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ABSTRACT
Knowledge Graph (KG) reasoning that predicts missing facts for
incomplete KGs has been widely explored. However, reasoning
over Temporal KG (TKG) that predicts facts in the future is still far
from resolved. The key to predict future facts is to thoroughly un-
derstand the historical facts. A TKG is actually a sequence of KGs
corresponding to different timestamps, where all concurrent facts
in each KG exhibit structural dependencies and temporally adja-
cent facts carry informative sequential patterns. To capture these
properties effectively and efficiently, we propose a novel Recurrent
Evolution network based on Graph Convolution Network (GCN),
called RE-GCN, which learns the evolutional representations of
entities and relations at each timestamp by modeling the KG se-
quence recurrently. Specifically, for the evolution unit, a relation-
aware GCN is leveraged to capture the structural dependencies
within the KG at each timestamp. In order to capture the sequential
patterns of all facts in parallel, the historical KG sequence is mod-
eled auto-regressively by the gate recurrent components. More-
over, the static properties of entities, such as entity types, are also
incorporated via a static graph constraint component to obtain bet-
ter entity representations. Fact prediction at future timestamps can
then be realized based on the evolutional entity and relation rep-
resentations. Extensive experiments demonstrate that the RE-GCN
model obtains substantial performance and efficiency improvement
for the temporal reasoning tasks on six benchmark datasets. Es-
pecially, it achieves up to 11.46% improvement in MRR for entity
prediction with up to 82 times speedup compared to the state-of-
the-art baseline.

CCS CONCEPTS
• Computing methodologies → Temporal reasoning.
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1 INTRODUCTION
Knowledge Graphs (KGs) have facilitated many real-world applica-
tions [44]. However, they are usually incomplete, which restricts
the performance and range of KG-based applications. To allevi-
ate this problem, reasoning over KG [2, 35] that attempts to pre-
dict missing facts, is a critical task in natural language processing.
Traditionally, a KG is considered to be static multi-relational data.
However, recent availability of a large amount of event-based in-
teraction data [3] that exhibits complex temporal dynamics has
created the need for approaches that can characterize and reason
over Temporal Knowledge Graph (TKG) [3, 11, 12]. A fact in a TKG
can be represented in the form of (subject entity, relation, object
entity, timestamp). Actually, a TKG can be denoted as a sequence
of KGs with timestamps, each of which contains the facts that co-
occur at the same timestamp.The left part of Figure 1 illustrates an
example of TKG from the ICEWS18 [16] dataset. Despite the ubiq-
uitousness of TKGs, the methods for reasoning over such kind of
data are relatively unexplored both in effectiveness and efficiency.

Reasoning over a TKG from timestamps 𝑡0 to 𝑡𝑇 primarily has
two settings, interpolation and extrapolation [16]. The former [4,
9, 21] attempts to infer missing facts from 𝑡0 to 𝑡𝑇 [16]. The lat-
ter [16, 17, 33, 34], which aims to predict future facts (events) for
time 𝑡 > 𝑡𝑇 , is much more challenging. For TKG, predicting new
facts at future timestamps based on the observed historical KGs
is helpful for understanding the hidden factors of events and re-
sponding to emerging events [20, 25, 26]. Thus, reasoning under
the extrapolation setting is very vital and can be helpful for many
practical applications, such as disaster relief [31] and financial anal-
ysis [1]. In this paper, the temporal reasoning tasks (i.e., reasoning
under the extrapolation setting over TKGs) contains two subtasks
as shown in the right part of Figure 1:
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Figure 1: An illustration of temporal reasoning over a TKG.
We present two subgraphs from the KGs at timestamps
18/01/17 and 18/01/18, respectively.

• Entity Prediction: Predict which entity will have a given
relation togetherwith a given entity at a certain future times-
tamp (e.g., Who will N.Naidu criticize on 18/01/19?);

• RelationPrediction: Predict the relation thatwill occur be-
tween two given entities at a certain future timestamp (e.g.,
What will happen between Government (India) and citizen
(India) on 18/01/19?).

To accurately predict future facts, the model is required to dive
deeply into historical facts. At each timestamp, entities influence
each other via concurrent facts, which form a KG and exhibit com-
plex structural dependencies. As an example shown in Figure 1,
the concurrent facts on 18/01/18 demonstrates thatGovernment (In-
dia) is under pressure from many people, which may influence the
behaviors of Government (India) on 18/01/19. Besides, the behav-
iors of each entity embodied in temporally adjacent factsmay carry
informative sequential patterns. As shown in Figure 1, the his-
torical behaviors of N. Naidu reflect his preferences and affect his
future behaviors to a certain degree. The combination of these two
kinds of historical information drives the behavioral trends and
preferences of entities and relations.

Some earlier attempts, including Know-evolve [33] and its ex-
tension DyRep [34], learn evolutional entity representations by
modeling the occurrence of all facts in the history as a temporal
point process. However, they can not model concurrent facts at
the same timestamps. Some recent attempts extract related histor-
ical information for each query in a heuristic manner. Specifically,
RE-NET [16, 17] extracts those directly-engaged historical facts for
the given entity in each query of entity prediction and then en-
codes them sequentially. CyGNet [43] models the historical facts
with the same entity and relation to each query of entity predic-
tion, and thus mainly focuses on predicting facts with repetitive
patterns. As a TKG is actually a KG sequence, the existing meth-
ods have three main restrictions: (1) mainly focusing on the entity
and relation of a given query and neglecting the structural depen-
dencies among all the facts in the KG at each timestamp; (2) low
efficiency by encoding the history for each query individually; (3)
ignoring the function of some static properties of entities such as
entity types. Besides, the existingmethods only focus on entity pre-
diction, while relation prediction cannot be solved simultaneously
by the same model.

In this work, we treat TKG as a KG sequence and model the
whole KG sequence simultaneously to encode all historical facts
into entity and relation representations to facilitate both entity and
relation prediction tasks. Thus, we propose a novel GCN-based Re-
current Evolution network, namely RE-GCN, which learns the evo-
lutional representations of entities and relations at each timestamp
by modeling the KG sequence recurrently. Specifically, for each
evolution unit, a relation-aware GCN is leveraged to capture the
structural dependencies within the KG at each timestamp. In this
way, the interactions among all the facts in a KG can be effectively
modeled. The historical KG sequence is modeled auto-regressively
by the gate recurrent components to capture the sequential pat-
terns across all temporally adjacent facts efficiently. All the histor-
ical information of entities and relations in the TKG are encoded
in parallel. Moreover, the static properties of entities, such as en-
tity types, are also incorporated via a static-graph constraint com-
ponent to obtain better entity representations. Then, the tasks of
entity prediction and relation prediction at future timestamps can
be realized based on the evolutional representations.

In general, this paper makes the following contributions:
• We propose an evolutional representation learning model

RE-GCN for temporal reasoning over TKGs, which consid-
ers the structural dependencies among concurrent facts in a
KG, the sequential patterns across temporally adjacent facts,
and the static properties of entities. To the best of our knowl-
edge, this is the first study that integrates all of them into
the evolutional representations for temporal reasoning.

• By characterizing TKG from the view of a KG sequence,
RE-GCN efficiently models all the historical information in
the TKG into evolutional representations, which are appli-
cable for both entity and relation prediction simultaneously.
Therefore, it enables up to 82 times speedup compared to the
state-of-the-art baseline.

• Extensive experiments demonstrate that, by modeling the
historymore comprehensively, RE-GCN achieves consistently
and significantly better performance (up to 11.46% improve-
ment in MRR) over both entity and relation prediction tasks
on six commonly used benchmarks.

2 RELATEDWORKS
Static KG Reasoning. Existing models for static KG reasoning
attempt to infer missing facts in KGs. Recently, embedding based
models [2, 6, 30, 35, 41] have drawn much attention. As GCN [19]
is a representative model to combine content and structural fea-
tures in a graph, some studies have generalized it to relation-aware
GCNs so as to deal with KGs. Among them, R-GCN [28] extends
GCN with relation-specific filters, and WGCN [30] utilizes learn-
able relation-specific weights during aggregation. VR-GCN [42]
and CompGCN [36] jointly embeds both nodes and relations in
a relational graph during GCN aggregation. The above models are
all set in the static KG, and they cannot predict facts in the future.

Temporal KG Reasoning. Reasoning over TKG can be catego-
rized into two settings, interpolation and extrapolation [16]. For
the first setting, the models [4, 8–10, 13, 21, 27, 37, 38, 40] attempt
to infer missing facts at the historical timestamps. TA-DistMult [9],
TA-TransE [9] and TTransE [21] integrate the time when the facts
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Figure 2: An illustrative diagram of the proposed RE-GCN model for temporal reasoning at timestamp 𝑡 + 1.

Notations Descriptions
𝐺 ,𝐺𝑠 ,𝐺𝑡 TKG, static graph, KG at timestamp 𝑡 in the TKG
V , R, E𝑡 entity set, relation set, fact set (at 𝑡 ) in the TKG
V𝑠 , R𝑠 , E𝑠 entity set, relation set, edge set in the static graph
H𝑡 , R𝑡 embedding matrices of entities, relations at 𝑡
H, R, H𝑠 randomly initialized embedding matrices of entities

and relations, static embedding matrix of entities

Table 1: Important notations and their descriptions.
occurred into the embeddings of relations. HyTE [4] associates
each timestamp with a corresponding hyperplane. However, they
are not able to predict facts at future timestamps and can not di-
rectly compatible with the extrapolation setting.

The extrapolation setting, which this paper focuses on, attempts
to predict new facts at future timestamps based on historical ones.
Orthogonal to our work, some models [14, 33, 34] conduct the fu-
ture fact prediction by estimating the conditional probability via a
temporal point process. They are more capable of modeling TKGs
with continuous time, where no facts may occur at the same times-
tamp. Glean [5] incorporates aword graph constructed by the event
summary into the modeling of future fact prediction. However, not
all the events have the summary text in the practical application.
CyGNet [43] and RE-NET [16] are the most related works with
us. They attempt to solve the entity prediction task from the view
of each given query, which encodes the historical facts related to
the subject entity in each query. CyGNet uses a generate-copy net-
work to model the frequency of the historical facts with the same
subject entities and relations to the given queries (i.e., repetitive
patterns). RE-NET applies a GCN and GRU to model the sequence
of 1-hop subgraphs related to the given subject entity. They both
neglect the structural dependencies within KGs at different times-
tamps and the static properties of entities. Differently, RE-GCN
models the KG sequence as a whole, which considers all structural
dependencies and enables great improvement in efficiency.

3 PROBLEM FORMULATION
A TKG𝐺 can be formalized as a sequence of KGs with timestamps,
i.e., 𝐺 = {𝐺1,𝐺2, ...,𝐺𝑡 , ...}. Each KG, 𝐺𝑡 = (V,R, E𝑡 ), at times-
tamp 𝑡 is a directed multi-relational graph, where V is the set of

entities, R is the set of relations, and E𝑡 is the set of facts at times-
tamp 𝑡 (𝑡 is a discrete integer). Any fact in E𝑡 can be denoted as
a quadruple, (𝑠, 𝑟, 𝑜, 𝑡), where 𝑠, 𝑜 ∈ V and 𝑟 ∈ R. It represents a
fact of relation 𝑟 that occurs with 𝑠 as its subject entity and 𝑜 as
its object entity at timestamp 𝑡 . For each quadruple (𝑠, 𝑟, 𝑜, 𝑡), the
inverse quadruple (𝑜, 𝑟−1, 𝑠, 𝑡) is also appended to the dataset. The
static graph is denoted as 𝐺𝑠 = (V𝑠 ,R𝑠 , E𝑠 ), where V𝑠 , R𝑠 and
E𝑠 are the entity set, the relation set and the set of edges in the
static graph. The important mathematical notations are in Table 1.

The entity prediction task aims to predict the missing object en-
tity of a query (𝑠, 𝑟, ?, 𝑡+1) and themissing subject entity of a query
(?, 𝑟 , 𝑜, 𝑡 + 1). The relation prediction task attempts to predict the
missing relation of a query (𝑠, ?, 𝑜, 𝑡+1). Under the assumption that
the prediction of the facts at a future timestamp 𝑡 + 1 depends on
the KGs at the latest 𝑚 timestamps (i.e., {𝐺𝑡−𝑚+1, ...𝐺𝑡 }) and the
information of the historical KG sequence is modeled in the evo-
lutional embedding matrices of the entities H𝑡 ∈ R |V |×𝑑 and the
relations R𝑡 ∈ R |R |×𝑑 at timestamp 𝑡 (𝑑 is the dimension of the
embeddings), the two temporal reasoning tasks can be formulated
as follows:

Task 1. Entity Prediction.Given a query (𝑠, 𝑟, ?, 𝑡+1), RE-GCN
models the conditional probability vector of all object entities with
the subject entity 𝑠 , the relation 𝑟 and the historical KG sequence
𝐺𝑡−𝑚+1:𝑡 given:

®𝑝 (𝑜 |𝑠, 𝑟,𝐺𝑡−𝑚+1:𝑡 ) = ®𝑝 (𝑜 |𝑠, 𝑟,H𝑡 ,R𝑡 ). (1)
Task 2. Relation Prediction. Given a query (𝑠, ?, 𝑜, 𝑡 + 1), RE-

GCNmodels the conditional probability vector of all relations with
the subject entity 𝑠 , the object entity 𝑜 and the historical KG se-
quence 𝐺𝑡−𝑚+1:𝑡 given:

®𝑝 (𝑟 |𝑠, 𝑜,𝐺𝑡−𝑚+1:𝑡 ) = ®𝑝 (𝑟 |𝑠, 𝑜,H𝑡 ,R𝑡 ). (2)

4 THE RE-GCN MODEL
RE-GCN integrates the structural dependencies in a KG at each
timestamp, the informative sequential patterns across temporally
adjacent facts, and the static properties of entities into the evolu-
tional representations of entities and relations. Based on the learned
entity and relation representations, temporal reasoning at future
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timestamps can be made with various score functions. Thus RE-
GCN contains an evolution unit and multi-task score functions, as
illustrated in Figure 2. The former is employed to encode the his-
torical KG sequence and obtain the evolutional representations of
entities and relations. The latter contains score functions for cor-
responding tasks with the evolutional representations (i.e., embed-
dings) at the final timestamp as the input.

4.1 The Evolution Unit
The evolution unit consists of a relation-aware GCN, two gate re-
current components, and a static graph constraint component.The
relation-aware GCN attempts to capture the structural dependen-
cies within the KG at each timestamp.The two gate recurrent com-
ponentsmodel the historical KG sequence auto-regressively. Specif-
ically, a time gate recurrent component and a GRU component get
the evolutional representations of entities and relations at each
timestamp correspondingly.The static graph constraint component
integrates the static properties to the evolutional embeddings by
adding some constraints between static embeddings and evolutional
embeddings of entities. Formally, the evolution unit computes a
mapping from a sequence of KGs at the latest 𝑚 timestamps (i.e.,
{𝐺𝑡−𝑚+1, ...,𝐺𝑡 }) to a sequence of entity embedding matrices (i.e.,
{H𝑡−𝑚+1, ...H𝑡 }) and a sequence of relation embedding matrices
(i.e., {R𝑡−𝑚+1, ...,R𝑡 }) recurrently. Particularly, the input at the first
timestamp, including the entity embedding matrix H and the rela-
tion embedding matrix R, are randomly initialized.

4.1.1 StructuralDependencies amongConcurrent Facts. The
structural dependencies among concurrent facts capture the as-
sociations among the entities through facts and the associations
among relations through the shared entities. Since each KG is a
multi-relational graph and GCN is a powerful model for the graph-
structured data [28, 30, 36, 42], an 𝜔-layer relation-aware GCN is
used to model the structural dependencies. More specifically, for
a KG at timestamp 𝑡 , an object entity 𝑜 at layer 𝑙 ∈ [0, 𝜔 − 1]
gets information from its subject entities under a message-passing
framework with embeddings of the relations at layer 𝑙 considered
and obtains its embedding at the next 𝑙 + 1 layer, i.e.,

®ℎ𝑙+1𝑜,𝑡 = 𝑓
©« 1
𝑐𝑜

∑
(𝑠,𝑟 ),∃(𝑠,𝑟,𝑜) ∈E𝑡

W𝑙
1 ( ®ℎ

𝑙
𝑠,𝑡 + ®𝑟𝑡 ) +W𝑙

2
®ℎ𝑙𝑜,𝑡

ª®¬ , (3)

where ®ℎ𝑙𝑜,𝑡 , ®ℎ𝑙𝑠,𝑡 , ®𝑟𝑡 denote the 𝑙𝑡ℎ layer embeddings of entities 𝑜, 𝑠
and relation 𝑟 at timestamp 𝑡 , respectively;W𝑙

1,W
𝑙
2 are the param-

eters for aggregating features and self-loop in the 𝑙𝑡ℎ layer; ®ℎ𝑙𝑠,𝑡 +®𝑟𝑡
implies the translational property between the subject entity and
the corresponding object entity via the relation 𝑟 ; 𝑐𝑜 is a normaliza-
tion constant, equal to the in-degree of entity 𝑜 ; 𝑓 (·) is the RReLU
activation function [39]. Note that, for those entities that are not
involved in any fact, only a self-loop operation with the extra pa-
rameters W𝑙

3 is carried out. Actually, the relation-aware GCN gets
the entity embeddings according to the facts occurred among them
at each timestamp and the self-loop operation can be considered
as the self-evolution of the entities.

4.1.2 Sequential Patterns across TemporallyAdjacent Facts.
For an entity 𝑜 , the sequential patterns contained in its historical

facts reflect its behavioral trends and preferences. To cover the
historical facts as many as possible, the model needs to take all
its temporally adjacent facts into consideration. As the output of
the final layer of the relation-aware GCN, ®ℎ𝜔𝑜,𝑡−1, already models
the structure of the adjacent facts at timestamp 𝑡 − 1, one straight-
forward and effective approach to contain the information of the
temporally adjacent facts is to use the output entity embedding
matrix at 𝑡 − 1, H𝑡−1, as the input of the relation-aware GCN at
𝑡 , H0

𝑡 . Therefore, the potential sequential patterns are modeled by
stacking the 𝜔-layer relation-aware GCN. However, although the
adjacent KGs are different, the over-smoothing problem [19], i.e.,
the embeddings of entities converge to the same values, also exists
when the repetitive relations occur between the same entity pairs
at adjacent timestamps [43]. And when the historical KG sequence
gets longer, the large number of stacked layers of GCN may cause
the vanishing gradient problem. Thus, following [23], we apply a
time gate recurrent component to alleviate these problems. In this
way, the entity embedding matrix H𝑡 is determined by two parts,
namely, the outputH𝜔

𝑡 of the final layer of the relation-aware GCN
at timestamp 𝑡 and H𝑡−1 from the previous timestamp. Formally,

H𝑡 = U𝑡 ⊗ H𝜔
𝑡 + (1 − U𝑡 ) ⊗ H𝑡−1, (4)

where ⊗ denotes the dot product operation. The time gate U𝑡 ∈
R𝑑×𝑑 conducts nonlinear transformation as:

U𝑡 = 𝜎 (W4H𝑡−1 + b), (5)

where 𝜎 (·) is the sigmoid function and W4 ∈ R𝑑×𝑑 is the weight
matrix of the time gate. Besides, the sequential pattern of relations
captures the information of entities involved in the correspond-
ing facts. Thus, the embeddings of a relation ®𝑟𝑡 at timestamp 𝑡
are influenced by the evolutional embeddings of 𝑟 -related entities
V𝑟,𝑡 = {𝑖 | (𝑖, 𝑟 , 𝑜, 𝑡) 𝑜𝑟 (𝑠, 𝑟, 𝑖, 𝑡) ∈ E𝑡 } at timestamp 𝑡 and its own
embedding at timestamp 𝑡 − 1. Thus, a GRU component is adopted
to model the sequential pattern of relations.

By applyingmean pooling operation over the embeddingmatrix
of 𝑟 -related entities at timestamp 𝑡 − 1, H𝑡−1,V𝑟,𝑡

, the input of the
GRU at timestamp 𝑡 for relation 𝑟 , is

®𝑟 ′𝑡 = [𝑝𝑜𝑜𝑙𝑖𝑛𝑔(H𝑡−1,V𝑟,𝑡
); ®𝑟 ], (6)

where ®𝑟 is the embedding of relation 𝑟 in R and [; ] denotes the
vector concatenation operation. For the relation that does not have
corresponding facts occurred at timestamp 𝑡 , ®𝑟 ′𝑡 = ®0. Then we up-
date the relation embedding matrix R𝑡−1 to R𝑡 via the GRU,

R𝑡 = 𝐺𝑅𝑈 (R𝑡−1,R′
𝑡 ), (7)

where R′
𝑡 ∈ R |R |×𝑑 consists of ®𝑟 ′𝑡 of all the relations. Note that, the

L2-norm of each line of H𝑡 and R𝑡 is constrained to 1.

4.1.3 Static Properties. Besides the information contained in the
historical KG sequence, some static properties of entities, which
form a static graph, can be seen as the background knowledge
of the TKG and is helpful for the model to learn more accurate
evolutional representations of entities. Thus we incorporate the
static graph into the modeling of the evolutional representations.
We construct the static graphs of the three TKGs from ICEWS
based on the entity property information originally contained in
the name strings of entities. Most name strings of entities therein
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are in the form of ‘entity types (country)’. Take an entity named
‘Police (Australia)’ in ICEWS18 [17] for example, we add relation
‘isA’ from this entity to the property entity ‘Police’ and relation
‘country’ to the property entity ‘Australia’. The bottom left of fig-
ure 2 shows an example of a static graph. Since the static graph
is a multi-relational graph and R-GCN [28] can model the multi-
relational graph without any more extra embeddings for relations.
Thus, we adopt a 1-layer R-GCN [28] without self-loop to get the
static embeddings of entities in the TKG. Then, the update rule for
the static graph is defined as follows:

®ℎ𝑠𝑖 =Υ
©« 1𝑐𝑖

∑
(𝑟𝑠 , 𝑗),∃(𝑖,𝑟𝑠 , 𝑗)) ∈E𝑠

W𝑟𝑠 ®ℎ′𝑠𝑖 ( 𝑗)ª®¬ , (8)

where ®ℎ𝑠𝑖 and ®ℎ′𝑠𝑗 are the 𝑖𝑡ℎ and 𝑗𝑡ℎ lines of H𝑠 and H′𝑠 , which
are the output and randomly initialized input embedding matrices,
respectively; W𝑟𝑠 ∈ R𝑑×𝑑 is the relation matrix of 𝑟𝑠 in R-GCN;
Υ(·) is ReLU function; 𝑐𝑖 is a normalization constant equal to the
number of entities connected with entity 𝑖 . Note that, | | ®ℎ𝑠𝑖 | |2 = 1.

To reflect the static properties in the learned sequence of en-
tity embedding matricesH𝑡−𝑚 ,H𝑡−𝑚+1,…H𝑡 , we confine the angle
between the evolutional embedding and the static embedding of
the same entity not to exceed a timestamp-related threshold. It in-
creases over time since the permitted variable range of the evolu-
tional embeddings of entities continuously extends over time with
more and more facts occurring. Thus, it is defined as

𝜃𝑥 = min(𝛾𝑥, 90◦), (9)

where𝛾 denotes the ascending pace of the angle and 𝑥 ∈ [0, 1, ..,𝑚].
We set the max angle of the two embeddings of an entity to 90◦.

Then, the cosine value of the angle between the two embeddings
of entity 𝑖 , denoted as 𝑐𝑜𝑠 ( ®ℎ𝑠𝑖 , ®ℎ𝑡−𝑚+𝑥,𝑖 ), should be more than 𝑐𝑜𝑠𝜃𝑥 .

Thus, the loss of the static graph constraint component at times-
tamp 𝑡 can be defined as below:

𝐿𝑠𝑡𝑥 =
|V |−1∑
𝑖=0

max{𝑐𝑜𝑠𝜃𝑥 − 𝑐𝑜𝑠 ( ®ℎ𝑠𝑖 , ®ℎ𝑡−𝑚+𝑥,𝑖 ), 0}. (10)

The loss of the static graph constraint component is𝐿𝑠𝑡 =
∑𝑚
𝑥=0 𝐿

𝑠𝑡
𝑥 .

4.2 Score Functions for Different Tasks
Previous works [6, 30, 36] on KG reasoning involve score functions
(i.e., decoder) to model the conditional probability in Equation (1)
and (2), which can be seen as the probability score of candidate
triples (𝑠, 𝑟, 𝑜). As the previous work [36] shows that GCNwith the
convolutional score functions gets good performance on KG rea-
soning and in order to reflect the translational property of the evo-
lutional embeddings of entities and relations implied in Equation
(3), we choose ConvTransE [30] as our decoder. ConvTransE con-
tains a one-dimensional convolution layer and a fully connected
layer. We use ConvTransE (·) to represent these two layers. Then,
the probability vector of all entities is:

®𝑝 (𝑜 |𝑠, 𝑟,H𝑡 ,R𝑡 ) = 𝜎 (H𝑡ConvTransE(®𝑠𝑡 , ®𝑟𝑡 )) . (11)

Similarly, the probability vector of all the relations is:

®𝑝 (𝑟 |𝑠, 𝑜,H𝑡 ,R𝑡 ) = 𝜎 (R𝑡ConvTransE(®𝑠𝑡 , ®𝑜𝑡 )), (12)

where𝜎 (·) is the sigmoid function, ®𝑠𝑡 , ®𝑟𝑡 , ®𝑜𝑡 are the embeddings of s,
r and o inH𝑡 and Rt, respectively. ConvTransE(®𝑠𝑡 , ®𝑟𝑡 ),ConvTransE
(®𝑠𝑡 , ®𝑜𝑡 ) ∈ R𝑑×1. The details of ConvTransE are omitted for brevity.
Note that, ConvTransE can be replaced by other score functions.

4.3 Parameter Learning
Both the entity prediction task and the relation prediction task can
be seen as the multi-label learning problems. Let ®𝑦𝑒𝑡+1 ∈ R |V | and
®𝑦𝑟𝑡+1 ∈ R |R | denote the label vectors for the two tasks at the times-
tamp 𝑡 + 1, respectively. The elements of vectors ®𝑦𝑒𝑡+1 ∈ R |V | and
®𝑦𝑟𝑡+1 ∈ R |R | are 1 for facts that do occur, otherwise, 0. Then,

𝐿𝑒 =
𝑇−1∑
𝑡=0

∑
(𝑠,𝑟,𝑜,𝑡+1) ∈E𝑡+1

|V |−1∑
𝑖=0

𝑦𝑒𝑡+1,𝑖 log𝑝𝑖 (𝑜 |𝑠, 𝑟,H𝑡 ,R𝑡 ), (13)

𝐿𝑟 =
𝑇−1∑
𝑡=0

∑
(𝑠,𝑟,𝑜,𝑡+1) ∈E𝑡+1

|R |−1∑
𝑖=0

𝑦𝑟𝑡+1,𝑖 log 𝑝𝑖 (𝑟 |𝑠, 𝑜,H𝑡 ,R𝑡 ), (14)

where𝑇 is the number of timestamps in the training set,𝑦𝑒𝑡+1,𝑖 , 𝑦
𝑟
𝑡+1,𝑖

is the 𝑖𝑡ℎ element in ®𝑦𝑒𝑡+1, ®𝑦
𝑟
𝑡+1. 𝑝𝑖 (𝑜 |𝑠, 𝑟,H𝑡 ,R𝑡 ) and𝑝𝑖 (𝑟 |𝑠, 𝑜,H𝑡 ,R𝑡 )

are the probability score of entity 𝑖 and relation 𝑖 .
The two temporal reasoning tasks are conducted under themulti-

task learning framework.Therefore, the final loss 𝐿 = 𝜆1𝐿
𝑒 +𝜆2𝐿𝑟 +

𝐿𝑠𝑡 . 𝜆1 and 𝜆2 are the parameters that control the loss terms.

4.4 Computational Complexity Analysis.
To see the efficiency of the proposed RE-GCN, we analyze the com-
putational complexity of its evolution unit. The time complexity
of the relation-aware GCN at a timestamp 𝑡 is 𝑂 ( |E |𝜔), where
|E | is the maximum number of concurrent facts in the historical
KG sequence. The pooling operation to get the input of the GRU
component at every timestamp has the time complexity 𝑂 ( |R|𝐷),
where 𝐷 is the maximum number of entities involved in a relation
at timestamp 𝑡 and |R | is the size of relation set. The time complex-
ity to get the static embeddings is 𝑂 ( |E𝑠 |). As we unroll 𝑚 steps
for the GRU component and the relation-aware GCN, the time com-
plexity for the evolution unit is finally 𝑂 (𝑚( |E |𝜔 + |R|𝐷) + |E𝑠 |).

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. There are six typical TKGs commonly used in
previous works, namely, ICEWS18 [16], ICEWS14 [9], ICEWS05-
15 [9], WIKI [21], YAGO [24] and GDELT [22]. The first three ones
are from the Integrated Crisis Early Warning System [3] (ICEWS).
GDELT [16] is from the Global Database of Events, Language, and
Tone [22]. We evaluate RE-GCN on all these datasets. We divide
ICEWS14 and ICEWS05-15 into training, validation, and test sets,
with a proportion of 80%, 10% and 10% by timestamps following [16].
The details of the datasets are presented in Table 2. The time inter-
val represents time granularity between temporally adjacent facts.

5.1.2 EvaluationMetrics. In the experiments,𝑀𝑅𝑅 and𝐻𝑖𝑡𝑠@{
1, 3, 10} are employed as the metrics for entity prediction and rela-
tion prediction. For the entity prediction task on WIKI and YAGO,
we only report the𝑀𝑅𝑅 and 𝐻𝑖𝑡𝑠@3 results because the results of
𝐻𝑖𝑡𝑠@1 were not reported by the prior work RE-NET [16].
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Datasets |V| |R| |E𝑡𝑟𝑎𝑖𝑛 | |E𝑣𝑎𝑙𝑖𝑑 | |E𝑡𝑒𝑠𝑡 | |E𝑠 | |V𝑠 | Time interval
ICEWS18 23,033 256 373,018 45,995 49545 29,774 8,647 24 hours
ICEWS14 6,869 230 74,845 8,514 7,371 8,442 3,499 24 hours
ICEWS05-15 10,094 251 368,868 46,302 46,159 12,392 5,179 24 hours
WIKI 12,554 24 539,286 67,538 63,110 – – 1 year
YAGO 10,623 10 161,540 19,523 20,026 – – 1 year
GDELT 7,691 240 1,734,399 238,765 305,241 – – 15 mins

Table 2: Statistics of the datasets (|E𝑡𝑟𝑎𝑖𝑛 |, |E𝑣𝑎𝑙𝑖𝑑 |, |E𝑡𝑒𝑠𝑡 | are the numbers of facts in training, validation, and test sets.).

Asmentioned in [7, 14, 15], the filtered setting used in [2, 16, 43],
which removes all the valid facts that appear in the training, valida-
tion, or test sets from the ranking list of corrupted facts, is not suit-
able for temporal reasoning tasks. Take a typical query (𝑠, 𝑟, ?, 𝑡1)
with answer 𝑜1 in the test set for example, and assume there is an-
other fact (𝑠, 𝑟, 𝑜2, 𝑡2). Under this filtered setting, 𝑜2 will be wrongly
considered a correct answer and thus removed from the ranking
list of candidate answers. However, 𝑜2 is incorrect for the given
query, as (𝑠, 𝑟, 𝑜2) occurs at timestamp 𝑡2 instead of 𝑡1. Thus, the
filtered setting may probably get incorrect higher ranking scores.
Without loss of generality, only the experimental results under the
raw setting are reported.

5.1.3 Baselines. The RE-GCN model is compared with static KG
reasoning models and TKG reasoning models. DistMult [41], Com-
plEx [35], R-GCN [28], ConvE [6], ConvTransE [30], RotatE [32]
are selected as static models. HyTE [4], TTransE [21] and TA-Dist
Mult [9] are selected as the temporal models under the interpola-
tion setting. For temporal models under the extrapolation setting,
CyGNet [43] and RE-NET [16] are compared. For Know-evolve and
DyRep, RE-NET extends them to the temporal reasoning task but
does not release their codes. Thus, we only report the results in
their papers. Besides, GCRN [29] is the model for homogeneous
graphs and RE-NET extends it to R-GCRN by replacing GCN with
R-GCN.

5.1.4 Implementation Details. For the evolution unit, the em-
bedding dimension 𝑑 is set to 200; the number of layers 𝜔 of the
relation-awareGCN is set to 1 for YAGOand 2 for the other datasets;
the dropout rate is set to 0.2 for each layer of the relation-aware
GCN. We perform grid search on the length of the historical graph
sequence (1, 15) and the ascending pace of the angle 𝛾 (1◦-20◦) on
the validation sets. The optimal lengths of history𝑚 for ICEWS18,
ICEWS14, ICEWS05-15, WIKI, YAGO, and GDELT are 6, 3, 10, 2, 1,
1, respectively.𝛾 is experimentally set to 10◦. Adam [18] is adopted
for parameter learning with the learning rate of 0.001. As for the
R-GCN used in the static graph constraint component, we set the
block dimension to 2× 2 and the dropout rate for each layer to 0.2.
For ConvTransE, the number of kernels is set to 50, the kernel size
is set to 2 × 3 and the dropout rate is set to 0.2. For the joint learn-
ing of the entity prediction task and the relation prediction task, 𝜆1
and 𝜆2 are experimentally set to 0.7 and 0.3, respectively. The sta-
tistics of the static graphs are presented in Table 2. We only report
the results without the static graph constraint onWIKI, YAGO and
GDELT because the static information is missing in these datasets.
To conduct themulti-step inference [16], which seeks to predict the
facts at different timestamps in the validation set and the test set

based on the observations in the training set, we evaluate the per-
formance of RE-GCN with the evolutional embeddings at the final
timestamp of the training set as the input of score functions fol-
lowing [43]. Besides, we also report the results of the models with
ground truth history given during multi-step inference on the test
set, namely, w. GT. All experiments are carried out on Tesla V100.
Codes are available at https://github.com/Lee-zix/RE-GCN.

5.2 Experimental Results
5.2.1 Results on Entity Prediction. The experimental results
on the entity prediction task are presented in Tables 3 and 4. RE-
GCN consistently outperforms the baselines on the three ICEWS
datasets, WIKI and YAGO.The results convincingly verify its effec-
tiveness. Specifically, RE-GCN significantly outperforms the static
models (i.e., those in the first blocks of Tables 3 and 4) because
RE-GCN considers the sequential patterns across timestamps. RE-
GCN performs better than the temporal models for the interpo-
lation setting (i.e., those in the second blocks of Tables 3 and 4)
because RE-GCN additionally captures temporally sequential pat-
terns and static properties of entities. It can thus obtain more ac-
curate evolutional representations for the unobserved timestamps.
Especially, RE-GCN outperforms the temporal models for the ex-
trapolation setting (i.e., those in the third blocks of Tables 3 and 4).
It outperforms RGCRN because the newly designed graph convo-
lution operation and the two recurrent components in the evolu-
tion unit learn better evolutional embeddings and the static graph
helps learn better evolutional embeddings of entities. CyGNet and
RE-NET’s good performance verify the importance of the repet-
itive patterns and 1-hop neighbors to the entity prediction task.
Despite this, it is not surprising that RE-GCN performs better than
CyGNet because there is much useful information except the repet-
itive patterns in the history. RE-GCN also performs better than
RE-NET, which neglects the structural dependencies within a KG
and the static properties of entities. By capturing more compre-
hensive structural dependencies and sequential patterns, RE-GCN
outperforms RE-NET on most datasets. From the last two lines in
Tables 3 and 4, it can be observed that the performance gap be-
tween the last two lines becomes large when the time interval be-
tween two adjacent timestamps of the datasets becomes large. For
the two datasets, WIKI and YAGO, with the time interval as one
year, the model’s performance drops rapidly without knowing the
ground truth history. This is because the evolutional representa-
tions become inaccurate when the time interval is large during the
multi-step inference.

Note that RE-GCN even achieves the improvements of 8.97/11.46
% in MRR, 10.60/12.91% in Hits@3 and 12.61/14.01% in Hits@10
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Model ICE18 ICE14 ICE05-15
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DistMult 13.86 5.61 15.22 31.26 20.32 6.13 27.59 46.61 19.91 5.63 27.22 47.33
ComplEx 15.45 8.04 17.19 30.73 22.61 9.88 28.93 47.57 20.26 6.66 26.43 47.31
R-GCN 15.05 8.13 16.49 29.00 28.03 19.42 31.95 44.83 27.13 18.83 30.41 43.16
ConvE 22.81 13.63 25.83 41.43 30.30 21.30 34.42 47.89 31.40 21.56 35.70 50.96
ConvTransE 23.22 14.26 26.13 41.34 31.50 22.46 34.98 50.03 30.28 20.79 33.80 49.95
RotatE 14.53 6.47 15.78 31.86 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92
HyTE 7.41 3.10 7.33 16.01 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72
TTransE 8.44 1.85 8.95 22.38 12.86 3.14 15.72 33.65 16.53 5.51 20.77 39.26
TA-DistMult 16.42 8.60 18.13 32.51 26.22 16.83 29.72 45.23 27.51 17.57 31.46 47.32
RGCRN 23.46 14.24 26.62 41.96 33.31 24.08 36.55 51.54 35.93 26.23 40.02 54.63
CyGNet 24.98 15.54 28.58 43.54 34.68 25.35 38.88 53.16 35.46 25.44 40.20 54.47
RE-NET 26.17 16.43 29.89 44.37 35.77 25.99 40.10 54.87 36.86 26.24 41.85 57.60
RE-GCN 27.51 17.82 31.17 46.55 37.78 27.17 42.50 58.84 38.27 27.43 43.06 59.93

RE-GCN w. GT 30.55 20.00 34.73 51.46 41.50 30.86 46.60 62.47 46.41 35.17 52.76 67.64
Table 3: Performance (in percentage) for the entity prediction task on ICEWS18, ICESW14 and ICEWS05-15 with raw metrics.

Model WIKI YAGO GDELT
MRR H@3 H@10 MRR H@3 H@10 MRR H@1 H@3 H@10

DistMult 27.96 32.45 39.51 44.05 49.70 59.94 8.61 3.91 8.27 17.04
ComplEx 27.69 31.99 38.61 44.09 49.57 59.64 9.84 5.17 9.58 18.23
R-GCN 13.96 15.75 22.05 20.25 24.01 37.30 12.17 7.40 12.37 20.63
ConvE 26.03 30.51 39.18 41.22 47.03 59.90 18.37 11.29 19.36 32.13
ConvTransE 30.89 34.30 41.45 46.67 52,22 62,52 19.07 11.85 20.32 33.14
RotatE 26.08 31.63 38.51 42.08 46.77 59.39 3.62 0.52 2.26 8.37
HyTE 25.40 29.16 37.54 14.42 39.73 46.98 6.69 0.01 7.57 19.06
TTransE 20.66 23.88 33.04 26.10 36.28 47.73 5.53 0.46 4.97 15.37
TA-DistMult 26.44 31.36 38.97 44.98 50.64 61.11 10.34 4.44 10.44 21.63
RGCRN 28.68 31.44 38.58 43.71 48.53 56.98 18.63 11.53 19.80 32.42
CyGNet 30.77 33.83 41.19 46.72 52.48 61.52 18.05 11.13 19.11 31.50
RE-NET 30.87 33.55 41.27 46.81 52.71 61.93 19.60 12.03 20.56 33.89
RE-GCN 39.84 44.43 53.88 58.27 65.62 75.94 19.15 11.92 20.40 33.19
RE-GCN w. GT 51.53 58.29 69.53 63.07 71.17 82.07 19.31 11.99 20.61 33.59

Table 4: Performance (in percentage) for the entity prediction task on WIKI, YAGO and GDELT with raw metrics.

Model ICE18 ICE14 ICE05-15 WIKI YAGO GDELT
ConvE 37.73 38.80 37.89 78.23 91.33 18.84
ConvTransE 38.00 38.40 38.26 86.64 90.98 18.97
RGCRN 37.14 38.04 38.37 88.88 90.18 18.58
RE-GCN 39.48 39.73 38.56 95.63 95.18 19.17

RE-GCN w.GT 40.53 41.06 40.63 97.92 97.74 19.22
Table 5: Performance on the relation prediction task.

over the best baseline on WIKI and YAGO. For the two datasets,
there are more structural dependencies at each timestamp because
the time interval is much large than the other datasets. Therefore,
only modeling repetitive patterns or one-hop neighbors will lose
a lot of structural dependencies and sequential patterns. The re-
sults demonstrate that RE-GCN is more capable of modeling these

datasets containing complex structural dependencies among con-
current facts.

The experimental results of static models and temporal models
are similarly poor on GDELT, as compared with those of the other
five datasets. We further analyze the GDELT dataset and find that
many of its entities are abstract concepts that do not indicate spe-
cific entities (e.g., POLICE and GOVERNMENT). Among the top 50
frequent entities, 28 are abstract concepts and 43.72% correspond-
ing facts involve abstract concepts. Those abstract concepts make
the temporal reasoning for some entities under the raw setting al-
most impossible, since we cannot predict a government’s activities
without knowing which country it belongs to. Thus, all the models
can only predict partial facts in the GDELT dataset and get similar
results. Besides, the noise produced by the abstract concepts influ-
ences the evolutional representations of other entities as RE-GCN
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Model ICE18 ICE14 ICE05-15 WIKI YAGO GDELT
RE-GCN w. GT 30.55 41.50 46.41 51.53 63.07 19.31
RE-NET w. GT 27.87 39.13 42.92 32.44 48.60 21.29
-EE w. GT 23.22 31.50 30.28 30.89 46.67 19.07
+FCN w. GT 29.32 40.34 45.89 46.00 58.96 19.02
-st w. GT 29.10 39.48 44.68 – – –
-tg w. GT 24.51 34.85 37.65 51.70 62.23 18.55

Table 6: Ablation studies on entity prediction.

models the KG sequence as a whole, which makes the results of
RE-GCN a little worse than RE-NET.

5.2.2 Results on Relation Prediction. Since some models are
not designed for the relation prediction task and for space limita-
tion, we select the typical ones from the baselines and present the
experimental results in terms of only MRR in Table 5. In more de-
tail, we select ConvE [6], ConvTransE [30] from the static models,
as well as RGCRN [29] from the temporal models. RE-NET and
CyGNet are not adopted, as they cannot be applied to the relation
prediction task directly. It can observe that RE-GCN performs bet-
ter than all the baselines. The outperformance of RE-GCN demon-
strates that our evolution unit can obtain more accurate evolu-
tional representations by modeling the history comprehensively.

The performance gap between RE-GCN and other baselines on
the relation prediction task is smaller than the entity prediction
task. It is because the number of relations is much less than the
number of entities. Fewer candidates make the relation prediction
task much easier than the entity prediction task. The performance
onWIKI and YAGO is much better than the other datasets because
the numbers of relations in the two datasets are only 24 and 10,
respectively. The results on the GDELT dataset for the static mod-
els and the temporal models are also similarly poor, which verifies
our observations mentioned in Section 5.2.1 again.

5.3 Comparison on Prediction Time
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Figure 3: Runtime (seconds) comparison to RE-NET.

To investigate the efficiency of RE-GCN, we compare RE-GCN
to RE-NET in terms of runtime for entity prediction on the test
set under the same environment. For a fair comparison, the two
models conduct entity prediction with the ground truth history
given. From the results in Fig 3, it can be seen that RE-GCN ismuch
faster than RE-NET by 66, 36, 17, 82, 82, 22 times on ICE18, ICE14,
ICE05-15, WIKI, YAGO, and GDELT, respectively. It is because RE-
NET processes individual queries one by one for each timestamp,
while RE-GCN characterizes the evolutional representation learn-
ing from the view of KG sequence and obtains the representations
for all the queries at the same timestamp simultaneously. There-
fore, RE-GCN is more efficient than the best baseline, RE-NET.

Model ICE18 ICE14 ICE05-15 WIKI YAGO GDELT
RE-GCN w. GT 40.53 41.06 40.63 97.92 97.74 19.22
RGCRN w. GT 38.07 38.28 39.33 90.12 91.27 18.73
-EE w. GT 38.00 38.40 38.26 86.64 90.98 18.97
+FCN w. GT 39.63 40.23 40.55 97.23 93.66 19.03
-st w. GT 39.23 40.00 40.38 – – –
-tg w. GT 37.47 38.14 37.62 97.56 93.86 18.94

Table 7: Ablation studies on relation prediction.

5.4 Ablation Studies
To eliminate the bias between training and testing on the results,
we conduct all ablation studies with ground truth history given on
the test sets. To further show the effectiveness of each part of RE-
GCN, we also report the results of RE-NET w. GT in Table 6 and
the results of RGCRN w. GT in Table 7.

5.4.1 Impact of the Evolution Unit. To demonstrate how the
evolution unit contributes to the final results of RE-GCN, we con-
duct experiments of only using the ConvTransE score function
with the randomly initialized learnable embeddings. The results
denoted as -EE w. GT, are demonstrated in Tables 6 and 7. It can
be observed that removing the evolution unit has a great impact
on the results for all the datasets except GDELT, suggesting that
modeling the historical information is vital for all the datasets. For
GDELT, only using the ConvTransE can get good results. It also
matches our observations mentioned in Section 5.2.1.

To further verify the effectiveness of our evolution unit under
different score functions, we replace the ConvTransE in RE-GCN
with a simple one layer Fully Connected Network (FCN), denoted
as +FCN w. GT. The experimental results are presented in Tables 6
and 7. It can be observed that the results are worse than RE-GCNw.
GT on most datasets. It matches the observation in [42], the convo-
lutional score functions are more suitable for the GCN. However,
even with a simple score function, +FCN w. GT still shows strong
performance on both entity and relation predictions.

5.4.2 Impact of the StaticGraphConstraintComponent. The
results denoted as –st w. GT in Tables 6 and 7 demonstrate the
performance of RE-GCN without the static graph constraint com-
ponent. It can be seen that –st w. GT performs consistently worse
than RE-GCN w. GT in ICEWS datasets, which justifies the neces-
sity of the static graph constraint component to the RE-GCNmodel.
The static information can be seen as the background knowledge
of the TKG. The entity type and location information in the static
graph enriches the evolutional representations of entities and helps
obtain better initial evolutional representations of entities. Note
that, even without the static information, –st w. GT still outper-
forms the state-of-art RE-NET w. GT and RGCRN w. GT.

5.4.3 Impact of the TimeGate Recurrent Component. –tg w.
GT in Tables 6 and 7 denote the variants of RE-GCN directly using
the evolutional representations at the last timestamp as the input
of the evolution unit at the current timestamp without the time
gate. The performance of –tg w. GT decreases rapidly when the
historical KG sequence gets longer, as compared to RE-GCNw. GT,
which sufficiently indicates the necessity of the time gate recurrent
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History at 𝑡 − 2 History at 𝑡 − 1 Query at 𝑡 Answer
New Zealand,
Host a visit, FIJI

New Zealand,
Criticize, Japan

New Zealand,
Diplomatic cooperation, ? FIJI

Citizen,
Conduct bombing, Government

Government,
Make statement, Defense ministry
Defense Ministry,
Make Statement, Police

Defense ministry,
Make request, ? Citizen

Protester,
Demonstrate, Defense ministry

Defense ministry,
Endorse, Police Protester, ?, Police Protest violently

Table 8: Case study. The first two lines are two cases for entity prediction and the last line is a case for relation prediction.

Tasks Entity Prediction Relation Prediction

Subsets seen unseen seen unseen
a b c d e a b c d e a b c d e a b c d e

% 0 1.8 3.9 13.8 21.0 19.8 7.6 9.1 9.8 13.2 0 22.3 6.0 5.2 1.0 37.3 8.7 11.4 5.2 1.0
H@3 0 78.6 78.4 71.6 53.3 35.2 33.2 28.8 21.4 6.9 0 76.1 68.8 51.1 29.0 48.6 42.2 37.0 33.5 30.6
Table 9: Hits@3 on different subsets from the validation set of ICEWS18. The % row shows the proportion of each subset.

component. Actually, the time gate recurrent component helps RE-
GCN capture the sequence patterns by a deep-stacked GCN, which
usually faces the over-smoothing and vanishing gradient problems
when the number of layers becomes large.

5.5 Case Study
In order to show the structural dependencies among concurrent
facts and the sequential patterns across temporally adjacent facts
learned by RE-GCN, we illustrate in Table 9 three cases from the
test set of ICEWS18 where RE-GCN ranks the right answers at the
top. The first case shows the sequential pattern that (A, host a visit,
B, t-2) can lead to (A, diplomatic cooperation, B, t). The second case
shows that the sequential pattern (A, Conduct bombing, B, t-2), (B,
Make statement, C, t-1) and structural dependencies of C at times-
tamp 𝑡 −1 joint lead to the final result. The third case illustrates the
sequential pattern (A, Demonstrate, B, t-2), (B, Endorse, C, t-1) helps
the relation prediction (A, ?, C, t). By modeling the KG sequence as
a whole, RE-GCN does not omit useful information in the history.

5.6 Detailed Analysis
In order to get insight into the performance of RE-GCN on differ-
ent kinds of data, we conduct a detailed analysis on the validation
set of ICEWS18. For entity prediction, we split the validation set ac-
cording to the number of the one-hop neighbors of a given entity (0
(a), 1 (b), 2-3 (c), 4-10 (d), >10 (e)) andwhether the answer entity has
direct interactions with the given entity (i.e., seen and unseen) at
the latest𝑚 (𝑚=6) timestamps. For relation prediction, we split the
validation set according to the number of relations between two
given entities (0 (a), 1 (b), 2-3 (c), 4-10 (d), >10 (e)) and whether the
answer relation occurred between the given entities at the latest𝑚
timestamps. (i.e., seen and unseen). Table 9 shows the results of RE-
GCN with Hits@3 on each subset. For entity prediction, it can be
observed that the performance decreases when the number of the
neighbors gets large and RE-GCN gets better results in the subset

where the two entities have seen each other in the history. Inter-
estingly, RE-GCN can even conduct predictions where the subject
entities have no history. A possible reason is that the static graph
and the shared initial evolutional representations already provide
some background knowledge and information out of the historical
KG sequence. For relation prediction, it can be seen that the per-
formance decreases when the number of relations is large. Table 9
also demonstrates the repetitive facts account for a certain propor-
tion in the dataset, which further proves the necessity of the time
gate recurrent component in RE-GCN.

6 CONCLUSIONS
This paper proposed RE-GCN for temporal knowledge graph rea-
soning, which learns evolutional representations of entities and
relations by capturing the structural dependencies among concur-
rent facts and the informative sequential patterns across tempo-
rally adjacent facts. Moreover, it incorporates the static properties
of entities such as entity types into the evolutional representations.
Thus, temporal reasoning is conducted with various score func-
tions based on the evolutional representations at the final times-
tamps. Experimental results on six benchmarks demonstrate the
significant merits and superiority of RE-GCN on two temporal rea-
soning tasks. Moreover, by modeling the KG sequence as a whole,
RE-GCN enables 17 to 82 times speedup in entity prediction com-
paring to RE-NET, the state-of-the-art baseline.
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