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ABSTRACT
Pre-training and fine-tuning have achieved significant advances in
the information retrieval (IR). A typical approach is to fine-tune all
the parameters of large-scale pre-trained models (PTMs) on down-
stream tasks. As the model size and the number of tasks increase
greatly, such approach becomes less feasible and prohibitively ex-
pensive. Recently, a variety of parameter-efficient tuning methods
have been proposed in natural language processing (NLP) that only
fine-tune a small number of parameters while still attaining strong
performance. Yet there has been little effort to explore parameter-
efficient tuning for IR.

In this work, we first conduct a comprehensive study of existing
parameter-efficient tuning methods at both the retrieval and re-
ranking stages. Unlike the promising results in NLP, we find that
these methods cannot achieve comparable performance to full fine-
tuning at both stages when updating less than 1% of the original
model parameters. More importantly, we find that the existing
methods are just parameter-efficient, but not learning-efficient as
they suffer from unstable training and slow convergence. To analyze
the underlying reason, we conduct a theoretical analysis and show
that the separation of the inserted trainable modules makes the
optimization difficult. To alleviate this issue, we propose to inject
additional modules alongside the pre-trained models (PTMs) to
make the original scattered modules connected. In this way, all the
trainable modules can form a pathway to smooth the loss surface
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and thus help stabilize the training process. Experiments at both
retrieval and re-ranking stages show that our method outperforms
existing parameter-efficient methods significantly, and achieves
comparable or even better performance over full fine-tuning.
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1 INTRODUCTION
“Pre-training and fine-tuning” has became the prevalent paradigm
in the natural language processing (NLP) [1, 31]. The success of
Transformer-based pre-trained models (PTMs) in the NLP has also
attracted attention in the information retrieval (IR) community [6,
19]. Many researchers have applied the popular PTMs, e.g., BERT
[4] and RoBERTa [21], into the multi-stage search pipeline [28, 35],
including the first-stage retrieval and the re-ranking stage. The
first-stage retrieval aims to return a subset of candidate documents
efficiently, and the re-ranking stage attempts to re-rank those can-
didates accurately. Studies have shown that leveraging the existing
PTMs can benefit both the retrieval and re-ranking stages signifi-
cantly [14, 15, 28, 38].

Themainstream approach to adapt large-scale PTMs to the down-
stream tasks is via full fine-tuning, which updates all the parameters
of the PTMs. Though effective, this fine-tuning approach has draw-
backs on its parameter efficiency. Firstly, every downstream task
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needs a separate copy of fine-tuned model parameters, containing
as many parameters as in the original PTMs. This is prohibitively
expensive when serving models that perform a wide range of tasks.
Secondly, larger models are usually trained every few months with
the ever increasing size ranging frommillions [4] to hundreds of bil-
lions [5] or even trillions of trainable parameters [7]. As the model
size and the number of tasks grow, re-training all model parameters
becomes less feasible and raises critical deployment challenges.

To alleviate this issue, a surge of development of parameter-
efficient tuning methods have been proposed in NLP, which update
only a small number of extra parameters while keeping the original
PTMs parameters frozen [8, 11, 12, 18, 33, 37]. The representative
methods include addition-based such as Adapter [11] and prefix-
tuning [18], specification-based such as Bitfit [37], and low-rank
adaption like LoRA [12]. Most of these methods are injected to the
PTMs in an inside manner where the extra tunable modules are
scattered in the sub-layers of the Transformer. In essence, the inside
modules have a big impact to the final output due to their interaction
with the original PTMs. These methods have been reported to
achieve comparable performance over full fine-tuning on NLP tasks,
with only updating less than 1% of the original parameters.

Yet there has been little effort to adopt parameter-efficient tuning
to the IR scenario. The most related work in this direction focused
on the re-ranking stage [13], where prefix-tuning and LoRA are deli-
cately leveraged. Their experimental results demonstrate that these
two methods generally perform on par with or even outperform
the full fine-tuning by tuning less than 1% of the original model
parameters. However, the retrieval stage remains less well studied.
Besides, the proposed mechanism is designed for the bi-encoder
and unsuitable for the cross-encoder, resulting in the limitation of
its flexibility. In addition, their experimental results are on small
test sets, which may not be representative enough.

In this work, we first conduct a comprehensive study of several
representative parameter-efficient tuning methods for both the
retrieval and re-ranking stage. The first research question is: can
existing methods perform as well in IR as in NLP? The results show
that: (1) These methods lag behind full fine-tuning on both stages by
tuning less than 1% of orignal parameters, which is different from
the findings observed from the small IR datasets [13]. (2) Existing
parameter-efficient tuning methods suffer from unstable training
and slow convergence. That is, these methods are just parameter-
efficient, but not learning-efficient.

This phenomenon raises the second research question: why the
standard setup of parameter-efficient tuning methods falls short
in IR? To analyze the underlying reason, we conduct a theoretical
analysis and find the potential reason is that the separation of
the inserted trainable modules results in a discrepancy between
the ideal optimization direction and the actual update direction.
Specifically, the computation of the optimization direction depends
on the parameters of the whole model (including the PTMs and
injected modules), while the actual gradient update only performs
on the injected modules. Such discrepancy makes the optimization
difficult, which may hurt the performance.

The above analysis leads to the third research question: can we
design a parameter-efficient tuning approach to stabilize the train-
ing process? Inspired by the skip connection [9] in deep learning,
we propose to insert extra modules in an aside manner beyond

the inside manner. The key idea is that extra modules injected
alongside the PTMs could make the original scattered modules
connected. In this way, all the trainable modules can form a path-
way to smooth the loss surface and thus help stabilize the training
process. In this work, we carefully design three insertion ways of
the aside module. By combing the inside and aside modules, our
method can well inherit their advantages, i.e., smoothed loss of the
aside modules and big impact of the inside modules. Note that our
method can combine most of the parameter-efficient methods and
is able to serve both the retrieval and re-ranking stage, and both
cross-encoder and bi-encoder. Experiments at both retrieval and
re-ranking stages show that our method is significantly better than
existing parameter-efficient tuning methods. With tuning less than
1% of the original parameters, our method can achieve comparable
performance over full fine-tuning. With tuning 6.7% of the original
parameters, our method is able to outperform the full fine-tuning
on most tasks.

2 PRELIMINARY
In this section, we give a brief description of the ranking problem in
IR, the Transformer architecture, as well as several representative
parameter-efficient tuning methods.

2.1 Problem Statement
To balance the search efficiency and effectiveness, modern search
systems typically employ a multi-stage ranking pipeline in practice,
including the first-stage retrieval stage and the re-ranking stage [6].

2.1.1 Dense Retrieval. For the retrieval stage, the model needs to
recall a small set of documents from a large-scale corpus efficiently.
Dense retrieval models usually employ a representation-based ar-
chitecture (i.e., bi-encoder) to encode queries and documents into
low-dimensional representations independently [14, 22]. Simple
similarity functions like dot-product are adopted to compute the
relevance score with the dense representations.

Without the loss of generality, the retrieval function with the
representation-based architecture can be formulated as follows:

𝑟𝑒𝑙 (𝑞, 𝑑) = 𝑓 (𝜙
𝑃𝑇𝑀

(𝑞), 𝜑
𝑃𝑇𝑀

(𝑑)), (1)

where 𝜙
𝑃𝑇𝑀

and 𝜑
𝑃𝑇𝑀

are query and document encoders, and 𝑓 is
the similarity function.

2.1.2 Re-ranking. At the re-ranking stage, the interaction-focused
model is widely adopted to produce more accurate ranking list
[23, 24, 26]. The relevance score is usually computed by a feed-
forward neural network at the top of PTMs where queries and
documents are concatenated together as the input to the model.

Without loss of generality, the re-ranking function with the
interaction-based architecture could be abstracted as:

𝑟𝑒𝑙 (𝑞, 𝑑) = 𝑓 (𝜂
𝑃𝑇𝑀

(𝑞, 𝑑)) (2)

where 𝜂
𝑃𝑇𝑀

is the interaction function based on PTM𝑠 , and 𝑓 is the
scoring function based on the interaction features. Even though the
representation-based models can also be applied to the re-ranking
stage, studies have shown that they are less effective than the
interaction-based models [25, 30].
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Figure 1: Illustration of a Transformer layer and several rep-
resentative parameter-efficient tuning methods. Note that
MAM Adapter uses a parallel adapter on FFN sub-layer and
prefix-tuning on self-attention sub-layer.

2.2 Transformer
Transformer is the dominant model architecture for PTMs. Specifi-
cally, a Transformer layer [34] contains a self-attention sub-layer,
a feed-forward neural network sub-layer, and residual connection
followed by layer normalization.

2.2.1 Self-Attention. The input hidden states are firstly transformed
to three vectors, i.e., queries, keys, and values,𝑚 times indepen-
dently where𝑚 is the number of heads. Then a dot-product function
is applied on queries and keys to compute attention weights for
each head, and then a weighted sum operation is performed on
the values. Given the hidden state ℎ ∈ R𝑛×𝑑 , the 𝑖-th attention is
computed as:

Attention𝑖 (h) =
∑︁
𝑚

softmax(
𝑊

𝑞

𝑖
h ·𝑊 𝑘

𝑖
h√︁

𝑑/𝑚
)𝑊 𝑣

𝑖 h, (3)

where𝑊 𝑞

𝑖
,𝑊 𝑘

𝑖
,𝑊 𝑣

𝑖
∈ R𝑑/𝑚×𝑚 are the learned transformation ma-

trices for queries, keys and values.
Finally, the output of the multi-head attention is computed as a

concatenation of the output vectors of all the heads
MH(h) = Concat(Attention1 (h), . . . ,Attention𝑛 (h))𝑊 𝑜 , (4)

where𝑊 𝑜 ∈ R𝑑×𝑑 is the projection matrix.

2.2.2 Feed-forward Neural Network. The feed-forward network is
a position-wise fully connected feed-forward network (FFN), which
is applied to each position separately and identically,

𝐹𝐹𝑁 (h) = 𝑅𝑒𝐿𝑈 (h𝑊1 + 𝑏1)𝑊2 + 𝑏2 (5)

where𝑊1 ∈ R𝑑×4𝑑 ,𝑊2 ∈ R4𝑑×𝑑 , 𝑏1, and 𝑏2 are learned bias terms.
Each of the two sub-layers, i.e., the self-attention sub-layer and

the FFN sub-layer, employ a residual connection followed by layer
normalization (RCLN) to compute the final output

𝑅𝐶𝐿𝑁 (ℎ) = LayerNorm(SubLayer(h) + h), (6)

Method Insertion position Number of parameters

Bitfit - 11 × 𝑑

Prefix-tuning attn 2 × 𝑙 × 𝑑

Adapter attn/ffn 4 × 𝑟 × 𝑑

MAM Adapter attn/ffn 2 × 𝑟 × 𝑑 + 2 × 𝑙 × 𝑑

LoRA attn 4 × 𝑟 × 𝑑

Table 1: Number of parameters used at each layer for different
methods. Note that for Bitfit, there are 8 bias terms in each
transformer layer and 1 bias term in embedding layer.

where LayerNorm(·) is layer normalization and SubLayer repre-
sentations Eq. (4) and Eq. (5).

2.3 Parameter-efficient Tuning Methods
We introduce five representative parameter-efficient tuning meth-
ods as illustrated in Figure 1. These methods can be categorized
to three groups, i.e., Addition-based, Specification-based and Low-
rank adaption.

2.3.1 Addition-based. Addition-based methods introduce extra pa-
rameters by inserting small neural modules such as Adapter [11], or
trainable tokens such as prefix-tuning [18]. Only these additional
parameters are tuned while the original parameters of PTMs are
kept frozen. Besides adapter and prefix-tuning, we also consider the
recently proposed Mix-And-Match Adapter (MAM Adapter) [8].
• Prefix-tuning extends the prompt-tuning [16] by prepending𝑚
trainable prefix (token) vectors to the keys and values of the self-
attention at every layer. In detail, two sets of newly initialized
prefix vectors 𝑃𝑘

𝑖
, 𝑃𝑣

𝑖
∈ R𝑙×𝑑 are concatenated with the original

key vector and value vector in the self-attention:
𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃𝑘𝑖 ,𝑊

𝑘
𝑖 h), 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑃

𝑣
𝑖 ,𝑊

𝑣
𝑖 h) . (7)

• Adapter injects two small modules after the self-attention sub-
layer and the FFN sub-layer sequentially. The adapter module
consists of a down-projection, an up-projection and a nonlinear
function between them.

𝐴𝑑𝑎𝑝𝑡𝑒𝑟 (h) = h + 𝑓 (h𝑊𝑑𝑜𝑤𝑛)𝑊𝑢𝑝 , (8)

where h is the output from a sub-layer,𝑊𝑑𝑜𝑤𝑛 ∈ R𝑑×𝑟 ,𝑊𝑢𝑝 ∈
R𝑟×𝑑 , and 𝑓 is ReLU.

• MAM Adapter adds prefix-tuning in the self-attention (i.e., Eq. 7)
and inserts a parallel adapter module at the FFN side:

ℎ = 𝐴𝑑𝑎𝑝𝑡𝑒𝑟 (h) + 𝐹𝐹𝑁 (h) (9)

2.3.2 Specification-based. Specification-based methods only tune
certain parameters in the original model.
• Bitfit [37] is a very simple method that only trains the bias vectors
of the original PTMs and keeps the rest frozen.

2.3.3 Low-rank adaptation. This type of method hypothesizes that
the change of weights during model optimizing has a low intrinsic
rank. Thus, learning a low-rank decomposition matrix for a frozen
pre-trained weight matrix can approximate its weight updates, i.e.,
a fine-tuned pre-trained weight matrix.
• LoRA trains rank decomposition matrices, which is a down-
project and a up-projection, for the dense layer to approximate
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Table 2: Comparison between full fine-tuning and various parameter-efficient tuning methods using bi-encoder architecture at
the retrieval stage. Best results are marked bold. Note that adding 6.7% params (𝑙 = 400) for prefix-tuning increases excessive
computational cost to document-based tasks which is unacceptable, we thus only experiment with adding 3.6% params.

Method #Params MARCO Passage TREC2019 Passage MARCO Doc TREC2019 Doc
MRR@10 R@1000 nDCG@10 R@100 MRR@100 R@100 nDCG@10 R@100

Full fine-tuning 100% 0.316 0.949 0.600 0.715 0.312 0.801 0.462 0.409
Bitfit 0.09% 0.262 0.921 0.562 0.677 0.264 0.785 0.437 0.345
Prefix-tuning 0.5% (l=32) 0.294 0.939 0.596 0.692 0.266 0.782 0.423 0.326
Adapter 0.5% (r=16) 0.304 0.941 0.606 0.696 0.255 0.770 0.418 0.370
MAM Adapter 0.5% (r=16,l=16) 0.304 0.944 0.609 0.712 0.280 0.799 0.458 0.381
LoRA 0.5% (r=16) 0.302 0.943 0.608 0.707 0.271 0.794 0.417 0.376
Prefix-tuning 3.6% (l=200) 0.304 0.943 0.580 0.702 0.265 0.775 0.395 0.376
Adapter 6.7% (r=200) 0.316 0.946 0.587 0.687 0.270 0.785 0.433 0.400
MAM Adapter 6.7% (r=200,l=200) 0.314 0.947 0.616 0.720 0.283 0.792 0.438 0.402
LoRA 6.7% (r=200) 0.316 0.946 0.597 0.715 0.279 0.794 0.417 0.379

Table 3: Comparison between full fine-tuning and various parameter-efficient tuning methods using cross-encoder architecture
at the re-ranking stage. Best results are marked bold.

Method #Params MARCO Passage TREC2019 Passage MARCO Doc TREC2019 Doc
MRR@10 MRR@100 nDCG@10 nDCG100 MRR@10 MRR@100 nDCG@10 nDCG@100

Full fine-tuning 100% 0.376 0.383 0.738 0.637 0.404 0.408 0.657 0.536
Bitfit 0.09% 0.325 0.334 0.562 0.483 0.364 0.357 0.630 0.531
Prefix-tuning 0.5% (l=32) 0.355 0.363 0.705 0.626 0.387 0.381 0.640 0.530
Adapter 0.5% (r=16) 0.366 0.371 0.714 0.626 0.397 0.392 0.653 0.534
MAM Adapter 0.5% (r=16,l=16) 0.365 0.373 0.717 0.629 0.390 0.395 0.632 0.531
LoRA 0.5% (r=16) 0.363 0.372 0.720 0.635 0.386 0.392 0.637 0.529
Prefix-tuning 3.6% (l=200) 0.363 0.371 0.722 0.632 0.384 0.389 0.640 0.532
Adapter 6.7% (r=200) 0.373 0.381 0.735 0.637 0.402 0.407 0.631 0.528
MAM Adapter 6.7% (r=200,l=200) 0.369 0.380 0.731 0.633 0.397 0.402 0.630 0.528
LoRA 6.7% (r=200) 0.370 0.378 0.730 0.631 0.401 0.396 0.647 0.530

the weight updates. Specifically, LoRA adds the low-rank matri-
ces to the query and value projection matrices (𝑊 𝑞,𝑊 𝑣 ) in the
self-attention. Taking𝑊 𝑞 as an exmaple:

h = h ·𝑊 𝑞 + Δ𝑊 = h ·𝑊 𝑞 + 𝑠 · h ·𝑊𝑑𝑜𝑤𝑛𝑊𝑢𝑝 , (10)

where 𝑠 is a tunable scalar hyperparameter,𝑊𝑑𝑜𝑤𝑛 ∈ R𝑑×𝑟 , and
𝑊𝑢𝑝 ∈ R𝑟×𝑑 .

We also present the number of parameters used by these methods
in Table 1. Based on this, we can change the number of tunable
prefixes 𝑙 or the hidden size 𝑟 of the inserted module to control the
total number of tunable parameters for fair comparisons.

3 A COMPREHENSIVE STUDY
In this section, we conduct a comprehensive study of the above
introduced parameter-efficient tuning methods at both the retrieval
and re-ranking stages. We first analyze the overall experimental
performance of existing methods. Then, we provide some empirical
observations and a following theoretical analysis.

3.1 Overall Performance
We conduct experiments on four large-scale standard benchmarks,
including MS MARCO passage ranking datasets (MARCO Dev Pas-
sage) [27], MS MARCO document ranking datasets (MARCO Dev
Doc) [27], TREC 2019 Deep Learning Track passage ranking task

(TREC2019 Passage) [3], and TREC 2019 Deep Learning Track doc-
ument ranking task (TREC2019 Doc) [3]. The detailed experimental
setting can be found in Section 5. Table 2 and Table 3 show the
results at the retrieval stage and the re-ranking stage, respectively.

For the retrieval stage, we have the following observations: (1)
Unlike the promising results in NLP, all representative methods can-
not achieve a comparable performance over full fine-tuning with
less than 1% of the model parameters on all datasets. Note that our
full fine-tuning baseline is strong as we use mulitple negatives for
each query in a mini-batch. (2) With tuning 6% of the original model
parameters, these methods achieve comparable performance to the
full fine-tuning baseline, but still underperform these baselines on
the MARCO Passage and TREC2019 Passage. On MARCO Doc and
TREC2019 Doc, they are still very lower than full fine-tuning since
we train the dense retrieval models with BM25 negatives which is
a little weaker. Existing works like ANCE [35] and ADORE [38]
always use the checkpoint trained on the MARCO Passage as the
starting point for MARCO Doc. But this makes for an unfair com-
parison since the parameter-efficient tuning methods would have
different starting points. Wewill do further comparisons by training
the dense retrieval models with hard negatives in Section 6.3. (3)
Among these parameter-efficient tuning methods, Bitfit performs
worst, while LoRA, Adapter and MAM Adapter are more effective
than prefix-tuning. Prefix-tuning increases computational cost as it
prepends additional trainable tokens in the hidden layer.
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Figure 2: Top: The retrieval performance of various
parameter-efficient tuning methods using different learn-
ing rates on MARCO Passage. Bottom: The loss value of full
fine-tuning and the two best performing parameter-efficient
methods (i.e., Adapter and LoRA) over training steps.

For the re-ranking stage, we can see that: (1) The relative order
of different parameter-efficient tuning methods at this stage is quite
consistent with that at the retrieval stage. (2) Our finding is not
consistent with Jung et al. [13] in which they found that prefix-
tuning and LoRA are able to outperform the full fine-tuning on
small datasets including Robust04 and ClueWeb09, and nonstandard
MARCO document ranking dataset with less than 1% of model
parameters. In our experiments, with more strong baselines (i.e.,
training cross-encoder with several negatives in amini-batch), these
parameter-efficient tuning methods cannot outperform the full fine-
tuning on standard large-scale datasets.

3.2 Empirical Observation
Besides the above overall performance, we provide some empiri-
cal observations about the training and convergence of existing
methods. We find that these methods are very sensitive to hyperpa-
rameters, such as learning rate. We also noticed that the loss value
at the early training stage is very high which seems to be hard to
converge. We take the MARCO Passage as an example and other
datasets have the same observation. We show the results at the
retrieval stage with different learning rates, i.e., ranging from 4e-5
to 1e-4. The detailed experimental setting can be found in Section 5.

As shown in Figure 2, the performance of these parameter-
efficient tuning methods varies wildly with different learning rates.
A low learning rate always performs worse than a high learning
rate in terms of both MRR@10 and R@100 metrics. The results
implicate that low learning rates may not find a good optimiza-
tion direction and are difficult to skip the local optima, leading to
slower convergence. Then, we take a look at the loss curve of these
methods in the early training stage. As shown at the bottom of Fig-
ure 2, we can see that the two best performing parameter-efficient
methods Adapter and LoRA have a higher loss value compared to
full fine-tuning and their loss values fluctuate wildly, ranging from

about 50 to 10. The unstable training process and slow convergence
indicate that these methods may be essentially hard to optimize.

3.3 Theoretical Analysis
We theoretically showwhy the standard setting of existing parameter-
efficient tuning methods is not learning-efficient.

For Transformer-based PTMs, each layer contains a multi-head
attention layer (MH), a FFN layer and two RCLN functions. As we
introduced in Section 2.3, most of the parameter-efficient tuning
methods inject modules to the FFN sub-layer and MH sub-layer in
an inside manner, e.g., an Adapter following the MH and another
following the FFN.

For simplicity, this can be treated as some form of modifications
to FFN and MH, i.e., 𝑓 (𝑀𝐻 (·)), 𝑔(𝐹𝐹𝑁 (·)). Thus, these parameter-
tuning methods can be formulated as follows:

ℎ = 𝑅𝐶𝐿𝑁 (𝑔(𝐹𝐹𝑁 (𝑅𝐶𝐿𝑁 (𝑓 (𝑀𝐻 (𝑥)))))), (11)
where 𝑓 , 𝑔 are the inserted module, such as the Adapter module in
Eq. 8, the LoRA module in Eq. 10, the prefix module in Eq. 7 and
the MAM Adapter module in Eq. 9.

During training, the goal is to minimize the loss over every
training example 𝑥 = (𝑞, 𝑑). The model parameters Θ of step 𝑡 are
optimized by gradient descent methods (GD):

Θ𝑡+1 = Θ𝑡 − 𝜂∇(𝐽 (𝑥,𝑦;Θ𝑡 ), (12)
where 𝜂 is the learning rate, 𝑦 is the label, and 𝐽 is the loss function.
For simplicity, we will omit the complex loss functions used in the
ranking task here. According to the chain rule, the gradient on step
𝑡 in Eq. 11 is computed as follows:
𝑑 𝐽

𝑑𝑥
=

𝑑 𝐽

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑔𝑡

𝑑𝑔𝑡

𝑑𝐹𝐹𝑁𝑡

𝑑𝐹𝐹𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑 𝑓𝑡

𝑑 𝑓𝑡

𝑑𝑀𝐻𝑡

𝑑𝑀𝐻𝑡

𝑑𝑥𝑡
.

(13)
Since the parameters of 𝑅𝐶𝐿𝑁𝑡 , 𝐹𝐹𝑁𝑡 and 𝑀𝐻𝑡 are kept frozen,
only 𝑓𝑡 , 𝑔𝑡 are updated to:

𝑔𝑡+1 =𝑔𝑡 − 𝜂∇(𝑔) = 𝑔𝑡 − 𝜂
𝑑 𝐽 (𝑥,𝑦;Θ)

𝑑𝑔
= 𝑔𝑡 − 𝜂

𝑑 𝐽

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑔𝑡
,

𝑓𝑡+1 =𝑓𝑡 − 𝜂∇(𝑓 ) = 𝑓𝑡 − 𝜂
𝑑 𝐽 (𝑥,𝑦;Θ)

𝑑 𝑓

=𝑔𝑡 − 𝜂
𝑑 𝐽

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑔𝑡

𝑑𝑔𝑡

𝑑𝐹𝐹𝑁𝑡

𝑑𝐹𝐹𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑𝑅𝐶𝐿𝑁𝑡

𝑑 𝑓𝑡
,

(14)
As we can see, the gradients of 𝑓 , 𝑔 are computed based on the

frozen parameters including 𝑅𝐶𝐿𝑁𝑡 , 𝐹𝐹𝑁𝑡 and 𝑀𝐻𝑡 . The ideal
gradient descent direction is ∇(Θ𝑡 ) including all parameters, but
the actual gradient update direction is only ∇(𝑓𝑡 , 𝑔𝑡 )). So there
remains a discrepancy between the ideal optimization direction and
the actual update direction

𝛿 = ∇(Θ𝑡 ) − ∇(𝑓𝑡 , 𝑔𝑡 )) .
The MH (or FFN) may be the main contribution module to the
gradient of the ∇(Θ𝑡 ), that is, updating the parameters of MH (or
FFN) may greatly decrease the loss value of the input batch. But
only 𝑓𝑡 , 𝑔𝑡 are updated, so this can explain why the loss value of
parameter-efficient tuning methods varies wildly during training,
since 𝑓𝑡 , 𝑔𝑡 may contribute little to the gradient of the ∇(Θ𝑡 ). There-
fore, the separation of these inserted trainable parameters leads to
the discrepancy problem which can make the optimization difficult
and hurt the performance.
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Figure 3: The aside module and three variants with different insertion ways. In this way, all the extra inserted modules can
form a pathway. 𝑙 denotes the number of Transformer.

4 OUR METHOD
Our analysis shows that these scattered modules in an inside man-
ner lead to unsmooth transferring of updatable gradients. Inspired
by skip connection [9], beyond the inside manner, we propose to in-
ject additional modules alongside the PTMs to create a pathway for
updatable gradients. Specifically, in this way, the scattered modules
can be directly connected throughout the whole PTMs. Formally,
we denote this type of module as the aside module and the module
which is injected into the model as the inside module. Without the
effect of the original frozen model parameters, these aside modules
can create an unimpeded path to make the updatable gradients flow
fluently.

The aside module is denoted as 𝑧 (𝑥). So, according to Eq. (14),
∇(𝑧) is better than ∇(𝑓 ) and ∇(𝑔) since its gradient is only based
on the final loss 𝐽 and itself, i.e., ∇(𝑧) =

𝑑 𝐽

𝑑𝑧
, and don’t have to

multiply the gradients of RCLN, FFN and MH. In this way, the aside
module is updated without the barrier of frozen model parameters
and thus mitigates the optimization discrepancy.

Although the inside module suffers from the optimization dis-
crepancy, it’s more expressive and has a bigger impact on the final
output than the aside module since its output will be transformed by
the next following complex modules like MH and FFN. To leverage
the merits of these two kinds of modules, we propose to combine
the inside module and the aside module for better performance.

The Inside Module We can adopt any parameter-efficient tun-
ing methods which inject new parameters into PTMs, as our inside
module. In our pilot experiments, we find that Adapter-based and
LoRA perform best across all parameter-efficient tuning methods.
So in our main experiments, we employ Adapter as our inside mod-
ule, and we also conduct experiments with LoRA in Section 6.2.
We leave the study of choosing or designing the inside module for
future work.

The Aside Module As shown in Figure 3, our proposed aside
module is a bottleneck architecture (BN) containing a down-projection,
a nonlinear function and an up-projection. Compared to Adapter,
BN has no residual connection, and compared to LoRA, BN adds a
nonlinear function. As depicted in Figure 3, we investigate three
ways of inserting BN to the model along with the inside modules,
i.e., outside the sub-layer, outside the layer, and outside the model.

We denote these three Inside and Aside (IAA) structures as IAA-S,
IAA-L, and IAA-M respectively.

• IAA-S inserts two BN modules outside the two sub-layer in
Transformer, i.e., FFN sub-layer and MH sub-layer. Note that
the output of each BN is added to the output of the residual
connection and layer normalization. The number of parameters
is computed as 4 × 𝑟 × 𝑑 × 𝑙 .

• IAA-L inserts one BN module outside the Transformer layer and
there are 𝑙 modules for a whole PTMs. The number of parameters
is computed as 2 × 𝑟 × 𝑑 × 𝑙 .

• IAA-M inserts one BN modules outside the whole PTMs. It takes
the output of the embedding layer and adds its output to the
final output of the whole model. The number of parameters is
computed as 2 × 𝑟 × 𝑑 .

In order to fairly compare these structures, we can control the
hidden size 𝑟 to keep the number of parameters in each structure the
same. As the BN gets farther from the original Transformer, it can
have a larger hidden size to have the same number of parameters.

5 EXPERIMENTAL SETTINGS
In this section, we introduce our experimental settings, including
datasets, baseline methods, evaluation metrics, and training details.

5.1 Datasets
We conduct our experiments on 4 standard ranking datasets, includ-
ing MS MARCO passage ranking datasets (MARCO Passage) [27],
MS MARCO document ranking datasets (MARCO Doc) [27], TREC
2019 Deep Learning Track passage ranking task (TREC2019 Pas-
sage) [3], and TREC 2019 Deep Learning Track document rank-
ing task (TREC2019 Doc) [3]. MARCO Passage contains 0.5 mil-
lion training queries, 6 thousand dev queries and 8.8 million pas-
sages. MARCO Doc contains 0.4 million training queries, 5 thou-
sand dev queries and 3 million documents. For these two MARCO
datasets, we report the performance on dev set following exist-
ing work [23, 28, 35, 38]. The two TREC2019 datasets share the
same training set and document collection with their corresponding
MARCO datasets, but they have a fine-grained test set containing
200 queries.
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Table 4: Comparisons between IAA and the baselines at the retrieval stage. Two-tailed t-tests demonstrate the improvements of
IAA over baselines are statistically significant ( 𝑝 ≤ 0.05). ∗ indicate significant improvements over full fine-tuning. † indicate
significant improvements over best parameter-efficient tuning methods (PET) at the same setting.

Method #Params MARCO Passage TREC2019 Passage MARCO Doc TREC2019 Doc
MRR@10 R@1000 nDCG@10 R@100 MRR@100 R@100 nDCG@10 R@100

Full fine-tuning 100% 0.316 0.949 0.600 0.715 0.312 0.801 0.462 0.409
Best PET 0.5% 0.304 0.944 0.609 0.712 0.280 0.799 0.458 0.381
IAA-S Adapter 0.5% (r=8,ar=8) 0.312† 0.941 0.605 0.719 0.285 0.785 0.454 0.384
IAA-L Adapter 0.5% (r=12,ar=12) 0.314† 0.943 0.615† 0.735∗ 0.292 0.792 0.446 0.391
IAA-M Adapter 0.5% (r=15,ar=24) 0.309 0.941 0.602 0.721 0.287 0.782 0.449 0.385
Best PET 6.7% 0.316 0.946 0.616 0.720 0.283 0.792 0.438 0.402
IAA-S Adapter 6.7% (r=100,ar=100) 0.324 0.947 0.581 0.719 0.290 0.798 0.441 0.398
IAA-L Adapter 6.7% (r=50,ar=300) 0.327†∗ 0.951 0.617∗ 0.735† 0.295† 0.795 0.439 0.395
IAA-M Adapter 6.7% (r=185,ar=960) 0.321 0.948 0.592 0.710 0.285 0.793 0.437 0.402

5.2 Baselines
We use the BERT-base model as the backbone, and use the cross-
encoder architecture and the bi-encoder architecture for re-ranking
and dense retrieval, respectively.

Our baseline includes the full fine-tuning and 5 representa-
tive parameter-efficient tuning methods as we introduced in Sec-
tion 2.3, including BitFit [37], prefix-tuning [18], Adapter [11],
MAMAdapter [8] and LoRA [12]. The recent proposed Semi-Siamese
method [13] is applied to the prefix-tuning and LoRA in their ex-
periment. The Semi-Siamese prefix-tuning (SS prefix), besides the
common prefix, uses some specific prefixes for the query and the
document respectively to model their distinct characteristics. The
Semi-Siamese LoRA (SS LoRA) use the same query weight matrices
and different value weight matrices for the query and the document

5.3 Evaluation Metrics
We report the official metrics of these four benchmarks. For the
MARCOPassage, we report theMean Reciprocal Rank at 10 (MRR@10)
and recall at 1000 (R@1000). For the MARCO Doc, we report the
MRR@100 and R@100. For TREC2019 Passage, we report normal-
ized discounted cumulative gain at 10 (NDCG@10), and R@1000
while for TREC2019 Doc, we report NDCG@10 and R@100.

5.4 Training and Optimization
For the cross-encoder model which is used for the re-ranking stage,
the query and the document are concatenated into a single sequence
to input to the model. We truncate the sequence to the first 128
tokens and 512 tokens for passage datasets and document datasets,
respectively. We use cross-entropy pairwise loss and pair 5 negative
examples for each query in a mini-batch. We use the official top-k
candidates as the negatives. We use a batch size of 72 and 36 for
passage datasets and document datasets, respectively. We train 5
epochs for all methods and choose the best checkpoint. The only
difference between full fine-tuning and other baselines is that we
set different learning rates. For full fine-tuning, we use a learning
rate of 2e-5. For all other parameter-efficient tuning methods, we
use a learning rate of 1e-4.

For the bi-encoder model which is used for dense retrieval, the
query and the document are encoded separately. We set the maxi-
mum length of the query to 32, the passage to 128, and the document

to 512. We use the official top-k candidates for the passage retrieval
task and use BM25 top-k candidates retrieved by anserini [36] for
document retrieval task [36]. Training dense retrieval models with
official top-k candidates onMARCODoc results in bad performance.
We pair 7 negative examples for each query on passage retrieval and
1 negative example on document retrieval. We use a batch size of
64 and 44 for passage datasets and document datasets, respectively.
We train 3 epochs, and 6 epochs for passage datasets and document
datasets, respectively. For full fine-tuning, we use a learning rate of
2e-5. For all parameter-efficient tuning methods, we use a learning
rate of 1e-4. For all experiments, we use the Adam optimizer with
a linear warm-up over the first 10% steps.

6 EMPIRICAL RESULTS
In this section, we report and analyze the experimental results to
demonstrate the effectiveness of the proposed method. We target
the following research questions:
• RQ1: How does our method perform compared with full fine-
tuning and other parameter-efficient tuning methods?

• RQ2: How does our method perform compared with the Semi-
Siamese bi-encoder neural models on the re-ranking stage?

• RQ3: How does our method perform compared with advanced
dense retrieval models when training with hard negatives?

• RQ4: How does the hidden size of the aside module affect the
performance?

• RQ5: How does the connected modules affect the optimization
process?

6.1 Main Results
To answer RQ1, we compare three variants of IAA Adapter with
full fine-tuning and the best parameter-efficient tuning methods
on four standard large-scale datasets. Table 4 and Table 5 show the
results at the retrieval stage and the re-ranking stage, respectively.

We first look at the results at the retrieval stage: (1) Our best IAA
model with tuning less than 1% of the model parameters achieve a
comparable performance over full fine-tuning, and is significantly
better than the best PET on some datasets like MARCO Passage.
(2) By tuning 6.7% of the model parameters, our best model could
outperform the full fine-tuning baseline on two passage retrieval
datasets. On MARCO Passage, it’s also significantly better than
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Table 5: Comparisons between IAA and the baselines on the re-ranking stage. Two-tailed t-tests demonstrate the improvements
of IAA over baselines are statistically significant ( 𝑝 ≤ 0.05). ∗ indicate significant improvements over full fine-tuning. † indicate
significant improvements over best parameter-efficient tuning methods (PET) at the same setting.

Method #Params MARCO Passage TREC2019 Passage MARCO Doc TREC2019 Doc
MRR@10 MRR@100 nDCG@10 nDCG100 MRR@10 MRR@100 nDCG@10 nDCG@100

Full fine-tuning 100% 0.376 0.383 0.738 0.637 0.404 0.408 0.657 0.536
Best PET 0.5% 0.366 0.371 0.720 0.635 0.397 0.392 0.653 0.534
IAA-S Adapter 0.5% (r=8,ar=8) 0.371 0.377 0.731† 0.632 0.395 0.393 0.655 0.533
IAA-L Adapter 0.5% (r=12,ar=12) 0.373† 0.379† 0.732† 0.633 0.399 0.403† 0.656 0.537
IAA-M Adapter 0.5% (r=15,ar=24) 0.369 0.373 0.725 0.630 0.393 0.391 0.652 0.531
Best PET 6.7% 0.373 0.381 0.735 0.637 0.402 0.407 0.647 0.530
IAA-S Adapter 6.7% (r=100,ar=100) 0.382† 0.385 0.742 0.635 0.408 0.412 0.651 0.535
IAA-L Adapter 6.7% (r=50,ar=300) 0.385∗† 0.392∗† 0.740 0.639 0.412† 0.414 0.657† 0.538
IAA-M Adapter 6.7% (r=185,ar=960) 0.379 0.384 0.739 0.636 0.404 0.410 0.649 0.529

full fine-tuning in terms of MRR@10. This demonstrates that by
introducing the connected aside module, our method is able to
improve the performance. On two document retrieval tasks, we find
that our methods cannot outperform the full fine-tuning baseline
indicting training with BM25 negatives is not enough for bi-encoder
on document retrieval. We leave this for further study. (3) Compare
the three insertion structures, we find that IAA-L which injects the
aside module outside the layer performs best. One possible reason
is that IAA-S which injects the aside module outside the sub-layer
has a smaller hidden size of the inside module than IAA-L which
may limit its capacity. For IAA-M, although it have bigger hidden
size for the aside module, its representative power is not as good
as IAA-L since the output of each aside module in IAA-L can be
transformed by the original parameters.

We then look at the re-ranking stage, and we find that the perfor-
mance trend on the re-ranking stage is consistent with the retrieval
stage: (1) Our method is significantly better than the best parameter-
efficient tuning methods in terms of MRR@10 on MARCO Passage
and MARCO Doc. (2) All types of IAA can outperform the full fine-
tuning baseline by tuning 6.7% of the model parameters, indicating
the effectiveness of IAA. (3) Unlike the poor performance on doc-
ument retrieval tasks, IAA could outperform the full fine-tuning
with 6.7% of the model parameters. It demonstrates that apply-
ing parameter-efficient tuning methods on cross-encoder perform
better than on the bi-encoder.

6.2 Comparison with Semi-Siamese Bi-encoder
Baseline

To answerRQ2, we compare ourmethodwith the recently proposed
Semi-Siamese methods, i.e., SS prefix-tuning and SS LoRA [13].
These two methods can only apply to the bi-encoder architec-
ture and they leverage this method at the re-ranking stage. As
our method is a general method, thus we utilize a bi-encoder ar-
chitecture on the re-ranking stage for a fair comparison. We also
use IAA-S LoRA which uses LoRA as the inside module to compare
with SS LoRA. Experiments are conducted onMARCO Passage with
only tuning 0.5% of the model parameters. The results are shown in
the table 6. We can see the SS prefix-tuning performs worst and this
is consistent with our previous findings where prefix-tuning is not
as effective as LoRA and Adapter-based. Our methods including

Model MARCO Passage MARCO Doc

MRR@10 MRR@100

SS prefix-tuning 0.342 0.375
SS LoRA 0.351 0.383
IAA-L LoRA 0.366†∗ 0.391†∗

IAA-L Adapter 0.367†∗ 0.389∗

Table 6: Performance comparison with Semi-Siamese using a
bi-encoder architecture on the re-ranking stage. Two-tailed
t-tests demonstrate the improvements are statistically sig-
nificant ( ∗, † indicates 𝑝 ≤ 0.05 over SS prefix-tuning and SS
LoRA, respectively).

IAA-L LoRA and IAA-L Adapter, are significantly better than the
two baseline methods indicating the aside module is more useful
and effective for model training.

6.3 Comparison with Advanced Dense Retrieval
Models by Training with Hard Negatives

To answer RQ3, we train the dense retrieval models using hard
negatives for the parameter-efficient tuning methods. Following
STAR [38], we mine the static hard negatives using BM25 warm-up
checkpoint and train the dense retrieval model on hard negatives
for another 2-3 epochs. As shown in Table 7, we can observe that
by training with hard negatives, parameter-efficient tuning meth-
ods achieve comparable performance over some advanced dense
retrieval models such as ANCE, and ADORE. And our proposed
IAA-L Adapter can still outperform full fine-tuning baseline and
is significantly better than other parameter-efficient tuning meth-
ods such as Adapter and LoRA. We could see that compared with
RocketQA which utilizes several training techniques like cross-
batch training, denoising false negatives, and data augmentation,
all parameter-efficient tuning methods are still far behind it.

6.4 Impact of Hidden Size of the Aside Module
To answer RQ4, we conduct an analysis to investigate the impact
of the hidden size of the aside model. We experiment on MARCO
Passage under the dense retrieval setting.We vary the hidden size of
the aside model but still keep the total number of tuning parameters
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Table 7: Comparison with advanced dense retrieval models
by training PET with hard negatives on the MARCO Passage.
Best results are marked bold.

Model MRR@10 R@1000

ANCE[35] 0.330 0.959
TCT-ColBERT[20] 0.335 0.964
TAS-B[10] 0.343 0.976
ADORE+STAR[38] 0.347 -
RoctetQA [32] 0.367 -

full fine-tuning 0.341 0.961
Adapter 0.334 0.953
MAM Adapter 0.332 0.959
LoRA 0.331 0.957
IAA-L Adapter 0.343 0.971

fixed. That is, the larger the aside module, the smaller the inside
module and vice versa.

As shown in Figure 4, we can see that different sizes have a
big impact on the performance. When the hidden size of the aside
model is 0, it degrades to the skip connection which only connects
the input and output of the original model. In this setting, IAA-
S performs better than IAA-L and IAA-M indicating that a fine-
grained skip connection is better than a coarser-grained. When the
hidden size of the inside module is 0, it becomes a totally parallel
aside module. We can see that the aside module underperforms the
inside module with skip connection, i.e., the hidden size of the aside
module is 0. This verifies our hypothesis that the inside module is
more expressive and has a larger capacity than the aside module.
One possible reason is that the output of the inside module will be
transformed by the next following complex Transformer modules
like multi-head attention.

6.5 Convergence Analysis
To answer RQ5, we visualize the training loss Adapter and IAA-
L Adapter on MARCO Passage at the retrieval stage. As shown
in Figure 5, IAA-L Adapter has a lower loss value than Adapter
and also converges faster than Adapter. This demonstrates that
by adding the aside module, IAA-L Adapter could alleviate the
optimization discrepancy problemwhich is caused by the separation
of the trainable modules. One possible reason is that the aside
module eases optimization and accelerates training convergence
by smoothing the loss surface. This has been verified by the [17]
which says skip connections could promote flat minimizers and
prevent the transition to chaotic behavior.

7 RELATEDWORK
In this section, we briefly review the fine-tuning approaches for
PTMs in IR. Fully fine-tuning large PTMs like BERT [4] is the widely
used approach in IR, since it achieve strong performance at both
the retrieval stage [2, 14, 35, 38] and the re-ranking stage [23, 28].
Another approach is the feature-based as used in ELMo [29]. The
pre-trained representations input to task-specific architectures as
features. CEDR [26] has investigated this approach in several TREC
datasets and found the performance of feature-based degrades
greatly compared with the fully fine-tuning. Jung et al. [13] firstly
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apply prefix-tuning and LoRA to the re-ranking stage. They found
that the two kinds of parameter-efficient methods can outperform
the full fine-tuning on small test data. But with more strong base-
lines, our findings are not consistent with theirs and we propose a
more universal method which can be applied to various architec-
tures and parameter-efficient tuning methods.

8 CONCLUSION
In this paper, we conduct comprehensive empirical studies of parameter-
efficient tuning methods in IR scenarios, at both the retrieval stage
and the re-ranking stage. On four standard large-scale benchmarks,
we find that thesemethods are unable to outperform or even achieve
a comparable performance over full fine-tuning with tuning less
than 1% of original model parameters. Through mathematical anal-
ysis, we certify the reason is that the separation of the trainable
parameters results in a discrepancy between the ideal optimization
direction and the actual update direction. We thus introduce the
aside module to help to stabilize the optimization process. Experi-
ments show that our method is significantly better than existing
methods and could outperform the full fine-tuning on most tasks
by tuning 6.7% of original model parameters. In future work, we
would study their ability of domain adaptation in IR.
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