & wide network (Cheng et
al. 2016) including deep (semantic) component and wide
(discourse) component, where the deep component is used
to generalize semantic similarity through low-dimensional
dense embeddings and the wide component is used to mem-
orize the discourse relations. We may further incorporate
some other rules or heuristics into the wide component, and
we leave this as our future work.

Deep (Semantic) Component The deep component is a
feed-forward neural network and aims to produce the se-
mantic matching score S(si, sj) for each sentence pair <

si, sj >, which could be decomposed into two steps: 1)
Word encoder: to achieve the sentence representations by
encoding the words; 2) Semantic matching: to learn seman-
tic similarity based on sentence representations.

• Word encoder. Given a sentence si, each word wit ∈ si
is firstly represented by its distributed representation eit.
We then use a bi-directional GRU as the word encoder.
The forward GRU reads the words in the i-th sentence
si in the left-to-right direction, resulting in a sequence of
hidden states (

−→
hi1, . . . ,

−−→
hiTi). The backward GRU reads

si in the reversed direction and outputs (
←−
hi1, . . . ,

←−−
hiTi).

We obtain the hidden state for the word wit by concate-
nating the forward and backward hidden states, i.e., hit =

[
−→
hit||←−hit]. Then we concatenate the last hidden states of

the forward and backward passes as the semantic repre-
sentation of the sentence si, denoted as hi = [

−−→
hiTi
||←−hi1].

Specifically, the surface linear structure in the input doc-
ument is still rich in meaning (Fernandes, Allamanis, and
Brockschmidt 2019). We assume that each sentence si,
beyond its semantic representation hi, also has a position
representation pi. For each sentence si, the final sentence
representation xi is constructed by concatenating the se-
mantic and position representations, i.e., xi = [hi||pi].

• Semantic Matching. As shown in Figure 1, based on sen-
tence representations, we introduce two neural matching
models to learn semantic similarity between sentences.
One is the representation-focused model, which tries to
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directly compare two sentence representations by a simple
matching function. The other is the interaction-focused
model, which learn from a matching matrix between two
sentences (Guo et al. 2016).
– Representation-focused model. Given the sentence

pair < si, sj >, the representation-focused model mea-
sures the degree of matching as a score by a scoring
function based on the sentence representations xi and
xj . Here, we employ Bilinear to compute the semantic
matching score:

S(si, sj) = xT
i Wxj + b, (1)

where W is the transformation matrix to learn.
– Interaction-focused model. Formally, each sentence
si is represented as a sequence of word hidden states
denoted by {hi1, . . . , hiTi}. The interaction-focused
model produces the word-level interaction matrix for
final matching score. Here, we compute the semantic
matching matrix M based on the word hidden states
from the sentence pair < si, sj >, defined as follows:

Mpq =
hT
iphjq

||hip|| · ||hjq| , (2)

where hip and hjq stand for the p and q-th word hid-
den states for two sentences si and sj , respectively.
To further incorporate word importance, we extend
each element of Mpq to a three-dimensional vector
Npq = [wp,wq,Mpq] by concatenating two corre-
sponding compressed word hidden states as in (Fan et
al. 2018), where wp = hip ∗Wc and wq = hjq ∗Wc,
here, Wc is the learnable transformation parameter.
Based on the sentence interaction tensor, a spatial GRU
(Wan et al. 2016) is applied to generate the semantic
matching evidences, which scans the input tensor from
top left to bottom right:−→

Gpq = g(
−→
Gp−1,q,

−→
Gp,q−1,

−→
Gp−1,q−1,Np,q), (3)

where g denotes the spatial GRU unit. We take the last
hidden representation

−→
GTi,Tj as the matching vector.

Finally, we use a MLP to output the semantic matching
score:

S(si, sj) = Ws
−→
GTi,Tj + bs. (4)

Wide (Discourse) Component The wide component is a
feature transformation model and aims to encode discourse
relations between sentences. Here, we follow (Liu and Lap-
ata 2019) to compute two discourse-aware scores for each
sentence pair < si, sj >, i.e., entity score E(si, sj) and
marker score M(si, sj), by utilizing co-occurrence entities
and discourse markers respectively:
• Co-occurrence entities. For each sentence si ∈ D, we

extract a set of entities in the sentence using the Spacy
Named Entity Recognizer1. For each sentence pair <
si, sj >, we count the number of entities with exact match
as the entity score E(si, sj).

• Discourse markers. We use explicit discourse markers
(e.g., but, instead, meanwhile) to identify the relation-
ship between two adjacent sentences. If two sentences
1https://spacy.io/api/entityrecognizer

< si, sj > are adjacent in the document and they are
connected with one of the discourse markers, we set the
marker score M(si, sj) as 1, and 0 otherwise.

Combination of Deep & Wide Component The deep and
wide component are combined to measure the relationship
between sentences. The correlation score C(si, sj) is ob-
tained by using the weighted sums of three scores:
C(si, sj) = λEE(si, sj) + λMM(si, sj) + λSS(si, sj),

(5)
where λE , λM and λS are different weights for entity,
marker and semantic matching score respectively. C(si, sj)
between all sentence pairs < si, sj > form the fully con-
nected matrix, i.e., the correlation matrix C ∈ R

L×L.
Then, an activation layer is applied as the final layer of

the deep & wide framework over the correlation matrix C
to pick out the sentence graph, i.e., to create or delete edges
between the nodes, and encode the set of edges into the adja-
cency matrix A. Here, we introduce two activation functions
to produce the adjacency matrix A from C .

• k-Max Pooling over a sequence of values returns the sub-
sequence of k maximum values in the sequence. Specif-
ically, for each row in C, the top k values are directly
returned while others are returned as 0. It means that for
each sentence, we only create edges between top k correl-
ative sentences with it.

• Relu returns 0 if it receives any negative input, but for
any positive value it returns that value back. Specifically,
for each row in C, the positive values are directly returned
while others are returned as 0. It means that we only delete
edges which connect two nodes with negative correlation.

Due to the symmetry of the undirected graph, we aver-
age the edges weights in both directions to obtain the final
adjacency matrix.

3.3 Graph Convolution Network

After constructing the sentence graph, we feed the graph into
a simple multi-layer Graph Convolutional Network (GCN)
as in (Kipf and Welling 2017). Formally, consider the sen-
tence graph of the document G = (V, E), the GCN is to learn
a function f(X,A) where the inputs are:

• X ∈ RL×M , the input node feature matrix, where M is
the dimension of each sentence representation xi.

• A ∈ RL×L, the adjacency matrix of graph G, where the
diagonal elements of A are set to 1 because of self-loops
in the graph.

For a one-layer GCN, the new K-dimensional node fea-
ture matrix L(1) ∈ RL×K is computed as

L(1) = ρ(ÃXW(0)
g ), (6)

where Ã = D− 1
2 AD− 1

2 is the normalized symmetric adja-
cency matrix and D is the node degree matrix with Dii =∑

j Aij . W(0)
g ∈ RM×K is the weight parameter to learn. ρ

is an activation function, e.g., a ReLU.
When multiple GCN layers are stacked, information

about higher order neighborhoods are incorporated. The re-
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cursive computation is as follows:
L(h+1) = ρ(ÃL(h)W(h)

g ), (7)
where h denotes the layer number and L(0) = X.

As an example, if we have a two-layer GCN, we produce
the high-level sentence relational representation s

g
i that in-

corporate the sentence relationships:
S = f(X,A) = Ãρ(ÃXW(0)

g )W(1)
g , (8)

where S is the relational representation matrix and s
g
i ∈ S.

Afterwards, we obtain the document representation c by
computing the weighted sums of sentence relational repre-
sentations, which is used as the initial hidden state of the
summary decoder. Specifically, the weight of each sentence
can be measured by simply computing its degree centrality
d(si), which is defined as:

d(si) =
∑

j∈{1,...,i−1,i+1,...,L}
Aij , (9)

where Aij denotes the edge weight between the sentence
pair < si, sj >.

After obtaining the centrality score for each sentence, we
can obtain the document representation c as follows:

c =
L∑

i=1

αis
g
i , (10)

where the weight αi is defined as αi = softmax(d(si)).

3.4 Headline Decoder

The goal of the headline decoder is to generate a headline
Y given the document representation of the input document.
Similar with traditional Seq2Seq models, we employ the at-
tention mechanism (Bahdanau, Cho, and Bengio 2014) to
allow the decoder to pay different attention to different sen-
tences of the document when generating different words.
When generating a word at step t, the decoder takes all the
sentence relational representations to form the context vec-
tor ct for better generation. Thus, the hidden state at step
time t of the decoder hyt can be obtained by

hyt
= f(hyt−1

, ct, yt−1),

ct =
∑L

i=1 βtis
g
i ,

hy0 = c,
(11)

where f is a GRU unit and yt−1 is the predicted target sym-
bol at step t− 1. βti indicates how much the i-th sentence si
from the input document contributes to generating the t-th
word, and is computed as βti = softmax(sgi · hyt−1

).

3.5 Model Learning

We employ maximum likelihood estimation (MLE) to learn
our SLGen model over the training corpusD. The loss func-
tion is defined as:

L(θ) =
∑

(D,Y )∈D
− logP (Y |D; θ). (12)

We use the Adam (Kingma and Ba 2015) gradient-based
optimization method to learn the model parameters θ.

4 Experiments

In this section, we conduct experiments to verify the effec-
tiveness of our proposed model.

Table 1: Data statistics: #s denotes the number of sentences
and #w denotes the number of words.

Pairs 1,855,657

Document: Vocabulary #w 6,649,762
Document: avg #s 51.6
Document: avg #w 556.9
Document sentence: avg #w 10.8

Headline: Vocabulary #w 421,199
Headline: avg #w 6.6

4.1 Dataset Description

We conduct our experiments on the public New York Times
(NYT) Annotated corpus2. The corpus contains over 1.8
million documents written and published by the New York
Times between January 1, 1987 and June 19, 2007. Table
1 shows the statistics of the dataset. We leave out the pairs
whose headlines have less than 3 words or more than 15
words, and whose documents have less than 20 words or
more that 2000 words, reducing the corpus to 1.58 million
articles. We randomly sample 2000 pairs to form the devel-
opment and test set respectively, and the left pairs are used
as the training data.

4.2 Implementation Details

We implement our model in Tensorflow3. The dimension of
word embeddings is 300, while the dimension of position
embeddings is 200. We use one layer of bi-directional GRU
for word encoder and another uni-directional GRU for de-
coder. We use three GCN hidden layers. The hidden unit
size in the word encoder, word decoder and GCN is 300. The
pooling parameter k is set as 12. The learning rate of Adam
(Kingma and Ba 2015) is set as 0.0005. All trainable param-
eters are initialized in the range [−0.1, 0.1]. We construct
two separate vocabularies for documents and headlines by
using 80,000 and 10,000 most frequent words on each side
in the training data. All the remaining words are replaced by
the special <UNK> symbol.

For training, we use a mini-batch size of 64 and docu-
ments with similar length (in terms of the number of sen-
tences) are organized to be a batch. Dropout with probabil-
ity 0.2 is applied between vertical GRU stacks and gradient
clipping is adopted by scaling gradients when the norm ex-
ceeded a threshold of 5. We run our model on a Tesla K80
GPU card, and we run the training for up to 15 epochs,
which takes approximately four day. We select the model
that achieves the lowest perplexity on the development set.
All hyper-parameters of our model are also tuned using the
development set. We report results on the test set.

By combining two semantic matching models (i.e.,
representation-focused and interaction-focused model) and
two activation functions (i.e., k-max pooling and Relu) used
in the SLGen, we obtain four types of SLGen models de-
noted as SLGenRep+Max, SLGenRep+Relu, SLGenInt+Max and
SLGenInt+Relu.

2https://catalog.ldc.upenn.edu/LDC2008T19
3https:/www.tensorflow.org/
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4.3 Baselines

Model Variants Here, we first employ some degraded
SLGenInt+Relu models to investigate the effect of different
components.
• SLGen-D removes the deep component in the deep &

wide network.
• SLGen-W removes the wide component in the deep &

wide network.
• SLGen-DW+tfidf removes the deep & wide network and

constructs the tf-idf cosine similarity graph (Yasunaga et
al. 2017). Namely, we add an edge between two sentences
if the tf-idf cosine similarity between them is above 0.2.
• SLGen-DW+ADG replaces the tfidf similarity graph in

SLGen-DW+tfidf as the Approximate Discourse Graph
(ADG) (Christensen et al. 2013).
• SLGen-DW+tfidf+ADG directly sums the adjacency matrixes

of the tfidf similarity graph and the ADG to form the
mixed graph.
For all variants, we use the word encoder to obtain the

sentence representations as the input node features of GCN.

Extractive Models We apply extractive models to extract
the sentence from the input document as the headline.

• PREFIX simply uses the first sentence as the headline.
• TextRank (Mihalcea and Tarau 2004) is a graph-based

method inspired by the PageRank algorithm.
• LexRank (Erkan and Radev 2004) is also a graph-based

method inspired by the PageRank algorithm. The differ-
ence with TextRank is to use different methods to calcu-
late the similarity between two sentences.
• SumBasic (Nenkova and Vanderwende 2005) assigns a

score to each sentence which reflects how many high-
frequency words it contains.

Abstractive Models We also apply neural generation
models to generate the headline.

• Seq2Seqhie employs a hierarchical encoder structure
(words sequentially form sentence, sentences sequentially
form document) (Li, Luong, and Jurafsky 2015).
• Seq2Seqhie+att employs the sentence-level attention

mechanism (Bahdanau, Cho, and Bengio 2014) in the de-
coding phase over the Seq2Seqhie.

• ABS combines a neural probabilistic language model with
a generation algorithm which produces the accurate sum-
mary (Rush, Chopra, and Weston 2015).
• BILSTM+GNN extends sequence encoders with a graph

component that can leverage rich prior structure (Fernan-
des, Allamanis, and Brockschmidt 2019).

4.4 Evaluation Methodologies

We adopt the automatic, i.e., Rouge (Lin 2004), to mea-
sure the quality of headlines generated by our model and
the baselines. ROUGE is commonly employed to evaluate n-
grams recall of generated sentences with gold-standard sen-
tences as references. Rouge-1, Rouge-2 and Rouge-L recall

Table 2: Model analysis of four types of our SLGen models
under the automatic evaluation.

Model Rouge-1 Rouge-2 Rouge-L
SLGenRep+max 34.16 17.37 33.08
SLGenRep+Relu 34.42 17.58 33.15
SLGenInt+Max 35.46 18.24 33.89
SLGenInt+Relu 35.82 18.41 34.12

Table 3: Ablation analysis of our SLGen model with its vari-
ants under the automatic evaluation.

Model Rouge-1 Rouge-2 Rouge-L
SLGen-D 34.27 17.33 33.00
SLGen-W 35.77 18.38 34.01
SLGen-DW+tfidf 34.30 17.41 33.06
SLGen-DW+ADG 34.31 17.42 33.08
SLGen-DW+tfidf+ADG 34.35 17.42 33.10
SLGenInt+Relu 35.82 18.41 34.12

scores measure the uni-gram, bi-gram and longest-common
substring similarities, respectively.

4.5 Evaluation Results

Model Analysis We first analyze the four types of SLGen
models to investigate which combination is better for head-
line generation. As shown in Table 2, we can find that:
(1) Our SLGen model based on interaction-focused model
perform better than that based on representation-focused
model. For example, SLGenInt+Relu boosts Rouge-1 over
SLGenRep+Relu by 1.4. This is mainly because interaction-
focused model is capable to capture more complex semantic
interaction between sentences. (2) Moreover, SLGenInt+Relu
can achieve better results than SLGenInt+Max, indicating that
flexibly learning the edges between sentences is better than
fixing the number of edges. (3) SLGenInt+Relu achieves the
best performance as evaluated by the Rouge.

Then, we conduct ablation analysis to investigate the
effect of the deep & wide framework in our SLGen
model. As shown in Table 3, we find that: (1) By remov-
ing the deep component and the wide component from
SLGenInt+Relu respectively, SLGen-D has a more significant
drop than SLGen-W as compared with SLGenInt+Relu. The
results indicate that the deep semantic matching model
has much bigger impact than additional discourse rela-
tions for capturing relationships between sentences. (2)
SLGen-DW+tfidf and SLGen-DW+ADG do not have an obvious
influence on the results compared with SLGen-D. More-
over, SLGen-DW+tfidf+ADG mixes the tf-idf similarity graph
and ADG, but achieves similar results, indicating that prior
rules or heuristics are not suitable for headline generation
which limit the flexibility in unveiling the document struc-
ture.

Baseline Comparison The performance comparisons be-
tween our model and the baselines are shown in Table 4.
We can observe that: (1) PREFIX performs poorly, indicat-
ing that lead sentences are not always sufficient for head-
line generation. (2) The extractive models performs pretty
well. Specifically, TextRank and LexRank perform better
than other two extractive models (i.e., LSA and SumBasic),
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Table 4: Comparisons between our SLGen and the baselines
under the automatic evaluation. Two-tailed t-tests demon-
strate the improvements of our SLGen to all the baseline
models are statistically significant (p-value < 0.01).

Model Rouge-1 Rouge-2 Rouge-L
PREFIX 11.85 5.29 10.50
TextRank 30.67 5.42 26.18
LexRank 26.80 6.29 22.87
LSA 26.07 4.23 22.53
SumBasic 17.48 4.01 15.71
ABS 28.29 15.49 27.35
Seq2Seqhie 32.42 16.04 31.21
Seq2Seqhie+att 33.98 17.15 32.74
BILSTM+GNN 34.11 17.52 32.89
SLGenInt+Relu 35.82 18.41 34.12

(a) tf-idf Cosine Similarity Graph (b) Sentence Graph learned by �������	
���

Figure 2: (a) is the heatmap of the tf-idf similarity graph;
(b) is the heatmap of learned sentence graph in our
SLGenInt+Relu Model.

by defining sentence salience by graph-based centrality scor-
ing. (3) The abstractive models can achieve better results
than the extractive methods, since these generative methods
apply deep architectures to understand the document seman-
tics. (4) The ABS improves the results a little in terms of
Rouge-1, showing that the additional language modeling in-
formation is not sufficient for headline generation. (5) The
results of Seq2Seqhie+att model show that introducing a hi-
erarchical structure in the encoder and using sentence-level
attention in the decoder is effective and can improve the per-
formance significantly. (6) By extending sequence encoders
with a pre-designed graph component, BILSTM+GNN is
able to achieve the best performance among all the baseline
methods. (7) The better results of SLGenInt+Relu over abstrac-
tive models demonstrate the effectiveness of automatically
learning the sentence graph, which can uncover the intrinsic
structure for better document understanding.

4.6 Case Study

To better understand what can be learned by our model,
we conduct some case studies. We take one document
from the test data as an example. As shown in Table
5, there are 23 sentences distributed over 14 paragraphs
in this document, and due to the limited space, we only
show some key sentences. We show the generated head-
line from our SLGenInt+Relu as well as that from the base-
line SLGen-DW+tfidf. Meanwhile, we also depict the sentence
graph learned by our model and the heuristic tf-idf cosine
similarity graph from SLGen-DW+tfidf in Figure 2 to help
analysis. Specifically, we show the upper triangular ma-

Table 5: An example from the test NYT data. G is the ground
truth. S is the output of SLGen-DW+tfidf. D is the output of our
SLGenInt+Relu. S1 to S23 are the sentences in the document.

S1: Italy’s fragile government, under fire for making a
deal to free an Italian journalist . . . standards for con-
fronting the rising number of high-profile kidnappings in
war zones. S2 . . . S8 . . .
S9: Here in Italy, the government has faced criticism at
home and abroad for pressuring the Afghan government
to release five Taliban prisoners . . . S10 . . . S11 . . .
S12: On Thursday, Massimo D’Alema, foreign minister
for Italy’s center-left government, strongly defended the
deal to free Mr. <UNK>. S13 . . . S18 . . .
S19: Center-right opposition leaders have accused the
government of putting undue pressure on the Afghan gov-
ernment to swap the prisoners. . . S20 . . . S23. . .

G: Italy proposes rules for handling abductions.
S: Italian hostage is free with help from Afghan.
D: Italy proposes criterions to solve kidnappings after
dealing with Afghan.

trix of the adjacency matrix (A ∈ R23×23) without self-
loop. As we can see, the tf-idf cosine similarity graph lets
each sentence connect with little other sentences, which can
not sufficiently capture the complex semantic relationships.
Also, the most informative sentences achieved by the de-
gree centrality as defined in Equation 9 are S19 and S9,
which in turn guide the decoder to pay attention to inappro-
priate source sentences and generate inconsistent headline
with the ground-truth. The sentence graph learned by our
SLGenInt+Relu model is relatively dense and the document
structure can be learned flexibly. Our model finds that the
most informative sentences are S9 and S1 which contribute
to better understanding of the document, and then the de-
coder generates a much better headline which is more con-
sistent with the ground-truth.

4.7 Conclusion and Future Work

In this paper, we proposed to incorporate structure learn-
ing into the graph-based neural models for headline gener-
ation, which aims to automatically learn the sentence graph
in a data-driven way to unveil the document structure flexi-
bly. We employed a deep & wide network to learn the sen-
tence graph and then applied a Graph Convolutional Net-
work (GCN) architecture over the sentence graph for better
generation. Thus, the structure and representation could be
learned in an end-to-end way. Empirical results showed that
our model can significantly outperform the state-of-the-art
methods. In the future work, we would like to extend our
model to the document summarization task by learning the
intrinsic structure of multiple summary sentences.
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