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ABSTRACT
Question Answering (QA), a popular and promising technique for

intelligent information access, faces a dilemma about data as most

other AI techniques. On one hand, modern QA methods rely on

deep learning models which are typically data-hungry. Therefore, it

is expected to collect and fuse all the available QA datasets together

in a common site for developing a powerful QA model. On the

other hand, real-world QA datasets are typically distributed in the

form of isolated islands belonging to different parties. Due to the

increasing awareness of privacy security, it is almost impossible to

integrate the data scattered around, or the cost is prohibited. A pos-

sible solution to this dilemma is a new approach known as federated
learning, which is a privacy-preserving machine learning technique

over distributed datasets. In this work, we propose to adopt fed-

erated learning for QA with the special concern on the statistical

heterogeneity of the QA data. Here the heterogeneity refers to the

fact that annotated QA data are typically with non-identical and

independent distribution (non-IID) and unbalanced sizes in practice.

Traditional federated learning methods may sacrifice the accuracy

of individual models under the heterogeneous situation. To tackle

this problem, we propose a novel Federated Matching framework

for QA, named FedMatch, with a backbone-patch architecture. The

shared backbone is to distill the common knowledge of all the par-

ticipants while the private patch is a compact and efficient module

to retain the domain information for each participant. To facilitate

the evaluation, we build a benchmark collection based on several

QA datasets from different domains to simulate the heterogeneous

situation in practice. Empirical studies demonstrate that our model

can achieve significant improvements against the baselines over all

the datasets.
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1 INTRODUCTION
Question Answering (QA), which aims to return suitable answers

in response to natural language questions issued by users [23, 47],

is a popular and crucial technique in AI. In recent years, QA has

attracted extensive attention in both academia and industry commu-

nities due to its huge potential benefits to real-world applications,

such as Amazon Alexa, Apple’s Siri, Google Assistant and other

intelligent information assistants.

Similar to most other AI techniques, modern QA methods face

a dilemma about data. On one hand, deep learning models have

become the major solutions [8, 23, 42, 43, 51] to automatically learn

semantic matching between questions and answers, which requires

sufficient labeled data. However, the labeled QA data in a single

platform such as a hospital is usually limited, since data annotation

is time-consuming and requires increasingly sophisticated domain

knowledge. Therefore, it is expected to collect, fuse and use all the

available QA data together in a common site for training a pow-

erful QA model. On the other hand, real-world QA data usually

exists in the form of isolated islands belonging to different parties.

At the same time, many datasets are highly sensitive and private,

e.g., medical and legal data. With the increasing awareness of data

security and user privacy across the world, it is almost impossible

to break the barriers between data sources and integrate the data

scattered around for AI processing, or the cost is prohibited. There-

fore, how to legally solve this dilemma is a major challenge for QA

researchers and practitioners today.

Recently, a new privacy-preserving machine learning technique,

called federated learning, has attracted great interest from the re-

search community [28]. Specifically, the learning task is solved by

a loose federation of multiple local clients which are coordinated

by a central server. Each client has a local training dataset which

is never uploaded to the server, while the server trains a global

model by aggregating the local model updates. When the isolated

data occupied by each party fails to produce an ideal model, the

mechanism of federated learning makes it possible for different

parties to share a united model while preventing data leakage.

Therefore, in this work, we propose to adopt federated learning

for QA with the special concern on the statistical heterogeneity of
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Figure 1: The statistical heterogeneity of the QA data in practice.

the QA data. Here, the statistical heterogeneity refers to the fact

that the annotated QA data are typically with non-identical-and-

independent distribution (non-IID) and unbalanced sizes in practice.

For example, online healthcare platforms
1
, such as HealthTap, Care,

and Ding Xiang Yuan, have been popular among patients via easing

the demand for hospitals. As shown in Figure 1 (a), patients ask

personalized questions related to their own disease treatment on

the platform. The patient-doctor QA datasets have significant vari-

ances in question types, inquiry goals, as well as the case numbers.

Another example, in international e-commerce companies
2
, e.g.,

eBay, Amazon, and Alibaba, as shown in Figure 1 (b), users ask ques-

tions to customer services on different branch-sites. The customer

service QA data from different branches may have remarkable gaps

in language expressions, product types, as well as the data size.

Therefore, how to model the statistical heterogeneity of the QA

data becomes a critical challenge to develop an effective federated

learning method for QA.

However, much of the effort has been devoted to developing

federated learning methods that can better prevent privacy and

integrity violations. Such methods may sacrifice the accuracy of

individual models under the heterogeneous situation. To tackle

such problem, we propose a novel Federated Matching framework

for QA, named FedMatch, with a backbone-patch architecture. Dif-

ferent from the original federated learning framework where all the

participants share the same model, in our FedMatch method, we

decompose the QA model in each participant into a shared module

and a private module. With this framework, we are able to train a

reliable unique QA model for each participant with all participants’

knowledge without exposing their raw data, which could directly

work on heterogeneous data and enhance privacy protection.

Specifically, in FedMatch, the shared backbone is used to cap-

ture the shared knowledge of different participants to empower

the model training in each single participant. Its parameters from

different participants are aggregated to update the global shared

module, which is further delivered to each participant to update

the local shared module. The private patch is a compact and effi-

cient module, which aims to retain the characteristics of the local

data in each participant. We update the private patch only with the

parameters computed from local stored data and exchange neither

its parameters nor gradients. In this way, the patch can adapt to the

private data distribution of each participant, and it is promising to

alleviate the problem of data heterogeneity. Note under the client

sampling setting, our framework still shows slight improvements

1
https://www.healthtap.com, https://www.care.com, https://portal.dxy.cn

2
https://www.ebay.com, https://www.amazon.com, https://www.alibaba.com

on the performance, which again demonstrates the effectiveness

of constructing a unique model for each participant. Besides, since

the parameters of the local shared module are aggregated together,

the information of labeled QA data in each participant is harder to

be inferred. Thus, the data privacy is well-protected. Specifically,

BERT is used as the backbone structure for storing the common

parameters, while each patch is explicitly applied to each individual

participant. We studied two types of patch architectures and four

ways to insert the patch into the BERT model.

To facilitate the evaluation, we build a novel benchmark dataset

FedQA
3
based on several QA datasets with different sizes sourced

from different domains. Specifically, we make use of PrivacyQA

[34], BioASQ [1], FiQA [27], InQA [14], and MedQuAD [2] datasets,

to simulate the heterogeneous situation, from law, biomedical, fi-

nancial, insurance to medical. For evaluation, we compare with

several state-of-the-art methods to verify the effectiveness of our

method. Empirical results demonstrate that leveraging the labeled

data from different QA participants in a privacy-preserving way is

feasible and our proposed FedMatch framework can outperform all

the baselines significantly. We also provide detailed analysis on the

proposed framework to gain better understanding on the learned

shared and private knowledge.

2 RELATEDWORK
In this section, we briefly review three lines of related work, i.e.,

question answering, adaptation parameters and federated learning.

2.1 Question Answering
Question Answering (QA) aims to provide reasonable answers to

users’ questions. Early research works rely on different feature

engineering based approaches, which extract various features from

QA data to compute the matching signal [22, 35, 46, 50]. For exam-

ple, Wang et al. [46] proposed a statistical syntax-based model that

softly aligned a question with a candidate answer and returned a

score. Yih et al. [50] applied rich lexical semantic information from

WordNet to boost the QA matching. Riezler et al. [35] introduced

synonyms in context of the entire query by translating query terms

into answer terms using a statistical machine translation model

trained on QA data. Nevertheless, these feature-based approaches

are usually labor-intensive, and hard to capture the semantic infor-

mation between questions and answers.

With the advance of deep learning, significant improvements

have been achieved on many QA tasks [8, 37, 42, 43, 51]. Many

3
The FedQA benchmark dataset and the experimental codes are available at

https://github.com/Chriskuei/FedMatch
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Figure 2: The overall framework of FedMatch.

neural QA methods resolve lexical gaps by introducing continuous

representations without preprocessing tools [31, 32]. Without loss

of generality, those methods can be divided into RNN-based, CNN-

based and attention-based with regard to model architecture. Chen

et al. [8] proposed a context-aligned RNN which incorporated the

contextual information of the aligned words in QA data. Shen et al.

[38] applied CNN to learn low-dimensional semantic vectors for

questions and answers. Yang et al. [47] presented an attention based

neural matching model which adopted value-shared weighting

scheme and incorporated question term importance. Very recent

works [15, 23, 41, 49] seek the help from pre-trained transformer-

based models, e.g., BERT [13] and RoBERTa [26]. For example,

Laskar et al. [23] integrated contextualized embeddings with the

transformer encoder to measure the similarity of questions and

answers. However, these methods often rely on large-scale labeled

data for learning effective models, without taking into account the

distributed and isolated data issues.

2.2 Federated Learning
Federated learning, a new privacy-preserving machine learning

technique, has attracted great interest from the research commu-

nity [28]. Specifically, the learning task is solved by a loose feder-

ation of multiple local clients which are coordinated by a central

server. Each client has a local training dataset which is never up-

loaded to the server, while the server trains a global model by

aggregating the local model updates. When the isolated data occu-

pied by each party fails to produce an ideal model, the mechanism

of federated learning makes it possible for different parties to share

a united model while preventing data leakage. In traditional fed-

erated learning such as FedAvg [28], clients update all the model

parameters to the server to be aggregated. Later, there is a growing

line of works demonstrating that traditional federated learning is

possible to leak information about the underlying training data

in unexpected ways [6, 16, 30]. Recently, some federated learning

approaches introduce the differential privacy or the robust aggre-

gation [7, 10, 29, 33] to ensure the privacy and integrity of existing

federated models. For example, McMahan et al. [29] combined fed-

erated learning with differential privacy to formal guarantees of

user-level privacy. Chen et al. [10] replaced the average aggrega-

tion with median aggregation to prevent outliers from having much

influence on the federated model.

One of the key challenges in federated learning is the data het-

erogeneity problem. Previous studies have shown that the non-IID

data distribution could degrade the effectiveness of federated learn-

ing models [19]. In order to combat the client-drift problem caused

by heterogeneous data, many approaches including FedProx [24],

SCAFFOLD [19], Mime [20] and FedNova [45] have been developed

in recent years. These federated optimization methods overcome

the non-IID data from the aspects of regularization or control vari-

ates. For example, Li et al. [24] proposed adding a proximal term to

each local objective to alleviate inconsistency due to the non-IID

data and heterogeneous local updates. Kairouz et al. [19] introduced

control variates for the server and clients, which are used to es-

timate the update direction of the server model and the update

direction of each client. Karimireddy et al. [20] used a combination

of control-variates and server-level statistics at every client-update

step to ensure that each local update mimics that of the centralized

method run on IID data. Wang et al. [45] normalized and scaled the

local updates of each client according to their number of local steps

before updating the global model to ensure that the global updates

are not biased.

With the increasing awareness of data security and user privacy,

federated learning has been introduced into the areas of computer

vision [4, 25, 53] and natural language processing [26, 39, 40]. How-

ever, the privacy protections for the federated learning may destroy

the accuracy of the federated model under the heterogeneity situa-

tions, which removes participants’ main incentive to join federated

learning [52]. In this work, we propose a novel FedMatch frame-

work with the special concern on the statistical heterogeneity.

3 OUR APPROACH
In this section, we present our proposed Federated Matching (Fed-

Match) framework over the heterogeneous QA data.

3.1 Task Definition
Question answering devotes to assessing the relevance of a candi-

date answer to a given question. In this paper, define 𝑇 QA partic-

ipants, each with a private QA dataset D𝑡 ∈ {D1, · · · ,D𝑇 }. The
training dataset D𝑡𝑟𝑎𝑖𝑛

𝑡 from participant 𝑡 is defined as,

D𝑡𝑟𝑎𝑖𝑛
𝑡 = {𝑞𝑖𝑡 , 𝑎𝑖𝑡 , 𝑟 𝑖𝑡 }

|D𝑡𝑟𝑎𝑖𝑛
𝑡 |

𝑖=1
,

where 𝑞𝑖𝑡 , 𝑎
𝑖
𝑡 and 𝑟 𝑖𝑡 ∈ {0, 1} denote the 𝑖-𝑡ℎ question, candidate

answer, and matching score among |D𝑡𝑟𝑎𝑖𝑛
𝑡 | samples, respectively.

In the real-world situation, the annotated QA data are typically

with non-identical-and-independent distribution (non-IID) and un-

balanced sizes. Meanwhile, they are usually private and sensitive.
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Therefore, the goal is to obtain a reliable unique QA model for each

participant with all participants’ knowledge without exposing their

original data.

3.2 Model Overview
To tackle the federated learning for QA under heterogeneous sce-

nario, we formulate it as a federated matching problem, i.e., to

measure the relevance between the question and the answer by

leveraging distributed QA datasets in a privacy-preserving way. We

introduce a novel federated matching framework for QA, named

FedMatch for short, to solve it.

Specifically, we consider the QA model for each participant com-

posed of shared and private modules, which could effectively lever-

age the knowledge from other participants and meanwhile capture

the characteristics of the local data. The FedMatch framework is

thus designed based on this key idea which is depicted in Figure 2.

• Common Knowledge Distillation: The labeled data in a sin-

gle participant is usually insufficient to train an accurate QA

model. To alleviate the data sparsity problem, in the FedMatch

framework, we propose a shared backbone to distill the shareable
QA matching knowledge among different participants. We em-

ploy some state-of-the-art neural matching model to assess the

relevance of a candidate answer to a given question.

• Domain Information Retaining: Since the QA data stored

in different participants may have different characteristics and

sizes, sharing the same model between them may not be an

optimal solution. To alleviate the statistical heterogeneity, we

employ a private patch for each participant to adapt to the specific
domain information. The patch is added to the backbone for

each participant and trained only with the respective private

local QA data. Consequently, the patch component assesses the

participant-specific characteristics and contributes to building a

unique model for each participant.

• Privacy-preserving Learning: Sharing all training samples or

model parameters among participants may make up data short-

age at the sacrifice of privacy. Therefore, we propose to optimize

the performance of FedMatch using the federated learning tech-

nology. We only upload parameters of the local shared module to

the central server, which generally contain less privacy-sensitive

information. In this way, we are able to train a reliable QA model

for each participant with all participants’ knowledge without

exposing their original data, which enhances privacy protection.

3.3 Shared Backbone
The goal of the shared backbone is to learn the general and share-

able knowledge for QA from multiple participants. In this work, we

leverage the BERT [13] as the backbone structure to measure the se-

mantic match between questions and answers, due to its superiority

in many natural language understanding tasks.

Specifically, as shown in Figure 3 (a), BERT’s model architecture

is a multi-layer bidirectional Transformer encoder [44] composed of

a stack of identical layers, where each layer has a self-attention sub-

layer and a feed-forward network sub-layer. We first concatenate

the question and the answer to the required format, which starts

with a special classification token [CLS] for the whole sequence.

Then, with a stack of self-attention sub-layer, each token in BERT

accumulates the information from both left and right context to

enrich its representation. Finally, we apply an output softmax layer

over the final hidden state of [CLS], to predict the matching score

between the question and the answer. We now describe the self-

attention and feed-forward network sub-layer in Transformer layer

as follows.

3.3.1 Self-Attention. The Self-Attention sub-layer aims to capture

global information through multi-head attention (MH) and a linear

layer. The attention weights are derived by the dot-product simi-

larity between transformed representations. Concretely, the 𝑖-th

single attention head is,

Attention𝑖 (h𝑗 ) =
∑︁
𝑚

softmax(
𝑊

𝑞

𝑖
h𝑗 ·𝑊 𝑘

𝑖
h𝑚√︁

𝑑/𝑛
)𝑊 𝑣

𝑖 h𝑚,

where h𝑗 denotes a 𝑑 dimensional hidden vector of the 𝑗-th se-

quence token.𝑊
𝑞

𝑖
,𝑊 𝑘

𝑖
,𝑊 𝑣

𝑖
are learned matrices of size 𝑑/𝑛 × 𝑑 .

Finally, the outputs of the 𝑛 attention heads are concatenated to-

gether and passed to a linear transformation,

MH(h) = Concat(Attention1 (h), . . . ,Attention𝑛 (h))𝑊 𝑜 ,

where the learned matric 𝑊 𝑜 ∈ R𝑑×𝑑 . The outputs are further

passed to a residual connection followed by layer normalization

[5]. We denote this process as SA(·),
SA(h) = LN(MH(h) + h),

where LN(·) is layer normalization.



3.3.2 Feed-forward Network. The feed-forward network is a position-
wise fully connected feed-forward network (FFN), which is applied

to each position separately and identically, i.e.,

FFN(h) =𝑊2 𝑓 (𝑊1h + 𝑏1) + 𝑏2,
where 𝑓 (·) is an activation function [17].𝑊1,𝑊2, 𝑏1, and 𝑏2 are

learned matrices.

Putting this together, a BERT layer BL(·) is a layer-norm (LN)

applied to the output of FFN layer, with a residual connection,

BL(h) = LN(FFN(SA(h)) + SA(h)) .

3.4 Private Patch
To model the domain information for each participant, inspired

by [18], we introduce a compact and efficient module, i.e., the pri-

vate patch, for each participant based on the local data. The private

patch is responsible for adapting exiting BERT representation in the

shared backbone to the specific domain. We now describe different

ways of the patch insertion and the patch structure.

3.4.1 Patch Insertion. Here, we introduce where to insert the patch
into the BERT model. Based on the previous introduction, each

BERT layer contains a self-attention and a feed forward layer. As

shown in Figure 3, we explore four positions to insert patch, includ-

ing inner, outer, horizontal, and vertical. Specifically, we add the

patch to the two sub-layers in each BERT layer in the inner and

outer fashion, while we add the patch to the BERT in the vertical

and horizontal fashion.

• Inner. In inner fashion, as shown in Figure 3(b), we put a patch

following the self attention layer, another following the feed

forward layer. In this way, the output of the self-attention layer

and the BERT layer are as follows:

SA(h) = LN(𝑃𝑎𝑡𝑐ℎ(MH(h)) + h),
BL(h) = LN(𝑃𝑎𝑡𝑐ℎ(FFN(SA(h))) + SA(h)),

where 𝑃𝑎𝑡𝑐ℎ(·) denotes the patch layer.

• Outer. In outer fashion, as shown in Figure 3(c), we add two

patches parallel with the self-attention layer and the feed forward

layer respectively. In this way, the output of the self-attention

layer and the BERT layer are as follows:

SA(h) = LN(MH(h) + h + 𝑃𝑎𝑡𝑐ℎ(h)),
BL(h) = LN(FFN(SA(h)) + 𝑃𝑎𝑡𝑐ℎ(SA(h)) + SA(h)) .

• Vertical. In vertical fashion, as shown in Figure 3(d), we put

a patch following the topmost layer in BERT. In this way, the

output of the BERT is defined as,

BL𝑡𝑜𝑝𝑚𝑜𝑠𝑡 (h) = 𝑃𝑎𝑡𝑐ℎ(BL𝑡𝑜𝑝𝑚𝑜𝑠𝑡 (h)),
where BL𝑡𝑜𝑝𝑚𝑜𝑠𝑡 (·) denotes the output of BERT’s topmost layer.

• Horizontal. In horizontal fashion, as shown in Figure 3(e), we

add a patch parallel with each BERT layer. In this way, the output

of the BERT layer is defined as,

BL(h) = 𝑃𝑎𝑡𝑐ℎ(h) + BL(h).

3.4.2 Patch Structure. Here, we introduce how to design the patch

structure. The patch structure for each participant is defined as,

𝑃𝑎𝑡𝑐ℎ(h) = 𝑉𝐷𝑔(𝑉 𝐸h),
where 𝑉 𝐸 ∈ R𝑑𝑠×𝑑 and 𝑉𝐷 ∈ R𝑑×𝑑𝑠 (𝑑𝑠 < 𝑑). 𝑔(·) is an arbitrary

function. Existing works have explored many forms of 𝑔(·), achiev-
ing an effective model capacity with the same number of parameters

in multi-task learning and continual learning [11, 12, 18].

Multi-head
Attention

Feed Forward

Add &Norm

Add &Norm

(a) BERT Layer

Feed Forward

Function

Feed Forward

Identity
Function

Multi-head
Attention

(a) PAL (b) Low-Rank

Figure 4: Two types of patch architectures.

Here, as shown in Figure 4, we investigate two forms of 𝑔(·) to
efficiently enlarge themodel capacity, including Projected Attention

Layer and Low-rank Layer.

• Projected Attention Layer (PAL) [12]. The 𝑔(·) is defined as a
multi-head attention layer. The intuition is that different partici-

pants need different interactions between token representations.

• Low-Rank Layer [12]. The 𝑔(·) is a low-rank linear transforma-

tion, i.e., a standard feed-forward network.

3.5 Federated Training
To protect participants’ privacy, we utilize federated learning to

train the QA model with a backbone-patch architecture, over data

from different participants. In FedMatch, as shown in Figure 2, the

central server coordinates multiple clients for patch updating and

backbone sharing. Specifically, the clients here are different QA

participants, and train their models with privately stored data. The

server first initializes the parameters 𝜃 of the shared backbone

randomly, and the training phase includes the following steps:

(1) The server distributes the parameters 𝜃 of the global shared

backbone to each client for the next-round model training.

(2) Each client adds a private patch to the shared backbone, and

trains their local models based on privately stored data. For-

mally, for each client 𝑡 , let 𝜃𝑡 denote the parameters of the local

shared backbone and 𝛽𝑡 denote the parameters of the private

patch. The loss function for each client 𝑡 is a pairwise ranking

loss over the training dataset D𝑡𝑟𝑎𝑖𝑛
𝑡 , i.e.,

L𝑡 (𝑞𝑡 , 𝑎+𝑡 , 𝑎−𝑡 ;Θ𝑡 ) = max(0, 1 − 𝑓 (𝑞𝑡 , 𝑎+𝑡 ) + 𝑓 (𝑞𝑡 , 𝑎−𝑡 ))
where 𝑓 (·) denotes a QA matching model. 𝑎+𝑡 and 𝑎−𝑡 denotes

a relevant answer and a negative answer with respect to the

question 𝑞𝑡 respectively. Θ𝑡 = (𝜃𝑡 , 𝛽𝑡 ) denotes all parameters

of the local client model. Specifically, 𝜃𝑡 is initialized using the

shared model’s parameters 𝜃 and 𝛽𝑡 is randomly initialized.

(3) For every training epoch, the goal is to minimize a global loss

over all 𝑇 distributed clients, i.e.,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 {Θ1, · · · ,Θ𝑇 }L(Θ1, · · · ,Θ𝑇 ) .
After each training epoch, each client updates the parameters

𝜃𝑡 of the local shared backbone to the server.

(4) The server monitors each client for parameter aggregation and

performs global backbone updating once it has collected param-

eters from all clients. Formally, given the parameters from 𝑇

clients, we update the parameters of the globally shared back-

bone stored on the central server,

𝜃 =
1

𝑇

𝑇∑︁
𝑡=1

𝜃𝑡 .



Table 1: Overall statistics of FedQA benchmark dataset. #Questions: the number of questions, #Answers: the number of an-
swers, #Avg QL: the average length of questions, #Avg AL: the average length of answers, %PosRate: the rate of positive labels.

Dataset Domain #Questions #Answers #Avg QL #Avg AL %PosRate

PrivacyQA Law 1,750 4,947 8.46 139.62 14.29

BioASQ Biomedical 2,740 12,815 10.5 36.0 21.87

FiQA Financial 6,648 26,016 12.4 202.0 32.15

INQA Insurance 1,309 27,413 7.2 92.3 25.67

MedQuAD Medical 380 2,396 19.7 469.7 37.22

The process described above is repeated iteratively until the

entire model converges.

4 EXPERIMENTS
In this section, we conduct experiments to verify the effectiveness

of our proposed model.

4.1 Benchmark Construction
In order to facilitate the study of federated learning for QA, we

build a new benchmark dataset FedQA based on several public QA

collections.

• PrivacyQA [34] is a corpus about the privacy policies of mobile

applications representing different categories. Crowd workers

ask privacy questions about a given mobile application. And then

the authors recruit seven experts with legal training to construct

answers to questions.

• BioASQ [1] is a competition on biomedical semantic indexing

and QA. Biomedical workers are allowed to express their informa-

tion needs, and then concise answers are returned by combining

information from multiple sources of different kinds.

• FiQA [27] is created for WWW’18 financial opinion mining and

QA challenge. We leverage the data of Task 2, i.e., Opinion-based

QA over financial data. Questions are answered based on a corpus

of documents from different financial data sources.

• InQA [14] collects the question and answer pairs from the in-

surance domain, driven by the intense scientific and commercial

interest in this domain. The questions are collected from real-

world users, and the answers are composed by professionals with

deep domain knowledge.

• MedQuAD [2] is a collection of QA pairs from the medical do-

main, constructed from 12 trusted websites. The collection in-

cludes 16 types about Diseases, 20 types about Drugs and 1 type

for the other named entities.

Table 1 shows the overall statistics of our FedQA benchmark

dataset. We take these five collections as our whole QA datasets,

since (1) These collections are publicly available; (2) The contexts in

these collections are different from each other and it is reasonable

to distinguish one domain from another domain. Besides, these

collections have significant variances in the numbers of QA pairs.

For example, the number of financial questions in FiQA is about 17

times as that of medical questions in MedQuAD. In this way, we can

obtain a 5-domain dataset to mimic the statistical heterogeneity,

which makes the federated learning for QA more challenging and

closer to the real-world situation.

4.2 Experimental Settings
To evaluate the performance of our method, we conduct experi-

ments on our FedQA benchmark dataset. For pre-processing, all

the words in answers and questions are white-space tokenized and

lower-cased. We leverage Elasticsearch
4
to index all the answers

in FedQA using BM25 [36]. Since there are no negative samples in

the training set, we take the top 5 retrieved results which are not

the ground-truth answers as the negative samples.

We implement our model in PyTorch
5
based on Transformers

library
6
. We optimize the model using Adam [21] with the warmup

technique, where the learning rate increases over the first 10% of

batches, and then decays linearly to zero. The learning rate for

each QA collection in FedQA is set to 2𝑒−5, and the batch size

is {32, 32, 32, 32, 12} for PrivacyQA, BioASQ, FiQA, INQA, and

MedQuAD respectively. All runs are trained on a Tesla 32G V100

GPU. The dimension of the transformation matrix in Low-Rank

layer is 128. We use the base-uncased version of BERT. All hyper-

parameters of our model are also tuned using the development

set. Due to the datasets limitation, we only consider the cross-silo

setting. Specifically, each QA dataset is regarded as one participant

and all participants are trained in a communication round.

By combining four ways of patch insertion (i.e., inner, outer,

vertical, and horizontal) and two patch structures (i.e., PAL and Low-

Rank), we obtain eight types of 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ denoted as 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐼+𝑃𝐴𝐿 ,
𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐼+𝐿𝑅 , 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑂+𝑃𝐴𝐿 , 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑂+𝐿𝑅 , 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑉+𝑃𝐴𝐿 ,
𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑉+𝐿𝑅 , 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝑃𝐴𝐿 , and 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 .

4.3 Evaluation Metrics
For evaluation, we employ the overall performance on all test

datasets from 𝑇 different participants,

1

𝑇

𝑇∑︁
𝑡=1

1

|D𝑡𝑒𝑠𝑡
𝑡 |

·
|D𝑡𝑒𝑠𝑡

𝑡 |∑︁
𝑗=1

𝑔(𝑟 𝑗𝑡 , 𝑓
∗ ({𝑞 𝑗𝑡 , 𝑎

𝑗
𝑡 };Θ𝑡 ),

where D𝑡𝑒𝑠𝑡
𝑡 denotes the test dataset from participant 𝑡 , and 𝑞

𝑗
𝑡 , 𝑎

𝑗
𝑡

and 𝑟
𝑗
𝑡 ∈ {0, 1} denote the 𝑗-𝑡ℎ question, candidate answer, and

matching score among |D𝑡𝑒𝑠𝑡
𝑡 | test samples, respectively. 𝑓 ∗ (·) de-

notes the learned QA matching model for each participant, and

𝑔(·) denotes the evaluation metric for QA. Following [23, 47], we

leverage two widely used metrics, i.e., MAP and MRR, as the imple-

mentation of 𝑔(·).
The collections from five domains in FedQA are distributed in

five clients. Inspired by [4], we report the performance of each

4
https://www.elastic.co

5
https://pytorch.org

6
https://github.com/huggingface/transformers



Table 2: Model analysis of our FedMatch model under the MAP and MRR metric.

PrivacyQA BioASQ FiQA INQA MedQuAD Overall

Method MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

FedMatch𝐼+𝑃𝐴𝐿 0.6816 0.6816 0.8640 0.8793 0.7959 0.8531 0.8483 0.8802 0.8415 0.9134 0.8063 0.8415

FedMatch𝐼+𝐿𝑅 0.6849 0.6849 0.8622 0.8808 0.7935 0.8498 0.8551 0.8877 0.8443 0.9239 0.8080 0.8454

FedMatch𝑂+𝑃𝐴𝐿 0.6826 0.6826 0.8577 0.8728 0.7941 0.8518 0.8619 0.8935 0.8310 0.9116 0.8055 0.8425

FedMatch𝑂+𝐿𝑅 0.6987 0.6987 0.8600 0.8762 0.7947 0.8488 0.8621 0.8971 0.8415 0.9113 0.8114 0.8464

FedMatch𝑉+𝑃𝐴𝐿 0.7036 0.7036 0.8421 0.8580 0.7926 0.8494 0.8614 0.8944 0.8258 0.9055 0.8051 0.8422

FedMatch𝑉+𝐿𝑅 0.7036 0.7036 0.8673 0.8837 0.7958 0.8549 0.8564 0.8920 0.8385 0.9215 0.8123 0.8511

FedMatch𝐻+𝑃𝐴𝐿 0.7200 0.7200 0.8531 0.8699 0.7904 0.8494 0.8632 0.9080 0.8414 0.9186 0.8136 0.8532

FedMatch𝐻+𝐿𝑅 0.7251 0.7251 0.8591 0.8734 0.8047 0.8503 0.8641 0.9015 0.8435 0.9214 0.8193 0.8543

client. We also show the overall performance of all the clients via

computing the average of evaluation metrics in each domain.

4.4 Baselines
We adopt three types of baseline methods for comparison, including

individual methods, privacy enhanced methods, and conventional

federated learning methods.

4.4.1 Individual Methods. We first compare our methods with sev-

eral QA models without the use of federated learning.

• RE2 [48] highlights three key features, namely previously aligned

features, original point-wise features, and contextual features for

inter-sequence alignment.

• ESIM [9] uses Bi-LSTM to encode texts and applies the attention

and fusion layer over the representations to obtain the label.

• BERT [13] denotes that BERT𝑏𝑎𝑠𝑒 is fine-tuned locally on QA

data in each individual participant.

4.4.2 Traditional Privacy Enhanced Methods. We also apply one

traditional privacy enhanced model.

• CoverQuery [3] generates several noisy queries from unrelated

topics to hide the original data, which is widely used in person-

alized web search.

4.4.3 Conventional Federated Learning Methods. In the original

design, the federated learning method is created by repeatedly

averaging model updates from small subsets of participants.

• FedAvg [28] combines local stochastic gradient descent on each

client with a server that performs model averaging.

• LG-FedAvg [25] denotes the local global federated averaging,

where the global model only operates on local representations to

reduce the number of communicated parameters.

• FedPer [4] comprises of the base layers being trained by fed-

erated averaging and personalization MLP layers being trained

only from local data.

4.5 Model Analysis
We first analyze our models using different ways of patch inser-

tion (i.e., inner, outer, vertical, and horizontal) and different patch

structures (i.e., PAL and Low-Rank). As shown in Table 2, we have

the following observations: (1) FedMatch with the PAL patch struc-

ture performs worse than that with the low-rank patch structure

in terms of the overall model performance. The results indicate

that the simple low-rank transformation has greater task-specific

representational capacity. (2) The vertical and horizontal ways of
patch insertion are more effective than the inner and outer ways.
For example, the relative improvement of 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝑃𝐴𝐿 over

𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝑂+𝑃𝐴𝐿 is about 1.27% in terms of MRR on the overall

performance. The reason might be that retaining the global domain

information via inserting patch at the BERT-level more closely

resembles the QA matching process. (3) 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 achieves

the best performance in terms of the overall model performance,

showing the effectiveness of inserting the low-rank patch structure

into the backbone in the horizontal fashion.

4.6 Baseline Comparison
The performance comparisons between our model and the baselines

are shown in Table 3. We can observe that: (1) The conventional

federated learning method FedAvg outperforms individual models

(i.e., RE2, ESIM and BERT ) in terms of the overall MAP and MRR

performance. The results show that compared with training model

on the data of a single participant, the federated learning method

could train more accurate QA model by leveraging the useful in-

formation from multiple participants. (2) Individual models could

outperform FedAvg, LG-FedAvg and FedPer on some domains. For

example, as compared with FedAvg, the relative improvement of

BERT over the FiQA set in terms of MAP is about 3.13%. The reason

might be that FedAvg trains a single model for all clients, making it

difficult to model the statistical heterogeneity of the FedQA bench-

mark. (3) The performance of CoverQuery has a significant drop as

compared with original federated learning frameworks (i.e., FedAvg,
LG-FedAvg and FedPer). The results indicate that federated learning
is more effective than the traditional privacy enhanced methods

while providing more privacy guarantee. (4) Our FedMatch model

achieves the best performance. The results validate the effective-

ness of our strategy in decomposing the QA model into a shared

backbone to learn the general knowledge from multiple clients, and

a private patch to capture the local data characteristics.



Table 3: Comparisons between our FedMatch and the baselines under theMAP andMRRmetric. Two-tailed t-tests demonstrate
the improvements of FedMatch over the representative method BERT are statistically significant (‡ indicates p-value < 0.05).

PrivacyQA BioASQ FiQA INQA MedQuAD Overall

Method MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

ESIM 0.6809 0.6809 0.7378 0.7564 0.6736 0.7378 0.8533 0.8884 0.7629 0.8396 0.7417 0.7806

RE2 0.6839 0.6839 0.7557 0.7697 0.7263 0.7911 0.8656 0.8990 0.7460 0.8262 0.7555 0.7940

BERT 0.6912 0.6912 0.8580 0.8650 0.8042 0.8430 0.8059 0.8520 0.8093 0.8888 0.7937 0.8278

CoverQuery 0.6772 0.6772 0.8458 0.8627 0.7846 0.8370 0.8262 0.8558 0.8144 0.8923 0.7896 0.8250

LG-FedAvg 0.7028 0.7028 0.8546 0.8721 0.7858 0.8435 0.7977 0.8435 0.8208 0.9076 0.7923 0.8339

FedPer 0.6962 0.6962 0.8449 0.8625 0.7839 0.8389 0.8219 0.8574 0.8304 0.9210 0.7955 0.8352

FedAvg 0.6746 0.6746 0.8575 0.8720 0.7798 0.8359 0.8419 0.8850 0.8433 0.9177 0.8006 0.8370

FedMatch 0.7251
‡

0.7251
‡ 0.8591 0.8734

‡ 0.8047 0.8503
‡ 0.8641‡ 0.9015‡ 0.8435

‡
0.9214

‡ 0.8193‡ 0.8543
‡

FedAvg𝐶𝑆 0.6709 0.6709 0.8506 0.8691 0.7871 0.8439 0.8129 0.8622 0.8090 0.8854 0.7861 0.8263

FedMatch𝐶𝑆 0.7309‡ 0.7309‡ 0.8573 0.8741‡ 0.7886 0.8516‡ 0.8630
‡

0.8944
‡ 0.8506‡ 0.9276‡ 0.8181

‡ 0.8557‡

4.7 Impact of Client Sampling
Some recent works have shown that once the client-sampling set-

ting is considered, the non-IID data could significantly affect the

performance [20]. Specifically, we further analyze the performance

of FedMatch and the representative federated learning baseline Fe-
dAvg under client sampling. Here, we randomly sample 2 clients

in each communication round. We denote FedMatch and FedAvg
under client sampling as FedMatch𝐶𝑆 and FedAvg𝐶𝑆 respectively.

As shown in Table 3, we can find that: (1) FedAvg𝐶𝑆 performs worse

than FedAvg. It again implies that the non-IID distribution is a

critical challenge for standard federated learning method FedAvg
which trains a single global model for all clients. (2) FedMatch𝐶𝑆
shows slight improvements over FedMatch. The results imply the

responsibility of the unique model designed for each client in our

framework, which could adapt to the privately data distribution. In

this way, it is promising to alleviate the problem of overall non-IID

data distribution.

4.8 Impact of Shared Backbone Size
Since BERT is used as the backbone structure for storing the com-

mon parameters, we would like to study the effect of different sizes

of BERT’s shared layers on the QA performance. There are 12 layers

in BERT𝑏𝑎𝑠𝑒 and we successively make the top layers private. We

compare the performance of 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 using different num-

bers of BERT’s shared layers, varying in the range of [12, 0], where
12 denotes that all the layers are shared and 0 denotes that BERT is

totally private.

Figure 5 shows the MRR performance over different sets with the

decrease of BERT’s shared layers. We can see that: (1) The overall

performance of all the collections (brown color) decreases with

the decrease of shared layers. It indicates that most participants

could gain more benefit from more shared knowledge of all the

participants. (2) An interesting phenomenon is that the performance

over the FiQA is more robust than that over other datasets. The

reason might be that the FiQA has enough high-quality financial

QA data for training a powerful model, resulting the little affect
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Figure 5: Performance comparison of the FedMatch𝐻+𝐿𝑅
method with different sizes of BERT’s shared layers.

by the shared knowledge. (3) For the BioASQ and the FiQA, the

performance is not optimal if all the participants share all the 12

layers. The reason might be that the data on different participants

usually has different characteristics, which can not be captured if

we constraint different participants to share the entire BERT.

4.9 Impact of Private Patch Size
The private patch size, i.e., the dimension of projection space, is a

hyper-parameter in our proposed FedMatch model. Smaller patch

consumes fewer parameters while the performance may decrease.

Larger patch may improve the performance while the parame-

ters could be large. Here, we test the performance over different

sizes of the low-rank layer in FedMatch𝐻+𝐿𝑅 , and vary the size

in {32, 64, 128, 256, 512}. As shown in Figure 6, we can find that

when the patch size exceeds some threshold, the 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅
performs worse as the patch becomes bigger. A possible reason

is the overfitting of the patch for the participant. For example, by

introducing less than 128 or more than 128 patch sizes, our private

structure over the PrivacyQA data tends to capture insufficient

information or noisy information that may hurt the matching per-

formance. Therefore, it is necessary to achieve a trade-off between

the patch size and the performance.
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Figure 6: Performance comparison of the FedMatch𝐻+𝐿𝑅
method over different sizes of private patch.

4.10 Impact of Global Aggregation Frequency
In our 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ model, the server first aggregates received model

updates from multiple participants after each epoch. Then, the

server updates the global model and distributes the new model to

each client for next-round training. Here we analyze the effect of dif-

ferent frequencies of the global aggregation, i.e., 1, 2, and 3 epochs.

As shown in Figure 7, we can find that: (1) For most datasets (i.e.,

PrivacyQA, InQA, and MedQuAD), 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 can achieve the

best performance if the global aggregation is executed every train-

ing epoch. For the BioASQ and the FiQA, 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 achieves

the best performance if the global aggregation is executed every

two training epochs, which improves the results a little over ev-

ery training epoch. (2) 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 on large datasets such as

the FiQA and the BioASQ, are more robust with respect to the ag-

gregation frequency. (3) The performance of every two epoch of

aggregation over the PrivacyQA has a significant drop as compared

that of every epoch. The reason might be that longer training on

local data could result in more loss of generalized knowledge.
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Figure 7: Performance comparison of the FedMatch𝐻+𝐿𝑅
method over different frequencies of global aggregation.

4.11 Impact of Training Data Size
Here, we further explore whether the proposed FedMatch can effec-

tively handle the data scarcity problem in each participant by lever-

aging the useful data of different participants. Due to space limit,

we only show the MAP and MRR results on the InQA dataset. We

randomly select different ratios of data for model training, i.e., 20%,

40%, 60%, 80% and 100%, As shown in Figure 8, we can observe that:
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Figure 8: Performance comparison of the FedMatch𝐻+𝐿𝑅
method over different sizes of training data.

(1) Compared with individual models trained on local data, the Fed-

Match could always achieve better performance with different ra-

tios of data, due to leveraging the useful information from multiple

participants. (2) The performance improvement of 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅
over 𝐵𝐸𝑅𝑇 becomes more significant, as the size of labeled data

on each participant decreases, i.e., the data scarcity problem in

single participants in more serious. For example, the MAP margin

between 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 and 𝐵𝐸𝑅𝑇 is 2.60% when the ratio of data

is 100%, while the MAP margin between 𝐹𝑒𝑑𝑀𝑎𝑡𝑐ℎ𝐻+𝐿𝑅 and 𝐵𝐸𝑅𝑇

is 7.23% when the ratio of data is 20%.

5 CONCLUSION
In this work, we proposed to adopt federated learning for QA, which

could leverage all the available QA data to boost the model training

and remove the need to directly exchange the privacy-sensitive

QA data among different participants. With the special concern on

the statistical heterogeneity of the QA data, we introduced a novel

Federated Matching framework for QA, named FedMatch, with a

backbone-patch architecture. By decomposing the QA model in

each participant into a shared module and a private module, it is

able to leverage the common knowledge in different participants

and capture the information of the local data in each participant.

Furthermore, we built a new benchmark dataset FedQA to simulate

the heterogeneous situation in the real-world scenario. Empirical

results showed that our method can effectively improve the perfor-

mance by exploiting the useful information of multiple participants

in a privacy-preserving way.

In the future work, we would like to enhance the data security

guarantees by adopting local differential privacy techniques and

reduce the communication cost via some distilling mechanisms.

Besides, it is valuable to apply FedMatch to other tasks with the

problem of data heterogeneity, such as personalized search.
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