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Abstract
Entity representation plays a central role in build-
ing effective entity retrieval models. Recent works
propose to learn entity representations based on
entity-centric contexts, which achieve SOTA per-
formances on many tasks. However, these meth-
ods lead to poor representations for unseen enti-
ties since they rely on a multitude of occurrences
for each entity to enable accurate representations.
To address this issue, we propose to learn en-
hanced descriptional representations for unseen en-
tities by distilling knowledge from distributional
semantics into descriptional embeddings. Specif-
ically, we infer enhanced embeddings for unseen
entities based on descriptions by aligning the de-
scriptional embedding space to the distributional
embedding space with different granularities, i.e.,
element-level, batch-level and space-level align-
ment. Experimental results on four benchmark
datasets show that our approach improves the per-
formance over all baseline methods. In particular,
our approach can achieve the effectiveness of the
teacher model on almost all entities, and maintain
such high performance on unseen entities.

1 Introduction
Entity retrieval, which aims to efficiently filter a small num-
ber of candidate entities from a large knowledge base (KB)
for a given mention, is a fundamental task for various nat-
ural language processing tasks, such as fact extraction and
verification [Nooralahzadeh and Øvrelid, 2018]. Recently,
embedding-based retrieval methods have achieved great suc-
cess in entity retrieval due to their effectiveness in captur-
ing the semantics [Wu et al., 2020b; Gillick et al., 2019;
Botha et al., 2020]. In essence, these embedding-based meth-
ods represent entities and mentions with standalone encoders,
in which entity embeddings can be pre-computed and stored
offline for efficient retrieval.

A common paradigm for learning entity representations
is to take attributes of each entity as input to the encoder,

since these attributes consist of concise descriptions with
rich semantic information. For example, [Wu et al., 2020b]
purposes a BERT-based two-tower model to encode men-
tions and entity descriptions, and retrieves entities by nearest-
neighbor search. We denote these methods as descriptional
representation methods. On the other hand, many recent stud-
ies propose to learn entity representations based on contexts
around its mentions, which is grounded on the distributional
hypothesis [Harris, 1954; Firth, 1957]. For example, LUKE
[Yamada et al., 2020] takes anchor-texts in Wikipedia as men-
tions to learn entity embedding, then the embedding can be
used in downstream tasks. We denote these methods as dis-
tributional representation methods. Distributional represen-
tation methods have achieved SOTA performances on several
benchmark datasets. This is not surprising since distributional
entity embeddings are more consistent with mention embed-
dings, making them clearly easier to match.

While distributional representation methods achieve better
results than descriptional representation methods, the effec-
tiveness of these methods highly relies on large amounts of
occurrences for each entity. However, there are often lots of
newly emerging entities, such as events and products, which
are introduced continually along with the dynamic of KBs.
For example, “COVID-19” is a new entity, which does not
appear in the training corpus. These new entities often appear
with only short descriptions accompanied with them, which
we refer to as unseen entities. As a result, distributional rep-
resentation methods cannot provide reliable representations
for these unseen entities since there are no contexts for them
in the training corpus.

In this paper, we aim to learn enhanced descriptional rep-
resentations for unseen entities with inferred distributional
semantics by employing a distillation framework. More
precisely, we propose to leverage the distillation model to
bridge the distributional embedding space and the descrip-
tional embedding space, where the context-based encoder and
the description-based encoder are considered as the teacher
and the student, respectively. With the distillation model,
we can transfer knowledge from the distributional embed-
ding space (teacher) to the descriptional embedding space
(student), and obtain the enhanced descriptional representa-



Figure 1: An illustration of our MGAD framework. The solid lines represent semantic bridges on frequent entities, and the dashed line
represents inferring the enhanced descriptional embedding of an unseen entity.

tions for unseen entities. To this end, we propose a novel
distillation model referred as Multi-Granularity Alignments
based Distillation (MGAD) model. Specifically, we first em-
bed entity description into a vector space and then align the
embedded entity from this space to a distributional semantic
space. The distillation is implemented with four loss func-
tions. Besides a retrieval loss, we propose three alignment
losses with different granularities, i.e., element-level, batch-
level and space-level alignment loss. Experiments on four en-
tity linking datasets show that MGAD performs competitively
to the teacher model, and outperforms all other baselines. 1

2 Related Works
In this section, we briefly review studies related to our work,
including entity retrieval models, unseen entity representation
learning, and lexical semantics alignment.

Entity Retrieval. Most entity retrieval systems con-
sist of two stages, i.e., the candidate generation stage and
the candidate ranking stage, to balance the efficiency and ef-
fectiveness [Wu et al., 2020b; Ganea and Hofmann, 2017;
Onoe et al., 2021]. The candidate generation stage is to
efficiently filter a small number of candidate entities from
a large-scale KB, while the candidate ranking stage (also
known as the disambiguation stage) chooses the most proba-
ble entity for each mention among the found candidates. In
this paper, we focus on the candidate generation stage.

Researchers proposed different models for entity retrieval
in the candidate generation stage. Traditional methods rely
on heuristic functions [Le and Titov, 2019; Wu et al., 2020b;
Yamada and Shindo, 2019], such as BM25 [Logeswaran et
al., 2019] or alias table [Ganea and Hofmann, 2017] to build
the model. Recently, neural models achieved great success in
entity retrieval [Gillick et al., 2019; Botha et al., 2020; Wu et
al., 2020a]. Existing neural models can be categorized into
two classes, namely discriminative retrieval models and gen-
erative retrieval models. The former represents mentions and
entities with dense vectors, and takes either simple interac-
tion functions to evaluate their similarity [Gillick et al., 2019;
Botha et al., 2020]. Example models like LUKE [Yamada
et al., 2020] and BLINK [Wu et al., 2020b] take BERT or

1Our data, code and models are available at https://github.com/
dalek-who/MGAD-entity-linking

RoBERTa to encode contexts and descriptions to obtain entity
embeddings, respectively. On the other hand, the latter re-
trieves entities by exploiting sequence-to-sequence architec-
ture to generate entity names. For example, GENRE [Cao et
al., 2021] takes a transformer architecture with a pre-trained
language modeling objective to generate entity names.

Unseen Entity Problem. It is a unique problem for distri-
butional representation methods in learning embeddings for
unseen entities since they rely on contexts to learn the em-
bedding. Instead, descriptional representation methods, e.g.,
BLINK [Wu et al., 2020b] and GENRE [Cao et al., 2021],
are able to learn representations for unseen entities since they
only rely on entity descriptions and titles. However, our ex-
periments show that descriptional representation methods are
less effective than distributional representation methods on
seen entities. There are also some methods that employ ex-
ternal resources to learn embeddings for unseen entities. For
example, DEEP-ED [Ganea and Hofmann, 2017] and CDTE
[Gupta et al., 2017] learn embeddings from entity descrip-
tions or types. ET4EL [Onoe et al., 2021] matches fine-
grained entity types without the need for entity embeddings.
There are two tasks that are similar but different from our set-
ting. The first is zero-shot entity linking [Logeswaran et al.,
2019] which focuses on generalization on unseen domains.
The second is unseen-mention entity linking [Onoe et al.,
2021] which focuses on generalization on unseen mentions.

Lexical Semantics Alignment. Aligning embeddings
from two different semantic spaces has been well studied in
word representation learning [Wang et al., 2021; Zock and
Schwab, 2008]. Researchers have proposed different models
to learn word representations from descriptions, definitions,
or contexts. For example, [Hill et al., 2016] encodes word
definitions to fit the pretrained distributional word embedding
by LSTM or Bag-of-Words model. [Bosc and Vincent, 2018]
proposes to learn word embeddings based on dictionary def-
initions by reconstructing the word as well as the definition.
[Bevilacqua et al., 2020] decodes a word with surrounding
contexts into its definition by BART. Inspired by these stud-
ies, we try to address the distributional representation learn-
ing for unseen entities based on embedding alignment.

https://github.com/dalek-who/MGAD-entity-linking
https://github.com/dalek-who/MGAD-entity-linking


3 Our Approach
In this section, we will introduce our approach in learn-
ing enhanced descriptional representations for unseen enti-
ties by transferring knowledge from the distributional seman-
tics based on the distillation framework. Specifically, our
work is inspired by [Prokhorov et al., 2019], which em-
ploys canonical correlation analysis to align two embedding
spaces, to learn semantic representations for unseen words.
In this work, we borrow the idea of space alignment to learn
embeddings for unseen entities. Instead of learning a lin-
ear mapping matrix, we propose a novel multi-granularity
alignments-based distillation method to learn enhanced de-
scriptional embedding for unseen entities. The overall frame-
work is shown in Figure 1.

Formally, given a real-world knowledge base KB (e.g.
Wikipedia), let Eall be the entity collection of KB. Each en-
tity e is accompanied with a name namee and a description
desce. Eall can be further divided into to two sub-collections
of seen and unseen entities, namely Eseen and Eunseen . A
seen entity (e ∈ Eseen ) has contexts in KB besides its de-
scription, yet an unseen entity (e ∈ Eunseen ) has only de-
scription without contexts.

3.1 Entity Embedding

In this subsection, we will introduce two different embedding
methods to learn entity representations, namely description-
based and context-based entity embedding.

Description-based Embedding. The description-based
embedding method takes only the entity description as input
to learn entity embedding. In this work, we follow BLINK
[Wu et al., 2020b] to take the pre-trained language model as
the entity encoder. Specifically, for any entity e ∈ Eall with
namee and description desce, the input Ie for entity encoder
is constructed as:

Ie = [CLS] namee [SEP] desce [SEP]. (1)
Then the descriptional entity embedding ve is computed with:

ve = AveragePool(Ence(Ie)), (2)
where Ence(·) is a RoBERTa-like entity encoder.

Context-based Embedding. The context-based embed-
ding methods learn distributional representations from entity-
centric contexts for each entity. The state-of-the-art context-
based embedding method is LUKE [Yamada et al., 2020],
which simultaneously learns contextualized representations
of words and entities based on Transformer. In LUKE, for
(and only for) any e ∈ Eseen , each entity embedding ue is
randomly initialized and pre-trained with multitude of entity-
centric contexts. This pre-training task is a variant of masked
language model (MLM) task, where the model is trained to
predict randomly masked entities in a context. In this work,
we take LUKE as the teacher to guide our model to learn dis-
tributional representations for unseen entities.

The descriptional and distributional embedding spaces will
be aligned by knowledge distillation, which will be intro-
duced in Section 3.3. Before that, in the next section, we first
introduce how mentions and entities are matched in retrieval.

3.2 Mention-entity Matching
In this subsection, we will introduce the mention encoder
in LUKE and MGAD, and then introduce how to score a
mention-entity pair (m, e).

Mention Encoder. Here, we directly employ the mention
encoder architecture of LUKE since we focus on the entity
representation learning in this work. The mention encoder
is a variant of RoBERTa and can encode several mentions
simultaneously. Let Im be the input of n mentions with sur-
rounding contexts:
Im = [CLS] c m1 c · · · mn c [SEP] [M]1 · · · [M]n, (3)

where c is a non-mention word span, [M] is a special entity-
mask token and [M]i corresponds to the word span of the i-th
mention mi by position embeddings. Then mention embed-
dings {vm1 , ...,vmn} are computed with:

{vm1
, · · · ,vmn

} = Encm(Im) [M]1···[M]n , (4)
where Encm(·) denotes the mention encoder, and
{vm1

, ...,vmn
} are the embeddings of [M]1 · · · [M]n in

the last self-attention layer. It is worthy to note that this
mention encoder benefits from long-distance contextual
information and achieves SOTA performance on many
entity-related tasks [Yamada et al., 2020].

Scoring Function. Given a mention-entity pair (m, e),
ue ∈ RH denotes the entity embedding in LUKE, where H
is the entity embedding size. ve ∈ RD denotes the descrip-
tional entity embedding in MGAD, and vm ∈ RD denotes
the mention embedding in both model, where D is the shared
hidden size of Ence(·) and Encm(·) in Eq. (2) and (4). In
MGAD, the matching score s(m, e)MGAD between a mention-
entity pair is calculated by the dot-product similarity v⊤

m ·ve.
In LUKE, due to the dimension miss-matching between vm

and ue, a transformation ϕ is firstly applied on vm:
ϕ(vm) = W2 · LayerNorm (GELU(W1 · vm + b)) , (5)

where ϕ(vm) ∈ RH . W1 ∈ RD×D, b ∈ RD and W2 ∈
RH×D are learnable parameters. Then the matching score
s(m, e)LUKE can be calculated with dot-product ϕ(vm)⊤ ·ue.

With the pre-computed and stored entity embeddings, give
a mention embedding vm, both models can retrieve candidate
entities by nearest-neighbor search.

3.3 Loss Function
Our distillation-based embedding alignment is implemented
with four loss functions. Since we focus on entity retrieval,
a retrieval loss Lre is necessary. Furthermore, there are
three alignment losses with different alignment granularities,
namely element-level alignment loss Lea, batch-level align-
ment loss Lba and space-level alignment loss Lsa. The final
loss L of our distillation-based alignment is the weighted sum
of the four losses:
L = α1 · Lre + α2 · Lea + α3 · Lba + α4 · Lsa , (6)

where αi(i = 1, · · · , 4) are hyper-parameters.

Retrieval Loss. Retrieval loss Lre is for retrieval target
itself. Following [Gillick et al., 2019], we use in-batch ran-
dom negatives to sample positive and negative (m, e) pairs:



Figure 2: An illustration of three losses Lea ,Lba and Lsa. □ de-
notes a descriptional entity embedding, ⃝ denotes a distributional
entity embedding, △ denotes a mention embedding.

for each training batch, there are n randomly sampled men-
tions and their corresponding n entities (namely gold enti-
ties), and for each mention m, we construct one positive pair
(m, e) with its gold entity e and n − 1 negative pairs (m, e)
with the other entities e, which can be represented by an one-
hot label vector lbatch ∈ {0, 1}n. For mention m, let τ ∈ R be
the temperature and sbatch

m ∈ Rn be the scores over n entities,
the score distribution στ (sbatch

m ) for m over n entities can be
defined as follows:

στ (s
batch

m,i ) =
exp(sbatch

m,i /τ)∑
j exp(s

batch
m,j )

. (7)

Let sbatch
MGAD,m ∈ Rn be the score of mention m over n in-batch

entities from MGAD and στ (sbatch
MGAD,m) ∈ Rn be the score

distribution, then Lre can be defined with CrossEntropy:
Lre = CrossEntropy(lbatch , στ (s

batch

MGAD,m)). (8)

Element-level Alignment Loss. As shown in Figure 2(a),
element-level alignment loss Lea is an “one-to-one” align-
ment, where the descriptional embedding ve should be simi-
lar to the corresponding distributional embedding ue. In prac-
tice, because of the dimension miss-matching between ve and
ue, a transformation function ψ(·) is first applied on ve where
ψ(ve),ue ∈ RH . This is a usual solution for dimension miss-
matching in feature-based knowledge distillation [Gou et al.,
2020]. Lea can be defined with the MSE loss:

Lea = ∥ue − ψ(ve)∥2 . (9)

Batch-level Alignment Loss. As shown in Figure 2(b),
batch-level alignment loss Lba is an “one-to-batch” align-
ment, where the matching distribution of a mention over in-
batch entities from the student is required to be similar to the
teacher. Lba can be defined with KL-Divergence [Wu et al.,
2020b]:
Lba = KL-Divergence

(
στ

(
sbatch

LUKE,m

)
, στ

(
sbatch

MGAD,m

))
, (10)

where στ converts matching scores into probability distribu-
tions, sbatch

LUKE,m and sbatch
MGAD,m denote the matching scores of

mention m from LUKE and MGAD. στ (sbatch
MGAD,m) ∈ Rn is

the target distribution in KL-Divergence.

Space-level Alignment Loss. As shown in Figure 2(c),
space-level alignment loss Lsa is an “one-to-all” alignment.
In other words, one descriptional embedding ve should be
able to select its corresponding ue from the entire distribu-
tional embedding space Sdist. Essentially, it can be seen as
a “generation” task with vocab Eseen , whose label lvocab ∈
{0, 1}|Eseen | is a one-hot vector. For ve, Let svocab

gen,e ∈ R|Eseen |

be the “generation scores” over Eseen , στ (svocab
gen,e) ∈ R|Eseen |

be the score distribution, svocab
gen,e can be defined with dot-

product score:

svocab

gen,e =
(
ψ (ve)

⊤ · uei

)
i∈{1,··· ,|Eseen |}

(11)

Then Lsa can be defined with CrossEntropy:
Lsa = CrossEntropy(lvocab, στ (s

vocab

gen,e)). (12)

4 Experiment
In this section, we conduct experiments to demonstrate the
effectiveness of our proposed model on benchmark datasets.

4.1 Experiment Setup
We first introduce our experiment settings, including datasets,
entity collections, baseline methods, training details, and
evaluation metrics.

Datasets. To evaluate the performance of our model, we
choose four widely used entity linking datasets: AIDA [Hof-
fart et al., 2011], ACE [Ratinov et al., 2011] , AQUAINT
[Milne and Witten, 2008] and MSNBC [Cucerzan, 2007]. All
documents in these datasets are manually annotated news ar-
ticles. The collection of all gold entities in four datasets is
denoted as Egold .

Entity Collections. As denoted in Section 3, following
LUKE [Yamada et al., 2020], Eseen is the collection of the
most popular 500K entites in Wikipedia, whose distributional
embeddings are pretrained by LUKE. Furthermore, Eunseen

is the collection of all e ∈ Egold − Eseen and 500K+ addi-
tional random entities. Eall = Eseen∪Eunseen . Entity names
and descriptions come from the Wikipedia dump cleaned by
[Wu et al., 2020b].

Baseline Methods. We compare with five baselines:

• Alias: prior alias table is a heuristic method, in which
candidate entities are retrieved by exactly alias matching
and sorted by prior probability P (e|m). We directly take
the implementation of REL [van Hulst et al., 2020].

• BM25: we follow [Wu et al., 2020b] to compare with
BM25 where entities are indexed by titles.

• GENRE [Cao et al., 2021]: a BART-based state-of-the-
art generative model for entity retrieval.

• BLINK [Wu et al., 2020b]: a BERT-based two-tower
retrieval model which learns description-based embed-
dings for entities.

• LUKE [Yamada et al., 2020]: a variant RoBERTa-based
distributional two-tower model, which is our distillation
teacher. Note that all experimental results of LUKE with
Eunseen are empty because of the lack of distributional
embeddings for Eunseen .

Training Details. Knowledge distillation aims to learn
entity embeddings. Following [Yamada and Shindo, 2019],
for further improving the matching ability, we infer the en-
tity embeddings of Eseen , and finetune the mention encoder
of MGAD on AIDA-train with entity embeddings fixed. For
a fair comparison, other models are also finetuned in this
way. Parameters are shared between Ence(·) in Eq. (2) and
Encm(·) in Eq. (4). The initial parameters for Ence(·) and



Entity Seen Entities Unseen Entities
Model LU (teacher) AL BM GE BL MG LU (teacher) AL BM GE BL MG

micro MRR 94.92 73.99- 48.11- 84.72- 91.69- 94.64 - 87.41- 82.03- 87.41- 94.19 95.51
R@1 91.44 62.91- 40.39- 82.10- 87.81- 91.50 - 84.22- 77.12- 85.80- 90.93 92.70
R@10 99.34+ 90.18- 60.17- 88.75- 98.05- 99.01 - 93.89- 90.73- 90.34- 99.01 99.61
R@30 99.57 95.71- 68.72- 89.87- 98.86- 99.75 - 96.45- 93.69- 92.31- 99.80 99.80

macro MRR 96.47+ 77.21- 49.50- 88.51- 93.37- 95.43 - 84.53- 77.04- 83.94- 90.69 92.52
R@1 93.85+ 66.75- 41.94- 85.88- 89.96- 92.74 - 80.82- 70.59- 81.49- 86.30 88.48
R@10 99.65+ 91.83- 60.50- 92.28- 98.56 99.13 - 91.99- 88.11- 88.88- 97.43 98.80
R@30 99.78 96.32- 67.35- 93.06- 99.20- 99.84 - 96.24 92.42- 90.82- 98.91 98.91

Table 1: Performance on the in-domain test set AIDA-testB. AL, BM, GE, BL, MG, LU are the abbreviations for Alias, BM25, GENRE,
BLINK, MGAD, LUKE. Bold marks the best performance. Significant improvement or degradation with respect to MGAD is indicated (+/-)
(p-value ≤ 0.05).

Dataset ACE MSNBC AQUAINT
Model AL BM GE BL MG AL BM GE BL MG AL BM GE BL MG

MRR 82.4- 59.9- 85.9- 88.4- 92.9 80.5- 52.2- 91.0- 92.4- 94.2 87.4 63.3- 89.2 88.6 89.0
R@1 78.9- 53.7- 84.3 84.7 88.8 72.7- 45.3- 88.5 88.7 90.9 82.5 57.4- 86.8 83.1 84.0
R@10 87.2- 72.7- 88.4- 95.0 97.9 92.4- 66.7- 94.7- 98.1 98.4 93.8- 73.5- 93.0- 96.7 97.0
R@30 88.4- 76.9- 90.5- 97.1 98.3 95.3- 73.5- 95.6- 98.7 98.9 94.5- 77.8- 94.8- 98.5 98.5

Table 2: Micro-averaged performance on out-of-domain test sets ACE / MSNBC / AQUAINT and entity collection Eall . Significant improve-
ment or degradation with respect to MGAD is indicated (+/-) (p-value ≤ 0.05).

Encm(·) comes from a LUKE checkpoint, which is pre-
trained on Wikipedia but not finetuned on AIDA-train. ψ in
Eq. (9) and (12) are the same with ϕ in Eq. (5). The best
weights of four losses are α1 = 0.338, α2 = 0.002, α3 =
0.33, α4 = 0.33, where the sum of weights equals to 1. α2 is
much smaller since the value of Lea is 102 times greater than
others. Temperature τ = 1 in Eq. (8) and (12), and τ = 2
in Eq. (10). The optimizer is Adam [Kingma and Ba, 2015]
with learning rate 2 × 10−5 and weight decay 0.01, linear-
warmup learning rate scheduler with first 10% warmup steps.
All models are trained to convergence with their best context
lengths shown in Section 4.4.

Evaluation Metrics. We follow [Wu et al., 2020b] to
report R@K (recall at K) where K=1, 10, 30. Moreover,
we take MRR as an additional evaluation metric to evaluate
the ranking performance. Since one document often contains
multiple mentions, each metric is averaged in two strategies:
1) macro average for each document, and 2) micro average for
each mention. We perform significant tests using the paired t-
test. Differences are considered statistically significant when
the p-value is lower than 0.05.

4.2 Overall Results
In this section, we compare MGAD against all baselines over
seen entities and unseen entities separately. The main result
of our experiments on the in-domain test set AIDA-testB are
summarized in Table 1.

Firstly, we can see that the simple Alias model is a strong
baseline that performs better than BM25. Recall that the Alias
model works only on prepared alias names, which are often
hard to obtain for unseen entities. Moreover, we find that neu-
ral methods (GENRE, BLINK, MGAD, and LUKE) gener-
ally perform better than heuristic methods (Alias and BM25)
on top-ranked results (i.e., MRR and R@1), which indicates

that entity retrieval can benefit from the semantic modeling
ability of neural methods.

Secondly, we observe that LUKE performs consistently
better than BLINK on all seen entities, which demonstrates
the effectiveness of distributional representations over de-
scriptional representations for seen entities. However, LUKE
relies on large amounts of contexts to learn entity embed-
dings, making it unable to infer unseen entity embeddings.

Finally, we can see that our model MGAD achieves bet-
ter performance than BLINK on almost all metrics over seen
entities as well as unseen entities. Compared with LUKE,
MGAD also obtains comparable performance on seen enti-
ties. Moreover, we can see that the relative improvement
of MGAD over BLINK is greater in MRR and R@1 than in
R@10 and R@30 on unseen entities, which shows the ability
of MGAD to rank entities in top positions. All these results
demonstrate that MGAD can learn better representations for
entities on both seen entities and unseen entities.

4.3 Generalization Analysis
We further analyze the generalization ability of our model on
1) out-of-domain datasets and 2) entities with different fre-
quencies. LUKE is excluded in the following experiments
because of the lack of Eunseen embeddings.

Generalization On Out-of-domain Datasets. To ana-
lyze the generalization ability on out-of-domain datasets, we
directly test MGAD on three benchmark datasets, i.e., ACE,
MSNBC, and AQUAINT, without further finetuning. Results
on these datasets are shown in Table 2. We can observe that:
1) the Alias model performs very well, which is consistently
better than BM25. Moreover, it obtains relatively compara-
ble performances to neural retrieval models, e.g., GENRE
and BLINK. 2) Comparing GENRE and BLINK, we find
that BLINK performs significantly better than GENRE when



Figure 3: Micro-R@1 with different entity frequencies on dataset
AIDA-testB.

training and testing on AIDA dataset. While on three out-
of-domain test sets, the performance of BLINK drops sig-
nificantly on ACE and AQUAINT, yet the performance of
GENRE only drops slightly on ACE but improves signifi-
cantly on MSNBC and AQUAINT. This demonstrates the ro-
bustness of the generative retrieval model. 3) On ACE and
MSNBC, MGAD performs best among all baseline methods
on all evaluation metrics. On AQUAINT, we observe that
GENRE obtains good performance, this may be that entity
names in AQUAINT are often copies or synonyms of men-
tions where GENRE can benefit from this bias.

Generalization On Entities With Different Frequencies.
To further study the effectiveness of MGAD, we conduct ex-
periments on AIDA to compare the performances on entities
with different frequencies. Specifically, We split mentions
into five bins according to the frequencies (on Wikipedia)
of gold entities. Results are shown in Figure 3. We find
some interesting trends where all three models perform rel-
atively better on entities with much higher frequencies (e.g.,
frequency large than 104) or unseen entities. This is due to the
fact that models can learn better representations for frequent
entities. For those unseen entities, they are often distinct and
show less ambiguity as they appear less frequent. This tells
us that we should pay more attention to those entities with
intermediate-frequency since they show the most ambiguity.
Moreover, we can see that MGAD is consistently better than
GENRE and BLINK on entities with different frequencies,
this demonstrates the effectiveness of MGAD.

4.4 Ablation Study
To further analyze the impact of 1) four losses in distillation,
and 2) context lengths in different mention encoders, we con-
duct ablation studies on AIDA dataset.

Loss Function. To study the impact of different loss
functions, we drop one loss from L each time to see how
the performance varies. All results are summarized in Table
3. Firstly, for seen entities, we can see that drop Lre impacts
slightly but drop Lea and Lsa would significantly reduce the
performance. Moreover, the performance reduces the most
while dropping Lsa , which demonstrates the importance of
the space-level alignment loss. Secondly, for unseen entities,
we observe that the removal of each loss would reduce the
performance significantly, and the impact of Lba is the great-

L w/o Lre w/o Lea w/o Lba w/o Lsa

seen 94.1 94.0 92.0 94.7 91.1
unseen 95.5 93.7 93.7 93.1 94.8

overall 94.3 94.0 92.2 94.5 91.5

Table 3: Micro-MRR of our model with the removal of each loss on
dataset AIDA-testB and entity collection Eall .

Figure 4: Micro-R@10 with different context lengths on dataset
AIDA-testB and entity collection Eall .

est (although excluding Lba slightly benefits seen entities).
The different effects of Lba on seen and unseen entities in-
dicates that it prevents overfitting on seen entities. That is
because that Lba aligns ve and ue through a mention, this in-
direct alignment can filter some unnecessary features. In con-
trast, Lea and Lsa directly align ve and ue, which is easy to
be impacted by the noise in seen entities. Finally, although the
overall performance with four losses is slightly poorer than
excluding Lba , we still keep all losses in our model since we
pay specific attention to unseen entities in this work.

Context Length. Since our model relies on mention
contexts to learn embeddings for seen entities as the bridge
between distributional embedding and descriptional embed-
ding, we further study how the context length affects retrieval
performances. To analyze the impact, we finetune mention
encoders for GENRE, BLINK and MGAD with different con-
text lengths. As shown in Figure 4, we can observe that with
the context growing longer, MGAD and GENRE perform bet-
ter, but BLINK performs worse. This indicates that the men-
tion encoders of MGAD and GENRE can benefit from cap-
turing long-distance contextual information, but that the men-
tion encoder of BLINK lacks such ability and will be noised
on the contrary. However, the worst performance of BLINK
is still better than GENRE, which is another evidence of the
effectiveness of two-tower models.

5 Conclusions and Future Work
In this paper, we present a novel knowledge distillation
framework to align descriptional entity embedding space with
distributional entity embedding space, and take it to infer en-
hanced embeddings for unseen entities based only on descrip-
tions. The experiments on four entity retrieval benchmarks
demonstrate that our model can learn effective representa-
tions for unseen entities. For future work, we would like to
analyze and address the ambiguity of intermediate-frequent
entities in both entity retrieval and re-ranking stages.
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