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ABSTRACT
Ranking has always been one of the top concerns in information

retrieval researches. For decades, the lexical matching signal has

dominated the ad-hoc retrieval process, but solely using this signal

in retrieval may cause the vocabulary mismatch problem. In recent

years, with the development of representation learning techniques,

many researchers turn to Dense Retrieval (DR) models for better

ranking performance. Although several existing DR models have

already obtained promising results, their performance improve-

ment heavily relies on the sampling of training examples. Many

effective sampling strategies are not efficient enough for practical

usage, and for most of them, there still lacks theoretical analysis in

how and why performance improvement happens. To shed light

on these research questions, we theoretically investigate different

training strategies for DR models and try to explain why hard neg-

ative sampling performs better than random sampling. Through

the analysis, we also find that there are many potential risks in

static hard negative sampling, which is employed by many existing

training methods. Therefore, we propose two training strategies

named a Stable Training Algorithm for dense Retrieval (STAR) and

a query-side training Algorithm for Directly Optimizing Ranking

pErformance (ADORE), respectively. STAR improves the stability

of DR training process by introducing random negatives. ADORE

replaces the widely-adopted static hard negative sampling method

with a dynamic one to directly optimize the ranking performance.

Experimental results on two publicly available retrieval benchmark

datasets show that either strategy gains significant improvements

over existing competitive baselines and a combination of them leads

to the best performance.
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1 INTRODUCTION
Document ranking is essential for many IR related tasks, such

as question answering [10] and Web search [1, 4]. An effective

ranking algorithm will benefit many downstream tasks related to

information access researches [11, 24]. Traditional algorithms such

as BM25 [26] usually utilize exact term matching signals. Their

capabilities are therefore limited to keyword matching and may

fail if the query and document use different terms for the same

meaning, which is known as the vocabulary mismatch problem. To

better deduce the users’ search intent and retrieve relevant items,

the ranking algorithms are expected to conduct semantic match-

ing between queries and documents [17], which is a challenging

problem.

In recent years, with the development of deep learning [6, 20, 28],

especially representation learning techniques [2], many researchers

have turned to the Dense Retrieval (DR) model to solve the semantic

matching problem [10, 15, 18, 22]. In essence, DR attempts to encode

queries and documents into low-dimension embeddings to better

abstract their semantic meanings. With the learned embeddings,

document index can be constructed and the query embedding can

be adopted to perform efficient similarity search for online ranking.

Previous studies showed that DR models achieve promising results

on many IR-related tasks [7, 10, 15].

However, there are some unsolved but essential problems re-

lated to DR’s effectiveness and training efficiency
1
. Firstly, though

1
We focus on the training efficiency because the efficiency in the inference process is

guaranteed by the maximum inner product search algorithms[14, 27].
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previous works achieved promising results using different train-

ing strategies, their empirical conclusions are sometimes different

and even conflict with each other. For example, researchers have

conflicting opinions on whether training with hard negatives out-

performs that with random negatives [7, 12, 22, 29]. Secondly, many

existing well-performed training methods are relatively inefficient

and not so applicable for practical usage. For example, some pre-

vious works utilize computationally expensive methods, such as

knowledge distillation [18] and periodic index refresh [10, 29] in

the training process.

We believe that these problems are mainly caused by the lack

of theoretical understanding of the training process for DR mod-

els. A fair comparison among the existing training strategies will

help us design more effective and efficient optimization methods.

Therefore, we theoretically formulate the DR training methods

and investigate the relationship between training methods and the

target optimization objectives.

Through the analysis, we find that random negative sampling

aims to minimize the total pairwise errors. Thus, it has a critical

problem that some difficult queries can easily dominate its training

process and result in serious top-ranking performance loss. On the

contrary, hard negative sampling minimizes the top-K pairwise

errors. Therefore, it is more suitable for improving the ranking

performance of top results, which is also the target of many popular

IR systems, such as Web search engines.

Furthermore, we look into two kinds of hard negatives, namely

static and dynamic ones. The static ones are employed by many

existing training methods. These methods adopt a traditional re-

triever [8, 15, 22] or a warm-up DR model [10, 29] to pre-retrieve

the top results as unchanging hard negatives during training. The-

oretical analysis shows that their loss functions cannot guarantee

performance improvement, and experiments show their training

process is unstable. The dynamic ones are the real hard negatives

and rely on the current model parameters. During training, they

are dynamically changing because the model is updated iteratively.

We show that they resolve the problems of static ones and thus are

better for training DR models.

To improve the existing training strategies and help DR mod-

els gain better performance, we propose two methods to effec-

tively train the DR models. Firstly, we propose a Stable Training
Algorithm for dense Retrieval (STAR) to stabilize the static hard

negative sampling method. It utilizes static hard negatives to opti-

mize the top-ranking performance and random negatives to stabi-

lize the training. It reuses the document embeddings in the same

batch to improve efficiency. Experimental results show that STAR

outperforms competitive baselines with significant efficiency im-

provement. Secondly, we propose a method to train DR models

with dynamic hard negative samples instead of static ones, named

a query-side training Algorithm for Directly Optimizing Ranking
pErformance (ADORE). It adopts the document encoder trained

by other methods and further trains the query encoder to directly

optimize IR metrics. Therefore, it can be used to improve other

methods by training a better query encoder. Experimental results

show that ADORE significantly boosts the ranking performance.

With the help of ADORE, some simple training methods can even

match the existing competitive approaches in terms of effectiveness

and greatly outperform them in terms of efficiency. The combina-

tion of ADORE and STAR achieves the best performance and is still

much more efficient than current popular training methods [10, 29].

We further investigate using index compression techniques [13] to

greatly save computational resources for ADORE.

In summary, our contributions are as follows:

• We theoretically investigate the training process of DR mod-

els and compare different popular training strategies, includ-

ing random sampling and hard negative sampling. Our analy-

sis reveals that these strategies lead to different optimization

targets and that hard negative sampling better optimizes the

top-ranking performance. Experimental results verify our

theoretical analysis results.

• We investigate one of the most popular training strategies

for DR models that employ static hard negative samples. We

theoretically and empirically demonstrate its potential risks

in decreasing ranking performance.

• We propose two training strategies that employ hard nega-

tives to optimize DR models. Experimental results on two

popular retrieval benchmark datasets show that they achieve

significant performance improvements. Their combination

achieves the best retrieval performance
2
.

2 RELATEDWORK
Dense Retrieval represents queries and documents with embed-

dings. During the offline stage, it encodes documents and builds

the document index. During the online stage, it encodes the input

queries and performs similarity search [14]. Researchers mainly use

negative sampling methods to train DR models except the recently

proposed knowledge distillation method [18]. We introduce them

in the following.

Several works utilized random negative sampling for training

DR models. Huang et al. [12] used random negative samples to

approximate the recall task. Karpukhin et al. [15] and Zhan et al.

[33] adopted In-Batch training to use other queries’ relevant doc-

uments in the same mini-batch as negatives, which we believe is

approximately random negative sampling. Ding et al. [7] found it

is beneficial to increase the number of random negatives in the

mini-batch.

Some works applied hard-negative mining to train DR models.

Gao et al. [8] and Karpukhin et al. [15] used BM25 top documents as

hard negatives. Xiong et al. [29] and Guu et al. [10] used a warm-up

DR model to pre-retrieve the top documents as hard negatives dur-

ing training. They also periodically re-build the index and refresh

the hard negatives, which greatly increases the computational cost.

Since the hard negatives are fixed during the entire training process

or for a few thousand training steps, we refer to these methods as

static hard negative sampling.

However, some researchers found static hard negative sampling

does not help or even harms the ranking performance. Luan et al.

[22] found it brings no benefits for the open-domain QA task. Ding

et al. [7] even found it significantly worsens the ranking perfor-

mance.

2
Code, trained models, and retrieval results are available at https://github.com/

jingtaozhan/DRhard.

https://github.com/jingtaozhan/DRhard
https://github.com/jingtaozhan/DRhard
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Although Xiong et al. [29] tried to theoretically analyze the train-

ing process of DRmodels based on convergence speed, we find their

conclusions contradict the experimental results and will discuss

it in Section 8.1. On the contrary, we present a more fundamental

analysis based on optimization objectives, and the conclusions are

well supported by the experiments.

3 TASK FORMULATION
Given a query 𝑞 and a corpus C, the DR model with parameters 𝜃

is to find the relevant documents 𝐷+
. It encodes queries and docu-

ments separately into embeddings, denoted as

⃗⃗ ⃗⃗
𝑋 𝑞;𝜃 and

⃗⃗ ⃗⃗
𝑋 𝑑;𝜃 , re-

spectively. Then it uses the similarity function, often inner product,

to perform efficient retrieval. Let 𝑓 (𝑞, 𝑑) be the predicted relevance

score. It equals to:

𝑓 (𝑞, 𝑑) = ⟨
⃗⃗ ⃗⃗
𝑋 𝑞;𝜃 ,

⃗⃗ ⃗⃗
𝑋 𝑑;𝜃 ⟩ (1)

where ⟨, ⟩ denotes the similarity function.

DR models are typically trained with pairwise loss where each

training sample consists of a query, a negative document 𝑑−, and a

positive document 𝑑+ [7, 29, 33]. For ease of explanation, we use

the following pairwise loss function:

L(𝑑+, 𝑑−) = 1𝑓 (𝑞,𝑑+)<𝑓 (𝑞,𝑑−) (2)

where 1𝐴 is an indicator function, which is 1 if 𝐴 holds and 0

otherwise. Therefore, we can establish the relationship between the

ranking position of the positive document 𝜋 (𝑑+) and the training

loss with respect to it as follows:

𝜋 (𝑑+) = 𝛿 (𝑑+) + 1 +
∑︁

𝑑−∈𝐷−
L(𝑑+, 𝑑−) (3)

where 𝛿 (𝑑+) is the number of relevant documents ranked higher

than 𝑑+ and 𝐷−
is all the irrelevant documents, i.e., C\𝐷+

.

In practice, we cannot directly optimize over all the samples

in a corpus since the cost is prohibitive. Therefore, an important

question is what distribution should the negative documents be

sampled from. Given a query 𝑞, different sampling strategies can

be viewed as setting different weights 𝑤 (𝑑−) for each negative

document 𝑑−. Therefore, the general form of the learning objective

is as follows:

𝜃∗ = argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

𝑤 (𝑑−) · L(𝑑+, 𝑑−) (4)

4 RANDOM VS. HARD NEGATIVES
This section provides a theoretical explanation of how hard nega-

tives help optimize retrieval models.

4.1 Random Negative Sampling
We start with introducing the widely-used random negative sam-

pling method [7, 12, 29]. It uniformly samples negatives from the

entire corpus. Using the formulation in Section 3, we can see that

using random negatives is equivalent to minimizing 𝜋 (𝑑+) (or min-

imizing the total pairwise errors):

𝜃∗ = argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

L(𝑑+, 𝑑−)

= argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

𝜋 (𝑑+) − 𝛿 (𝑑+) − 1

= argmin
𝜃

∑︁
𝑞

const +
∑︁

𝑑+∈𝐷+
𝜋 (𝑑+)

(5)

While minimizing the total pairwise errors seems reasonable,

we argue that the above optimization objective has the following

critical problem. The loss function with respect to a single query𝑞 is

unbounded. 𝜋 (𝑑+) could be as large as the size of the whole corpus

|C|. Therefore, the overall loss will be dominated by the queries

with large 𝜋 (𝑑+), and the model can hardly focus on improving

top-ranking performance. Section 8.1 will show that this problem

leads to serious performance loss in practice.

Therefore, random negative sampling is sub-optimal for training

DR models and it is necessary to investigate how to optimize the

retrieval performance of DR models with other sampling strategies.

4.2 Hard Negative Sampling
Another sampling strategy is to sample top-K documents as nega-

tives. This paper refers to them as hard negatives. The optimization

process is formulated as follows.

𝜃∗ = argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

1𝜋 (𝑑−) ≤𝐾𝑞
· L(𝑑+, 𝑑−)

= argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

min(𝜋 (𝑑+) − 𝛿 (𝑑+) − 1, 𝐾)
(6)

where 𝐾 is the number of hard negative documents, and 𝐾𝑞 is

the ranking position of the top 𝐾𝑡ℎ negative document in 𝐷−
, i.e.,∑

𝑑−∈𝐷− 1𝜋 (𝑑−) ≤𝐾𝑞
= 𝐾 .

Comparing Eq. (6) with Eq. (5), we can see that hard negative

sampling minimizes the top-K pairwise errors instead of the total

pairwise errors and the loss w.r.t. a single query is bounded by

𝐾 . In this sense, the adoption of hard negatives alleviates the un-

bounded loss problem of random negative sampling and leads to a

more robust optimization in retrieval performance. Hard negative

sampling emphasizes the top-ranking performance and disregards

the lower-ranked pairs that hardly affect the user experience or

evaluation metrics. Therefore, it is more in line with the truncated

evaluation metrics.

The following theorem shows the relationship between Eq. (5)

and (6) in terms of whether and when two sampling strategies lead

to the same optimal parameter weights.

Theorem 4.1. Let 𝜃∗
ℎ
be the optimal parameters for Eq. (6). If

∀𝑑+, 𝜋 (𝑑+) − 𝛿 (𝑑+) − 1 ≤ 𝐾 , then 𝜃∗
ℎ
is also the optimal parameters

for Eq. (5).

That is to say, if DR models can rank all relevant documents at

high positions, using random negative sampling and hard negative

sampling in training DR models will result in the same optimal

parameters. However, DR models may not be effective for some

training queries, especially those that require keyword match [8,

18, 33]. In this case, the random negative sampling strategy would
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pay too much attention to the difficult queries, which, however,

would not be reflected by the popular adopted truncated evaluation

metrics.

5 STATIC VS. DYNAMIC HARD NEGATIVES
In Section 4, we have shown that hard negative sampling is more

effective than random negative sampling. Since the real hard nega-

tives are dynamically changing during training, we refer to them as

dynamic hard negatives. However, the current main strategy is us-

ing a traditional retriever [8, 15, 22] or a warm-up DRmodel [10, 29]

to pre-retrieve the top documents as fixed hard negatives during

training. Thus, we refer to them as static hard negatives
3
. Next, we

will theoretically discuss these two kinds of hard negatives.

5.1 Static Hard Negatives
We formulate static hard negative sampling as follows.

𝜃∗ = argmin
𝜃

∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

1𝑑−∈𝐷−
𝑠
· L(𝑑+, 𝑑−)

(7)

where 𝐷−
𝑠 is a set of pre-retrieved hard negatives ( |𝐷−

𝑠 | ≪ |C|).
To characterize 𝐷−

𝑠 , we define its ‘quality’ 𝜙 (𝐷−
𝑠 ) as the highest

ranking position:

𝜙 (𝐷−
𝑠 ) = min

𝑑−∈𝐷−
𝑠

𝜋 (𝑑−) ∈ [1, |C| − |𝐷−
𝑠 | + 1]

(8)

We can see that 𝜙 (𝐷−
𝑠 ) is very loosely bounded and theoretically

can be very large. Though previous works [8, 10, 15, 22, 29] im-

plicitly assumed that 𝜙 (𝐷−
𝑠 ) is always very small during the entire

training process, we argue that is not necessarily true. The train-

ing process is likely to drive 𝜙 (𝐷−
𝑠 ) large instead of small because

the gradient-based optimization constantly forces the DR model

to predict small relevance scores for 𝐷−
𝑠 . Therefore, 𝐷

−
𝑠 is likely

to be ranked lower and lower during training, which, however,

is invisible to the loss. Section 8.2 will verify that the DR model

quickly ranks 𝐷−
𝑠 very low.

Using the above notions, we discuss the ranking performance of

an ‘ideal’ DR model whose training loss is minimum zero. We use

mean reciprocal rank (MRR) to evaluate the ranking performance.

The infimum of MRR is as follows:∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

1𝑑−∈𝐷−
𝑠
· L(𝑑+, 𝑑−) = 0

⇒ inf (MRR) = 𝐸𝑞
1

𝜙 (𝐷−
𝑠 ) − |𝐷+ | ≥

1

|C| − |𝐷−
𝑠 | + 1 − |𝐷+ | ≈

1

|C|
(9)

where inf denotes the infimum.

Since 𝜙 (𝐷−
𝑠 ) can be very large as discussed above, the infimum

can be almost zero and thus the top-ranking performance is not the-

oretically guaranteed. In the worst case, MRR is approximately
1
|C | .

Considering that we are discussing an ‘ideal’ DR model whose train-

ing loss is zero, this result is unacceptable. Therefore, we believe it

is risky to use static hard negative sampling.

3
Some works [10, 29] periodically refresh the index and retrieve static hard negatives

during training. Though we do not consider it in the theoretical analysis, we will

explore it in our experiments and show its limited capability to resolve the problems

analyzed in this section.

: relevant doc : hard negative: query

…

: approximately random negative

……

(a) Input: one relevant doc and
multiple static hard negatives
are sampled for each query.

: relevant doc : hard negative: query

…

: approximately random negative

……

(b) Reusing other document
embeddings when computing
pairwise loss.

Figure 1: Reusing strategy of STAR. The number of rows cor-
respond to the batch size.

5.2 Dynamic Hard Negatives
This section will show the benefits of dynamic hard negatives com-

pared with static ones. The dynamic hard negatives are actually

the top-ranked irrelevant documents given the DR parameters at

any training step. For ease of comparison, we formally define the

dynamic hard negatives 𝐷−
𝜃
based on Eq. (6):

𝐷−
𝜃
= {𝑑− : 1𝜋 (𝑑−) ≤𝐾𝑞

= 1} (10)

During training, 𝐷−
𝜃
is dynamically changing because 𝜃 is con-

stantly updated. In fact, the theoretical analysis in Section 4.2 is

based on dynamic hard negatives and we have shown their benefits

compared with random negatives.

Since we use 𝜙 (𝐷−
𝑠 ) to represent the ‘quality’ of static hard nega-

tives, we show the ‘quality’ of 𝐷−
𝜃
for comparison. Considering that

𝐷−
𝜃
always contains the top-ranked negatives, it is well bounded:

𝜙 (𝐷−
𝜃
) = min

𝑑−∈𝐷−
𝜃

𝜋 (𝑑−) ∈ [1, |𝐷+ | + 1]
(11)

Therefore, according to Eq. (9), MRR achieves the maximum one if

the training loss achieves the minimum zero:∑︁
𝑞

∑︁
𝑑+∈𝐷+

∑︁
𝑑−∈𝐷−

1𝜋 (𝑑−) ≤𝐾𝑞
· L(𝑑+, 𝑑−) = 0

⇒ 𝜙 (𝐷−
𝜃
) = |𝐷+ | + 1 ⇒ MRR = 1

(12)

In this sense, dynamic hard negative sampling is better than the

static one.

6 TRAINING ALGORITHMS
In Section 4 and 5, we show that random negative sampling and

static hard negative sampling have problems in terms of effective-

ness and training stability, respectively. Thus, we propose two

improved training strategies for better training DR models, namely

STAR and ADORE.

6.1 STAR
According to our analysis in Section 5, static hard negative sampling

is unstable. Therefore, we propose a Stable Training Algorithm for

dense Retrieval (STAR). STAR aims to employ static hard nega-

tives to improve top-ranking performance and random negatives

to stabilize the training process. Moreover, it reuses the document

embeddings in the same batch to greatly improve efficiency.
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6.1.1 Employing Static Hard Negatives. STAR uses a warm-up

model to retrieve the top documents for all training queries, which

serve as the static hard negatives and will not be updated. We use

them to approximate the real dynamic hard negatives. The inspi-

ration comes from our pilot experiment where we find different

well-trained DR models tend to recall the same set of documents

but with different ranking order.

6.1.2 Employing Random Negatives. To stabilize the training pro-

cess, STAR additionally introduces random negatives during train-

ing and optimizes the following objective:

𝜃∗ = 𝛼 · 𝐿𝑟 (𝜃 ) + 𝐿𝑠 (𝜃 ) (0<𝛼≪1) (13)

where 𝐿𝑟 (𝜃 ) is the loss of random negative sampling defined as

Eq. (5), 𝐿𝑠 (𝜃 ) is the loss of static hard negative sampling defined as

Eq. (7), and 𝛼 is a hyper-parameter. If static hard negatives well ap-

proximate the dynamic ones, 𝐿𝑠 (𝜃 ) tends to be large and dominates

the training process. If not, 𝐿𝑠 (𝜃 ) tends to be small and STAR ap-

proximately degenerates into a random negative sampling method,

which is much better than the worst case of static hard negative

sampling.

6.1.3 Improving Efficiency. STAR adopts a reusing strategy to im-

prove efficiency. It does not explicitly add random negative docu-

ments to the input and instead reuse other documents in the same

batch as approximately random negatives. Figure 1a shows one

input batch of STAR, which is the same as static hard negative

sampling method [29]. Each row has one query, its relevant doc-

ument, and its static hard negative documents. Figure 1b shows

how STAR computes pairwise loss for one query. The document

embeddings in other rows are also utilized as negatives, which

we believe can approximate the random negatives. The reusing

strategy could also be regarded as an improved version of In-Batch

training strategy [15, 33].

6.1.4 Loss Function. STAR adopts RankNet pairwise loss [3]. Given

a query 𝑞, let 𝑑+ and 𝑑− be a relevant document and a negative

document. 𝑓 (𝑞, 𝑑) is the relevance score predicted by the DR model.

The loss function L𝑅 is formulated as follows:

L(𝑑+, 𝑑−) = log(1 + 𝑒 𝑓 (𝑞,𝑑
−)−𝑓 (𝑞,𝑑+) ) (14)

6.2 ADORE
Our previous analysis in Section 4 and 5 shows great potential of

utilizing dynamic hard negatives for training DR models. Therefore,

this section presents a query-side training Algorithm for Directly
Optimizing Ranking pErformance (ADORE). It utilizes dynamic

hard negatives and LambdaLoss [3] to directly optimize ranking

performance. It adopts a pre-trained document encoder and trains

the query encoder. We show the training process of ADORE in

Figure 2b and the common negative sampling method in Figure 2a

for comparison.

6.2.1 Employing Dynamic Hard Negatives. ADORE resolves the dif-

ficulty to acquire dynamic hard negatives as follows. Before training,

ADORE pre-computes the document embeddings with a pre-trained

document encoder and builds the document index. They are fixed

throughout the entire training process. At each training iteration,

it encodes a batch of queries and uses the embeddings to retrieve

A Training Query

Query
Encoder

Index

Pre-computed
Embeddings

Full Retrieval

Fetch embeddings
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Figure 2: The flow chart of negative sampling training
method and our proposed ADORE. Batch size is set to one.

the corresponding top documents, which are the real dynamic hard

negatives. ADORE utilizes them to train the DR model. To the best

of our knowledge, ADORE is the first DR training method to em-

ploy dynamic hard negatives. Its effectiveness is guaranteed by the

theoretical analysis in Section 4.2 and 5.2.

6.2.2 Directly Optimizing IR Metrics. Unlike previous methods,

ADORE performs retrieval at each step and thus can utilize the list-

wise approach [19] to directly optimize the ranking performance.

We use LambdaLoss [3] to derive a weight𝑤 (𝑑−) for each training

pair to better optimize IR metrics. Given a query 𝑞, a positive doc-

ument 𝑑+, and a negative document 𝑑−, let ΔM be the size of the

change in target IR metric given by swapping the ranking positions

of 𝑑+ and 𝑑−. Through multiplying ΔM to RankNet loss, Burges

[3] empirically showed that it could directly optimize IR metrics.

Therefore, ADORE employs the following loss functions:

L(𝑑+, 𝑑−) = ΔM · log(1 + 𝑒 𝑓 (𝑞,𝑑
−)−𝑓 (𝑞,𝑑+) ) (15)

According to Qin et al. [25], when the training set is large enough,

this method will yield the optimal model in terms of the correspond-

ing metric.

6.2.3 End-to-end Training. Document index is often compressed

in practice to save computational resources. Different compression

techniques may lead to different optimal DR parameters and hence

should be considered during training. Though previous methods

ignore this information, ADORE can well perform end-to-end train-

ing with the actual document index used in inference as shown in

Figure 2b. In this regard, ADORE alleviates the discrepancy between

training and inference and can achieve better ranking performance.

We will empirically verify this in section 8.3.3.

6.3 Combining STAR and ADORE
Both ADORE and STAR have their own advantages. ADORE di-

rectly optimizes the ranking performance while STAR cannot. STAR

optimizes both the query encoder and the document encoder while

ADORE only optimizes the query encoder. We combine the two
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strategies by using STAR to train the document encoder and using

ADORE to further train the query encoder.

7 EXPERIMENTAL SETTINGS
7.1 Datasets
We conduct experiments on the TREC 2019 Deep Learning (DL)

Track [4]. The Track focuses on ad-hoc retrieval and consists of

the passage retrieval and document retrieval tasks. The passage

retrieval task has a corpus of 8.8 million passages with 503 thou-

sand training queries, 7 thousand development queries, and 43 test

queries. The document retrieval task has a corpus of 3.2 million

documents with 367 thousand training queries, 5 thousand devel-

opment queries, and 43 test queries. We use the official metrics

to evaluate the top-ranking performance, such as MRR@10 and

NDCG@10. Besides, R@100 is adopted to evaluate the recall power.

7.2 Baselines
7.2.1 Sparse Retrieval. We list several representative results ac-

cording to the TREC overview paper [4] and runs onMSMARCO [1]

leaderboard, such as BM25 [31], the best traditional retrievalmethod,

BERT weighted BM25 (DeepCT) [5].

7.2.2 Dense Retrieval. The DR baselines include several popular

training methods. For random negative sampling baselines, we

present Rand Neg [12] and In-Batch Neg [15, 33]. The former ran-

domly samples negatives from the entire corpus, and the latter uses

other queries’ relevant documents in the same batch as negative

documents. For static hard negative sampling baselines, we present

BM25 Neg [8] and ANCE [29]. BM25 Neg uses the BM25 top can-

didates as the negative documents. ANCE uses a warm-up model

to retrieve static hard negatives. Every 10𝑘 training steps, it en-

codes the entire corpus, rebuilds the document index, and refreshes

the static hard negatives with the current DR model parameters.

For knowledge distillation baseline, we present TCT-ColBERT [18]

which uses ColBERT [16] as the teacher model.

7.2.3 Cascade IR. Although this paper focuses on the retrievers,

we employ cascade systems for further comparison. We report the

performances of the best LeToR model and the BERT model [23],

which use BM25 as the first-stage retriever.

7.3 Implementation Details
All DR models use the RoBERTa

base
[20] model as the encoder. The

output embedding of the “[CLS]” token is used as the representa-

tion of the input text. We use the inner product to compute the

relevance score and adopt the Faiss library [14] to perform the

efficient similarity search. Documents are truncated to a maximum

of 120 tokens and 512 tokens for the passage and document tasks,

respectively. The top-200 documents are used as the hard negatives.

The implementation details for DR baselines are as follows. In-

Batch Neg and Rand Neg models are trained on passage task with

Lamb optimizer [32], batch size of 256, and learning rate of 2 ×
10−4. We find LambdaLoss [3] cannot bring additional performance

gains and hence use the RankNet loss. The trained models are

directly evaluated on the document task because this produces

better retrieval performance [29, 30]. We use the open-sourced

BM25 Neg model and ANCE model [29]. They are re-evaluated so
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Figure 3: Distribution of pairwise errors per query on
MARCO Dev Passage dataset for Rand Neg model. The his-
togram shows the proportion of total queries, and the line
chart shows the proportion of total pairwise errors.

we can perform the significance test. Minor performance variances

are observed compared with the originally reported values. Since

TCT-ColBERT [18] is not open-sourced, we borrow the results from

its original paper and do not perform the significance test on it.

STAR uses the BM25 Neg model as the warm-up model, which is

the same as ANCE and hence their results are directly comparable. It

uses Lamb optimizer, batch size of 256, and learning rate of 1×10−4
on passage task. It uses AdamW optimizer [21], batch size of 60,
and learning rate of 2 × 10−6 on document task.

ADORE uses AdamW optimizer, learning rate of 5 × 10−6, and
batch size of 32 on both tasks. M in Eq. (15) is MRR@200 and

MRR@10 on passage and document tasks, respectively. ADORE

can improve a trained DR model by further training its query en-

coder. For example, ADORE+Rand Neg means it uses the document

encoder trained by Rand Neg and further trains the query encoder.

8 EXPERIMENTAL RESULTS
We conduct experiments to verify our theoretical analysis and the

effectiveness of our proposed methods. Specifically, this section

studies the following research questions:

• RQ1: How do random negatives and hard negatives affect

optimization objectives?

• RQ2: How does the static hard negative sampling method

perform in practice?

• RQ3: How effective and efficient are our proposed training

methods?

8.1 Random vs. Hard Negatives
This section compares random negative sampling and hard negative

sampling to answer RQ1.
In Section 4, we theoretically show that random negative sam-

pling faces a critical problem that some difficult queries may dom-

inate the training process. To verify whether this phenomenon

really exists, we plot the distribution of pairwise errors per query in

Figure 3 by evaluating the trained Rand Neg model on MARCO Dev

Passage dataset. The figure shows that 0.2% difficult queries (pair-

wise errors ≥ 105) contribute surprisingly 60% of the total pairwise

errors. Therefore, the problem is very serious in practice.

To investigate whether hard negative sampling alleviates the

above problem, we evaluate the total pairwise errors and top-K (200)
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Table 1: Total pairwise errors and top-K pairwise errors of
different DRmodels. Best results are marked bold. K equals
to 200.

Models Total Errors Top-K Errors
In-Batch Neg 679 43.2

Rand Neg 659 39.3

BM25 Neg 2432 46.4

ANCE 1448 37.3

STAR 1128 35.8
ADORE+In-Batch Neg 649 37.7

ADORE+Rand Neg 736 36.8

ADORE+BM25 Neg 1840 40.0

ADORE+ANCE 1345 36.5

ADORE+STAR 1037 34.4
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Figure 4: The performance of static hard negative sampling
on MARCO Train Doc dataset. X-axes is the training steps
in thousands. Dynamic/static/random separately denote dy-
namic hard/static hard/random negative sampling.

pairwise errors for different models and show the results in Table 1.

As we expect, random negative sampling methods, namely Rand

Neg and In-Batch Neg, well minimize the total pairwise errors but

cannot effectively minimize the top-K pairwise errors. The hard

negative sampling method, STAR, well minimizes the top-K pair-

wise errors. The static hard negative sampling methods, namely

BM25 Neg and ANCE, achieve compromised top-ranking perfor-

mance. ADORE effectively improves each model’s top-ranking per-

formance and performs best using the document encoder trained by

STAR. Therefore, the results convincingly show that hard negative

sampling can better optimize top-ranking performance.

Note that our experiments contradict previous theoretical analy-

ses. Xiong et al. [29] argued that random and hard negative sam-

pling share the same optimization objective and that the latter’s

advantage lies in quicker convergence. However, Table 1 shows

that random negative sampling well converges and outperforms

hard negative sampling in terms of total pairwise errors. Figure 4b,

which will be introduced in Section 8.2, shows that random negative

sampling decreases the top-ranking performance using a relatively

good initialization. Therefore, random and hard negative sampling

optimizes different targets, and the benefits of hard negatives are

not about convergence speed.
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Figure 5: The ablation study for ADORE. ADORE\L uses
RankNet loss instead of LambdaLoss. Results are MRR@10
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Figure 6: The t-SNE plot of query and document representa-
tions for ADORE. The QID is 1129237 and is from TREC DL
Doc test set.

8.2 Static vs. Dynamic Hard Negatives
This section compares static hard negatives and dynamic hard

negatives to answer RQ2. In Section 5.1, we argue that the DR

model may quickly rank the static hard negatives very low and

thus they cannot approximate the dynamic ones. We also analyze

that static hard negative sampling does not necessarily optimize

ranking performance. This section aims to verify them.

Our experimental settings are as follows. Compared with our

theoretical analysis, we further explore the popular periodic index

refresh approach by iteratively retrieving static hard negatives ev-

ery 5𝑘 training steps [10, 29]. The DR model is initialized with a

trained BM25 Neg model. We fix the document embeddings and

retrieve documents for training queries at each step to acquire the

dynamic hard negatives and evaluate the ranking performance. Fig-

ure 4a shows the overlap between static hard negatives and the

real dynamic hard negatives. Figure 4b presents the ranking perfor-

mance, which also uses random negative sampling and dynamic

hard negative sampling for comparison.

According to Figure 4b, the static hard negatives are quickly

ranked very low by the DR model and can hardly approximate the

dynamic ones as we expect. Moreover, the overlap is always less

than 70% because the static hard negatives cannot consider the

random noise introduced by dropout during training. In this regard,

the dynamic hard negatives cannot be entirely replaced by static

ones.

Figure 4b also supports our analysis by showing the unstable-

ness of static hard negative sampling. The ranking performance

fluctuates wildly and periodically. In most time, it significantly un-

derperforms random negative sampling. On the contrary, dynamic

hard negative sampling steadily improves the ranking performance.
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Table 2: Results on TREC 2019 Deep Learning Track. We perform the significance test on DRmodels except for TCT-ColBERT.
We use paired t-test with p-value threshold of 0.01 on dev dataset and 0.05 on TREC test dataset. *indicate significant im-
provements over In-Batch Neg, Rand Neg and BM25 Neg. †indicate significant improvements over ANCE. ‡indicate significant
improvements over ADORE (In-BatchNeg), ADORE (RandNeg) andADORE (BM25Neg). Best results of DRmodels aremarked
bold. Results not available or not applicable are marked as ‘n/a’.

MARCO Dev Passage TREC DL Passage MARCO Dev Doc TREC DL Doc
Models MRR@10 R@100 NDCG@10 R@100 MRR@100 R@100 NDCG@10 R@100
Cascade IR
Best TREC Trad LeToR n/a n/a 0.556 n/a n/a n/a 0.561 n/a

BERT Reranker [23] 0.365 n/a 0.742 n/a 0.413 n/a 0.646 n/a

Sparse Retrieval
BM25 [31] 0.187 0.670 0.506 0.453 0.279 0.807 0.519 0.395

Best TREC Trad Retrieval n/a n/a 0.554 n/a n/a n/a 0.549 n/a

DeepCT [5] 0.243 0.760 n/a n/a n/a n/a 0.554 n/a

DR: Distillation
TCT-ColBERT [18] 0.335 n/a 0.670 n/a n/a n/a n/a n/a

DR: Negative Sampling
In-Batch Neg [9] 0.264 0.837 0.583 0.463 0.320 0.864 0.544 0.295

Rand Neg [12] 0.301 0.853 0.612 0.464 0.330 0.859 0.572 0.284

BM25 Neg [8] 0.309 0.813 0.607 0.362 0.316 0.794 0.539 0.223

ANCE [29] 0.338*
‡

0.862* 0.654 0.445 0.377*
‡

0.894* 0.610 0.273

DR: Ours
STAR 0.340*

‡
0.867* 0.642 0.467

†
0.390*

†‡
0.913*

†‡
0.605 0.313

ADORE+In-Batch Neg 0.316 0.860 0.658* 0.471
†

0.362* 0.884* 0.580 0.315
†

ADORE+Rand Neg 0.326* 0.865* 0.661* 0.472
†

0.361* 0.885* 0.585 0.298
†

ADORE+BM25 Neg 0.329* 0.846 0.661 0.431 0.352* 0.872 0.610 0.293

ADORE+ANCE 0.341*
‡

0.866* 0.675*
†

0.454
†

0.390*
†‡

0.902*
†‡ 0.634*† 0.292

ADORE+STAR 0.347*†‡ 0.876*†‡ 0.683* 0.473† 0.405*†‡ 0.919*†‡ 0.628* 0.317†

Though carefully tuning the hyper parameters may alleviate

the above problems and several works achieved promising results

using this method [10, 29], the next two sections will show that our

proposed methods can better optimize the ranking performance

with great efficiency gain.

8.3 Effectiveness
This section investigates the effectiveness of our proposed STAR

and ADORE to answer RQ3. We conduct experiments on passage

retrieval and document retrieval tasks and show the ranking per-

formance in Table 2. We discuss the results
4
in the following.

8.3.1 Baselines. Random negative sampling can effectively train

DR models compared with sparse retrieval and the LeToR methods.

Rand Neg outperforms BM25, DeepCT, and LeToR even by a large

margin on some metrics. Static hard negative sampling does not

necessarily lead to performance improvements compared with ran-

dom negative sampling. It improves the top-ranking performance

but may harm the recall capability. Specifically, BM25 Neg model

almost underperforms Rand Neg in terms of every metric. ANCE

outperforms Rand Neg on MRR@10 but underperforms it in terms

of R@100 on the test sets.

4
Although DR models significantly underperform BM25 on TREC DL Doc in terms of

R@100, it may be caused by many unlabeled relevant documents [29].

8.3.2 STAR. STAR significantly outperforms randomnegative sam-

pling, especially on top-ranking performance. For example, it out-

performs Rand Neg by 13% and 18% on dev passage and dev

document sets in terms of MRR@10 and MRR@100, respectively.

The results are consistent with our original expectation to improve

top-ranking performance.

STAR also significantly outperforms the static hard negative

sampling method, especially on recall capability. For example, it

outperforms BM25 Neg and ANCE by 40% and 15% on TREC

DL Doc set in terms of R@100, respectively. Such achievement is

very meaningful considering that ANCE iteratively re-builds the

index and then updates the static hard negatives while STAR only

retrieves once. It demonstrates that STAR better optimizes ranking

performance through stabilizing the training process.

STAR outperforms the knowledge distillation approach on the

large dev set but underperforms it on the small testing set. Therefore,

the necessity of knowledge distillation remains further explored

since it is usually more computationally expensive than directly

training the models.

8.3.3 ADORE. ADORE greatly improves all DR models’ perfor-

mance by further training the query encoders. For example, ADORE

improves In-BatchNeg’s top-ranking performance by 20% and 22%
separately on dev passage and dev doc datasets. It also improves

BM25 Neg’s recall performance by 19% and 31% separately on
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Table 3: ADORE+BM25Neg’s ranking performancewhen us-
ing different document indexes for training and evaluation.
Results are MRR@10 values on MARCO Dev Passage. Row
and column names are PQ [13] values, which denote the
number of compressed subvectors. A smaller PQ value cor-
responds to more compression. ‘-’ refers to no compression.

Train
Test

24 48 96 -

24 0.247 0.280 0.282 0.324

48 0.244 0.283 0.285 0.327

96 0.243 0.278 0.291 0.326

- 0.243 0.278 0.288 0.329

testing passage and testing doc sets. The results convincingly show

the effectiveness of ADORE.

The combination of ADORE and STAR achieves the best perfor-

mance. ADORE+STAR greatly outperforms all baselines, especially

the existing competitive knowledge distillation approach (TCT-

ColBERT) and the periodic index refreshing approach (ANCE). Fur-

thermore, it nearly matches BM25-BERT two-stage retrieval system

on the document retrieval task.

We conduct an ablation study for ADORE to investigate the

contribution of dynamic hard negatives and the LambdaLoss. The

results are shown in Figure 5. It demonstrates that using dynamic

hard negatives greatly improves the ranking performance, which

verifies our previous theoretical analysis. The LambdaLoss can

further boost the ranking performance for models like Rand Neg but

cannot bring further improvement for STAR. A possible reason is

that STAR already emphasizes top-ranking performance compared

with methods like Rand Neg.

To illustrate how ADORE improves ranking performance, we

plot a t-SNE example in Figure 6 using a query from TREC DL

Doc set. ADORE uses the document encoder trained by BM25 Neg

and further trains the query encoder. After training, ADORE maps

the query closer to the relevant documents and thus improves the

retrieval performance.

Section 6.2.3 argues that the optimal DR parameters may be

different for different compressed indexes and thus ADORE can

achieve better performance through end-to-end training. To inves-

tigate whether this is true, we use different compressed indexes to

train and evaluate DR models. The results are shown in Table 3.

We can see that end-to-end training better optimizes the ranking

performance for different compression techniques. Thus, ADORE

is suitable to improve the performance of compressed indexes.

8.4 Training Efficiency
This section presents the training efficiency of our proposed meth-

ods to answer RQ3 from two aspects, namely training time and

computational resources. Since ANCE is competitive in terms of

effectiveness, we use it as our efficiency baseline.

8.4.1 Training Time. We test the training speed with 11GBGeForce

RTX 2080 Ti GPUs and show the results in Table 4. It demonstrates

the significant efficiency gains of our proposed methods compared

with ANCE. The improvement comes from two aspects. Firstly, our

Table 4: Training efficiency comparison onMARCODev pas-
sage dataset. All methods use BM25 Neg model as the warm-
up model. The training hours and speedup are separately
rounded to integers.

Models GPUs Hours Speedup
ANCE [29] 4 645 1x

STAR 1 33 20x

ADORE 4 4 179x

ADORE+STAR 4 37 18x

Table 5: ADORE’s performance on passage dataset with dif-
ferent compressed indexes. A smaller PQ value corresponds
to more compression. Training hours for PQ=6 and PQ=12
are blank because they are not supported on GPU. The last
line shows the performance with uncompressed index.

Index Quality Train Dev Test
PQ GB MRR@10 Hours MRR@10 NDCG@10
6 0.1 0.050 - 0.304 0.627

12 0.2 0.151 - 0.318 0.635

24 0.2 0.221 3.0 0.324 0.644

48 0.5 0.254 3.2 0.327 0.652

96 0.9 0.273 3.7 0.326 0.656

– 26 0.309 3.6 0.329 0.661

methods converge very fast. For example, on the passage retrieval

task, ANCE needs 600k steps with batch size of 64 while ADORE

needs 60k steps with batch size of 32. Secondly, to periodically

update the static hard negatives, ANCE iteratively encodes the

corpus to embeddings and builds temporary document indexes,

which takes 10.75 hours each time with three GPUs. In contrast,

STAR only builds one temporary index and ADORE does not even

have this overhead. Note that althoughADORE retrieves documents

at each step, the search is very efficient and takes a total of 40
minutes, which is about 20% of the entire training time.

8.4.2 Computational resources. This section shows ADORE can

greatly save computational resources with compressed document

indexes, which is meaningful because GPU memory is usually lim-

ited. The experimental settings are as follows. We use the document

embeddings generated by BM25 Neg and utilize product quantiza-

tion (PQ) [13] to compress the index. Besides memory usage, we

also report the search quality for the compressed index, which is

measured with MRR@10 on MARCO Dev Passage dataset. The

results on shown in Table 5.

We can see that PQ significantly reduces memory consumption

and the performance loss is minor. After compression, ADORE is

able to run on only one 11 GB GPU compared with four in Table 4.

Specifically, PQ=96 reduces the GPU memory footprint to 3% and

yields little performance loss (0.326 vs. 0.329). A smaller PQ further

reduces GPU memory footprint. Therefore, ADORE is applicable in

a memory-constrained environment. Note that an over-compressed

index (PQ=6) achieves poor search quality (MRR@10: 0.05), and
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therefore ADORE almost degenerates into random negative sam-

pling. ADORE with PQ=6 achieves similar MRR@10 with Rand

Neg (0.304 vs. 0.301).

9 CONCLUSION
This paper investigates how to effectively and efficiently train the

DR models. Firstly, we theoretically formalize the training process

and compare different training methods. We reveal why hard neg-

ative sampling outperforms random negative sampling. Secondly,

we investigate the current popular static hard negative sampling

method and demonstrate its risks through theoretical analysis and

empirical verification. Finally, based on our analysis, we propose

two training methods that employ hard negatives to optimize the

DR models. Experiments on two widely-adopted retrieval datasets

show that they achieve significant performance improvements and

efficiency gains compared with other effective methods. Their com-

bination achieves the best retrieval performance.

There are still some remaining issues for future work. Firstly,

how to train the document encoder directly based on the retrieval

results remains to be explored. Secondly, this paper applies DR to

ad-hoc search. Future work may examine the proposed methods in

other tasks that require a retrieval module, such as Open Question

Answering.
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