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a b s t r a c t

Session-based recommendation (SBR) is a challenging task, aiming at recommending items according
to the behavior of anonymous users. Previous research efforts mainly focus on capturing sequential
transitions between consecutive items via recurrent neural networks (RNN) or modeling the complex
transitions between non-adjacent items based on graph neural networks (GNN). Although these works
have achieved encouraging performance on solving the session-based recommendation problem, few
efforts have been dedicated to exploring the rich information related to the shifts of user interests
within the transition relationships, which is the research gap we attempt to bridge in this work.
In this paper, we propose a novel model, named Time Enhanced Graph Neural Networks (TE-GNN),
which attempts to capture the complex user interest shift patterns within sessions. In TE-GNN, we
construct a Time Enhanced Session Graph (TES-Graph) where transition relationships between items
are treated adaptively with respect to the degree of user interest drift. In addition, a novel Temporal
Graph Convolutional Network (T-GCN) is designed to learn item embeddings based on the TES-Graph.
Moreover, we also introduce a Temporal Interest Attention Network (TIAN) to model the complex
transition of items with a common user interest. Extensive experiments have been conducted on four
widely used benchmark datasets, i.e., Diginetica, Tmall, Nowplaying, and Retailrocket, and the results
show that our proposed approach TE-GNN significantly outperforms previous state-of-the-art baseline
methods. The implementation of TE-GNN is available in https://github.com/GuTang1997/TE-GNN.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems play a key role in e-commerce plat-
orms, such as Alibaba, Tiktok and Youtube, which aim at help-
ng users easily obtain their desired information. Early research
orks include Markov-chain-based methods [1,2] and collabora-
ive filtering (CF) based methods [3,4]. The Markov-chain-based
ethods explore the sequential transaction data for the task
f SBR. For example, FPMC [1] extends matrix factorization by
ncorporating a first-order Markov chain to model both sequential
ehavior and long-term user preference. As these Markov-chain-
ased methods employ a strong independent assumption, which
redicts user’s next item only based on the previous items, they
nevitably suffer from the shifts of user interests or noisy items.
he CF-based methods mainly focus on exploiting the past user-
tem interactions, e.g., ratings or clicks, to learn latent features for
oth user and item. One limitation of CF-based methods is that
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they mainly rely on user long-term historical interactions, which
may be unavailable in real-world applications.

Later, recurrent neural networks, which have been proven
effective in capturing user’s general interests from previous clicks,
have achieved encouraging performance on solving the session-
based recommendation problem [5–9]. For example, Hidasi et al.
[5] model the short-term preferences with gated recurrent units
(GRUs [10]) and propose a RNN-based method GRU4Rec. Li et al.
[8] explore a hybrid encoder with an attention mechanism to
model user’s sequential behavior and capture her main intent in
the ongoing session. Liu et al. [9] propose to simultaneously cap-
ture both user’s general interests from the long-term memory of a
session and user’s current interests from the short-term memory
of the last click. Although these methods have achieved promis-
ing performance, the major limitation is that they only capture
sequential transitions between consecutive actions, while cannot
effectively model the complex transitions between non-adjacent
actions.

Recently, graph neural networks (GNNs) [5,11–14] have been
widely adopted to model the complex transition relationship

between items without direct connections. For example, Wu
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Fig. 1. An example session.

t al. [15] propose to construct a directed graph (i.e., session
raph) for each session sequence, and utilize GNNs to capture the
omplex transitions of items and learn the embedding vectors of
tems. Pan et al. [16] propose a star graph neural network (SGNN),
hich solves the long-range information propagation issue by
dding a star node to account for non-adjacent items. Wang
t al. [17] exploit the transition information between items over
ll sessions for better capturing global contextual information.
lthough these session graph based methods have achieved state-
f-the-art performance, they treat each transition relationship
etween items equally and neglect the rich user interest drift
nformation within the transition relationships. Considering Fig. 1
s an example, where we can observe that: (1) The transition
elationship between ‘Sweater’ and ‘Iphone’ is weaker than that
f the transition relationship between ‘Iphone’ and ‘Airpods’ as
he user interest drift of the former is considerably larger than
hat of the latter; (2) The user interest drift is strongly correlated
ith the time interval, i.e., a larger time interval between two
onsecutive items indicates a higher degree of user interest drift;
3) Items (e.g., ‘Shirt’, ‘Overcoat’, and ‘Sweater’) within a close
ime interval usually have a similar user interest (e.g., ‘Clothing’)
nvolving a smaller interest drift.

Based on the above observations, in this paper, we propose to
apture the complex pattern of user interest drift. In particular,
e propose a novel Time Enhanced Session Graph (TES-Graph),
hich is a variant of the session graph [15] by further incor-
orating the degree of user interest drift into the edge of the
ession graph. The major difference between TES-Graph and the
onventional session graph is that the former adaptively models
hese transition relationships while the latter treats them equally.
onsequently, we design a Temporal Graph Convolutional Net-
ork (T-GCN) to learn item embeddings on the TES-Graph. In
ddition, to model items representing similar user interests, we
ntroduce a Temporal Interest Attention Network (TIAN), in which
tems within a close time interval are separated into the same
ser interest bin. As items in the same bin share a common user
nterest, the information of each bin will be incorporated into its
orresponding items to learn better item representations.
We conducted extensive experiments on four widely used

eal-world benchmark datasets including Diginetica, Tmall, Now-
laying and Retailrocket. Results demonstrate that our proposed
pproach consistently outperforms the state-of-the-art baselines
ith a large margin. The main contributions of this work are
ummarized as follows:

• We propose to model rich user interest drift information by
incorporating a novel Time Enhanced Session Graph (TES-
Graph), in which adaptive weights reflecting the user inter-
est drift are estimated for each edge.
• A tailored multi-layer Temporal Graph Convolutional Net-

work (T-GCN) based on the TES-Graph is developed to learn
informative item representations.
2

• We also design a Temporal Interest Attention Network
(TIAN) to capture the common user interest pattern of items
within a session based on temporal information.
• Extensive experiments have been conducted on four widely

used real-world benchmark datasets, including Diginetica,
Tmall, Nowplaying and Retailrocket. The results demon-
strate that our proposed approach TE-GNN is significantly
superior to all state-of-the-art baseline.

2. Related work

Although collaborative filtering (CF) [18,19] is not specifi-
cally developed for the task of session-based recommendation,
it has been widely used in recommendation systems by mod-
eling user’s historical global interactions with items [3,20,21].
One of the representative methods for session-based recommen-
dation is Item-KNN [3], which relies on capturing items’ global
co-occurrence relationship. The main limitation of Item-KNN is
that it neglects the sequential information of items within a
session. Later, Rendle et al. [1] propose FPMC to capture the
sequential behavior and long-term interest of users by apply-
ing Markov chains and matrix decomposition. Based on FPMC,
Wang et al. [22] further propose a hierarchical representation
model (HRM), which combines both user’s representation and
user’s behavior sequence information hierarchically to improve
recommendation performance.

In recent years, various deep learning based methods have
been proposed and shown great performance improvement com-
pared to previous models. For example, Hidasi et al. [5] pro-
pose GRU4REC, and apply a multi-layer Gated Recurrent Unit
(GRU [10]) to model the sequential behavior of users. Li et al. [8]
extend GRU4REC and propose the model NARM which com-
bines GRU and attention mechanism to model the sequential
behavior of users. Liu et al. [9] attempt to address the user
interests drift issue by capturing both a user’s general interests
from the long-term memory of a session and her current interests
from the short-term memory of the last-click. Kang et al. [23]
propose a self-attention based sequential model (SASRec) to cap-
ture long-term semantics using the attention mechanism. Zhang
et al. [24] propose a Gating Augmented Capsule Network (GAC)
to exploit both personalized item- and factor-level transitions
in a fine-grained manner. Song et al. [25] leverage a novel at-
tention mechanism to capture the user’s attention weight at
each timestamp, and obtain the long-term interest representation
based on a weighted sum vector of all clicked item embeddings.
Wang et al. [26] consider the collaborative modeling in session-
based recommendations with an end-to-end neural model. Pan
et al. [27] utilize a modified self-attention mechanism to get a
better long-term representation of session.

More recently, some graph neural network (GNN) based meth-
ods [15,17,28–33] have shown promising performance in the task
of session-based recommendation. Wu et al. [15] propose SR-GNN
which builds directed graphs from historical session sequences
and generates item embeddings by leveraging GNN to model
transitions of items. With the great success of SR-GNN, a variants
of SR-GNN have been proposed and achieved the state-of-the-art
performance. SHARE [30] considers each session as a hypergraph
so as to model the item correlations defined by various contextual
windows in the session simultaneously. DMGCF [29] constructs
user graph, item graph and user-item bipartite graph, and com-
bines a dual-path graph convolution network on the three graphs
for collaborative filtering. SGNN [31] attempts to simulate the
users’ behavior patterns from a spatiotemporal perspective. SGNN
is composed of two sub-modules, i.e., spatiotemporal session
graph and preference-aware attention. CaSe4SR [28] builds an
item graph and a category graph based on session sequence and
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Fig. 2. The framework of our proposed model TE-GNN. It consists of four main components, including the construction of TES-Graph, learning item embeddings on
TES-Graph, the temporal interest attention network, and the session representation and recommendation.
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item category sequence, the category graph reduces item-level
user behavior noises and makes user’s interest clearer. GFE [32]
develops sequential-aware interest and knowledge-aware inter-
est modules to capture intrinsic interests and external potential
interests of user. Moreover, GFE proposes a hierarchical self-
attention mechanism to exploit the high-order semantic informa-
tion from knowledge paths so as to discover user’s dynamic pref-
erences evolution. HDMA [33] measures the item-level similarity
between users and their friends, proposes to exploit users’ indi-
vidual interests based on capturing the aspect difference between
users’ interests and friends’ interests. KA-MemNN [34] devel-
ops a key-array memory network with a hierarchical intent tree
to model coarse-to-fine user intents and a hierarchical seman-
tic component to explore the multi-intent of user. TAGNN [35]
jointly models user interests given a certain target item as well
as complex item transitions in sessions to make recommendation.
GCE-GNN [17] uses a GNN model on session graph to learn
session-level item embeddings within the current session and
employs a session-aware attention mechanism on global graph
to learn global-level item embeddings over all sessions.

The main difference of our work with the above state-of-the-
art approaches is that previous works mainly model user interests
in a coarse-grained manner while neglect the user interests drift
information considerably, e.g., they usually treat the transitions
between two consecutive items equally. In our proposed model,
we take into account the different degrees of users’ interests
drift between two consecutive items in a fine-grained manner
by building a Time Enhanced Session Graph (TES-Graph). Then
we apply a Temporal Graph Convolutional Network (T-GCN) on
TES-Graph to better capture user interests within a session. In
addition, we assume that items within a short time interval have
similar user interest pattern, and further develop a Temporal In-
terest Attention Network (TIAN) to enhance item representations
via capturing the similar user interest pattern of items within a
session based on the temporal information.
 b

3

3. Approach

In this section, we first describe the session-based recommen-
dation task, and then introduce each module of our proposed
model Time Enhanced Graph Neural Networks (TE-GNN). The
framework of TE-GNN is shown in Fig. 2, which consists of four
main components: (1) Time Enhanced Session Graph (TES-Graph)
construction; (2) Learning item embeddings on TES-Graph; (3)
Temporal Interest Attention Network (TIAN); (4) Session repre-
sentation and recommendation.

3.1. Problem statement

Let V = {v1, v2, . . . , v|V |} denote all unique items appearing
n all sessions, where |V | is the number of all unique items.
= (v1, v2, . . . , vn) is an anonymous session which consists of
items, where vi ∈ V is the ith item in the session. The goal
f session-based recommendation is to recommend top-K items
hat the user is most likely to click based on the current session.

.2. Time Enhanced Session Graph (TES-Graph)

The Time Enhanced Session Graph (TES-Graph) reveals se-
uential patterns over transition relationships of consecutive
tems in the session. The main difference between the TES-
raph and the session graph [15,17] is that TES-Graph further
aptures rich user interest drift information by assigning each
dge a weight reflecting the user interest drift. The TES-Graph is
efined as follows: given a session S = (v1, v2, . . . , vn), let Gs =

Vs, Es,Ws) be the corresponding TES-Graph, where Vs denotes
he clicked items in the session S, Es denotes the edge set, and Ws
s the edge weight matrix. Each node represents an item vi ∈ Vs,
nd each edge (vi−1, vi) ∈ Es denotes an adjacent relationship
etween two consecutive items v and v in the session, which
i−1 i
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Fig. 3. The construction process of a TES-Graph for (a) an example session
= (v1, v2, v4, v2, v6, v4, v7), (b) its corresponding TES-Graph, as well as (c)

ts corresponding incoming matrix and outgoing matrix.

an be represented by an incoming matrix AI and an outgoing
atrix AO. Each edge (vi−1, vi) has a weight τ(i−1,i) ∈ Ws. Similar

o [17], a self-loop is added to each node, which is represented
y a self-connection matrix AS (i.e., an identity matrix). Fig. 3

shows the construction process of a TES-Graph for an example
session S = (v1, v2, v4, v2, v6, v4, v7). Based on this session, we
ave the node set Vs = {v1, v2, v4, v6, v7} and the edge set Es =
(v1, v2), (v2, v4), . . . , (v4, v7)} ∪ {(v1, v1), (v2, v2), . . . , (v7, v7)}.
ote that the edge set consists of the edges between two consec-
tive items as well as the self-loop of each node. The edge weight
atrix Ws is measured based on the time interval between two
onsecutive items (as defined in Eq. (1)).
As pointed out in many previous research works [36], user

nterest drift is strongly correlated with the time interval be-
ween two consecutive items of her ongoing session, i.e., a higher
ime interval between two consecutive items corresponds to a
igher user interest drift, and vice versa. For example, in Fig. 1,
he session has 5 consecutive items (Shirt

8′
−→ Overcoat

7′
−→

weater
405′
−→ Iphone

15′
−→ Airpods), and the time interval be-

ween ‘Sweater’ and ‘Iphone’ is 405 min (high user interest drift),
hich is much larger than the time interval of 15 min between

Iphone’ and ‘Airpods’ (small user interest drift). Based on this
bservation, we calculate the edge weight matrix Ws as follows:
or each session S = (v1, v2, . . . , vn), we first obtain its timestamp
= (t1, t2, . . . , tn), and measure the weight of each edge in the
ES-Graph based on the degree of user interest drift, which is
alculated based on the time interval corresponding to that edge.
n our work, we assume the edge weight will decay according to
ts corresponding time interval between two consecutive items in
session, and we leverage Newton’s law of cooling to calculate

he edge weight. To be specific, according to Newton’s law of
ooling, the edge weight (i.e., temperature) will cool from the
ighest value (i.e., initial temperature) Dinit to the lowest value
i.e., final temperature) Dfinal. In our experiments, we empirically
et Dinit = 0.98 and Dfinal = 0.01. It is noting that two items
ith a large time interval would also maintain common interest
o some extent, therefore we set a small weight (i.e., 0.01) rather

han 0 to edges even their corresponding items’ time intervals are

4

arge. Besides, we also set the edge weight to 1 for the self-loop
dge. Formally, for an edge between two consecutive items vi and
j in a session, the edge weight τ(i,j) is defined as follows:

(i,j) =

{
e−α(|tj−ti|+l) if : i ̸= j,
1 if : i = j.

(1)

=
−ln(Dinit )

α
, (2)

α =
ln(Dinit/Dfinal)

m
, (3)

m = tn − t1, (4)

where Dinit and Dfinal are two pre-specified constants indicating
the initial and final edge weights which are used for the decay.
α represents the decay constant, and l is the left offset which is
used to make τ(i,j) adaptable to the different sessions.

3.3. Temporal Graph Convolutional Network (T-GCN)

In this subsection, we introduce how to learn item embedding
based on the constructed TES-Graph. We first map each item
in the session S = (v1, v2, . . . , vn) to an embedding sequence
H = (h1,h2, . . . ,hn), where hi ∈ Rd is a d-dimensional represen-
tation of item vi. Then we apply a multi-layer Temporal Graph
Convolutional Network (T-GCN) which is utilized to learn item
representations on top of the TES-Graph. A single layer T-GCN
will aggregate the information of the item itself and its first-order
neighbors. Inspired by LightGCN [37], in T-GCN we implement a
simplified GCN (i.e., H(l)

= AH(l−1)) rather than the existing GCN
(i.e., H(l)

= σ (AH(l−1)W(l−1))) by discarding the two most com-
on used mechanisms (i.e., feature transformation W(l−1) and
onlinear activation σ ). The experimental results demonstrate
hat the simplified version performs better than the conventional
CN. In order to capture transition relationships between distant
tems, we stack multiple layers of T-GCN to aggregate high-
rder neighboring information of items. Formally, the information
ropagation process can be formalized as follows:
(l)
i = AI

iH
(l−1)
+ AS

i H
(l−1)
+ AO

i H
(l−1), (5)

here AI
i ,A

O
i ,A

S
i are the ith row of the incoming matrix, outgoing

atrix and self-connection matrix, respectively, l denotes the lth
ayer of T-GCN. After a L-layer T-GCN, we obtain the h(L)

i ∈ Rd

hich is the representation of node vi.
In order to alleviate the problem of over-smoothing caused

y stacking too many T-GCN layers, we further apply a High-
ay Network, which merges the representation of item vi after

he L-layer T-GCN (i.e., h(L)
i ) and its initial embedding (i.e., h(0)

i ).
ormally, the process is defined as follows:

= σ (Wg ([h
(L)
i ∥h

(0)
i ])), (6)

(L)
i = g⊙ h(L)

i + (1− g)⊙ h(0)
i , (7)

here Wg ∈ Rd×2d are trainable parameters, σ is the activation
unction Sigmoid. After the HighWay Network, we obtain the item
epresentations H̃(L)

= (̃h(L)
1 , h̃(L)

2 , . . . , h̃(L)
n ).

.4. Temporal Interest Attention Network (TIAN)

In this subsection, we present the Temporal Interest Attention
etwork (TIAN), which further enhances item representations
ia capturing the similar user interest pattern of items within a
ession based on the temporal information. The basic assumption
s that items within a short time interval may have similar user
nterest pattern. To the end, we separate items into different bins
ased on the time interval, i.e., items with close time interval are
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eparated into the same bin. It is worth noting that we separate
tems into different bins along the time dimension since different
ins correspond to different user interest. Then we map each
in into an embedding and concatenate it with its corresponding
tem embedding. A novel Asymmetric Bidirectional Gated Re-
urrent Unit (Asym-BiGRU) is further developed to model the
equential relationships of bins within a session and obtain the
nhanced representation of user interest bin sequence. At last,
he enhanced user interest bin representations will be merged
nto their corresponding item representations with an attention
etwork in order to enhance item representations with user
nterest information, and get the new representations of items.

.4.1. User interest bin
In this subsection, we present how to separate items within

session into different user interest bins. A straightforward so-
ution is that we employ a fixed splitting time span µ for all
sessions and split items into different bins according to the their
time interval to the last item in the session. Since different users
may have distinct interest sensitivity, and also users’ recent in-
teracted items usually are more important for recommendation
than historical ones, it would be inappropriate for utilizing a fixed
splitting time span. To solve the issue, we propose to develop an
adaptive time span to separate items into different user interest
bins. The basic idea is that for items with small time intervals
to the last item, our model will pay more attention to them and
assigns a small time span to these items. Here a small time span
indicates that our model is more sensitive to the time interval
changes, i.e., a small time interval change of items will make
them be mapped into different interest bins. On the contrary,
for items with large time intervals to the last item, our model
is less sensitive to them as they are distant from the user current
interest, and will have small influence for the recommendation.
It is worth noting that the time interval here is different to the
one used in the TES-Graph. Specifically, the time interval utilized
in TES-Graph is designed to infer user interest drift of a transition
relationship, while time interval here is used to identify common
user interests within a time span.

For a session S = (v1, v2, . . . , vn), we denote
T = (t1, t2, . . . , tn) as the corresponding timestamp sequence of
S, and Q = (q1, q2, . . . , qn) as the time interval sequence where
qi is the time interval between the item vi and the last item vn
(i.e., qi = tn − ti). We first adopt a negative exponential function,
and map the time interval sequence Q to an interest sensitivity
sequence Γ = (γ1, γ2, . . . , γn) as follows:

γi = e−α(qi+l), (8)

where α and l are the decay constant and left offset, respectively.
Note that an item vi which is distant from the last item vn will
correspond to a small interest sensitivity value (i.e., γi is small),
and vice versa. Then, we define the adaptive time span µ as
follows:

µ =
e−αl
−min(Γ )
M

, (9)

where M is a pre-defined number of time bins, which is deter-
mined by the average session length of the dataset. µ represents
he desired adaptive time interval with respect to each session S.
ext, the user interest bin of the item vi is obtained as follows:

ini = k, where γi ∈ (µ× (k− 1), µ× k], (10)

here k ∈ (1, 2, . . . ,M). At last, we get the user interest bins
= (bin , bin , . . . , bin ).
1 2 n

5

3.4.2. Asymmetric Bidirectional Gated Recurrent Unit (Asym-BiGRU)
After we obtain the user interest bins for each session, we

embed the user interest bins sequence B = (bin1, bin2, . . . , binn)
nto an embedding sequence E = (e1, e2, . . . , en), where ei ∈ Rd

s a d-dimensional vector.
In order to enhance the representation of each bin, we propose

o model the sequential relationships of bins within a session.
straightforward solution is to leverage a bidirectional gated

ecurrent unit (BiGRU) [38] to capture its forward and backward
ides of contextual information. However, as the forward and
ackward sides of contextual information of a bin would play
ifferent roles (i.e., the forward contextual information would
lay a more important role as compared with the backward con-
extual information), treating them equally like in BiGRU would
ead to a suboptimal bin representation. Thus, we propose a
ariant of BiGRU, named Asymmetric Bidirectional Gated Recur-
ent Unit (Asym-BiGRU). In Asym-BiGRU, the forward contextual
nformation and the backward contextual information are treated
symmetrically and merged by the gate mechanism. At time-step
, the hidden state can be updated as follows:

i = dropout(ei), (11)
−→e i = GRU(−→e i−1, ei), (12)
←−e i = GRU(←−e i+1, ei), (13)

bgate = σ (W1[
−→e i∥
←−e i]), (14)

êi =
−→e i ⊙ bgate + (1− bgate)⊙

←−e i, (15)

where W1 ∈ Rd×2d is trainable parameters, σ is the activation
function Sigmoid, the dropout operation is used to alleviate over-
fitting. We also try other regularization methods [39,40] and the
results are comparable to Dropout in this task. As the discussion
of the regularization methods is out of the scope of our work,
we leave it for the future work. Then, we obtain the enhanced
representation of user interest bin sequence Ê = (ê1, ê2, . . . , ên).

3.4.3. Attention network
After we get the enhanced representations of user interest bins

Ê, we fuse them with their corresponding item representations
H(L) with an attention network, which is defined as follows:

βi = vT3 tanh(W2 [̃h
(L)
i ∥êi]), (16)

ci = βĩh
(L)
i , (17)

where W2 ∈ Rd×2d, v3 ∈ Rd are trainable parameters. The new
representations of items in the session S are C = (c1, c2, . . . , cn)
which capture both the sequential structural information of items
and temporal user interests of a session.

3.5. Recommendation

Once we obtained the representations of items within the
current session, i.e., C = (c1, c2, . . . , cn), we represent the long-
term representation of the session zlong by combining all items’
representations in the session. Similar to [27], we apply the sum-
pooling as the combining function, which is defined as follows:

zlong =
n∑

i=1

ci. (18)

Meanwhile, we employ the GRU to get the short-term repre-
entation of the session:
→c i = GRU(−→c i−1, ci), (19)

here −→c i−1 denotes the hidden state at time step i − 1. Then,
we use the representation of the last item as the short-term
representation of the session, i.e., z =

−→c .
short n
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Finally, to generate the final session representation zfinal, we
mploy the gate mechanism to merge information from both
ong-term and short-term session representations, i.e., zlong and
short . Formally,

= σ (W3(zlong ⊕ zshort )+ b3), (20)

final = f⊙ zlong + (1− f)⊙ zshort , (21)

here W3 ∈ Rd×d, b3 ∈ Rd are trainable parameters, σ is the
ctivation function Sigmoid.
Based on the final session representation zfinal, we produce

he top-K recommendations from all candidate items in V . The
ecommendation probability of each candidate item vi ∈ V is
determined by its initial embedding hvi and the final session rep-
esentation zfinal. In particular, we use a dot product to calculate
he recommendation score of each candidate item vi, which is
efined as:

˜ i = zTfinalhvi . (22)

hen we apply a softmax function over all scores to obtain the
robability distribution of all candidate items ŷ:

ˆ = softmax(ỹ), (23)

here ỹ = (ỹ1, . . . , ỹ|V |), and ŷi denotes the probability of item
i ∈ V appearing as the next-click in the current session items.

.6. Objective function

Since our goal is to maximize the prediction probability of the
ctual item given the current session, we apply the cross-entropy
s the loss function:

= −

|V |∑
i=1

yilog(ŷi)+ (1− yi)log(1− ŷi), (24)

here y denotes the one-hot encoding vector of the ground truth.
We leverage the back-propagation through time (BPTT) algorithm
to train our proposed model.

4. Experiments

In this section, we aim to answer the following six research
uestions and carry out extensive experiments to estimate the
erformance of our proposed approach TE-GNN :

• RQ1: Does TE-GNN outperform the state-of-the-art session-
based recommendation baselines for the session-based rec-
ommendation task?
• RQ2: Does the Temporal Graph Convolutional Network (T-

GCN) influence the performance of TE-GNN?
• RQ3: Does the Temporal Interest Attention Network (TIAN)

affect the performance of TE-GNN?
• RQ4: What are the influence of the number of Temporal

Graph Convolutional Network (T-GCN) layers on the model
performance?
• RQ5: How well does TE-GNN perform on sessions with

different lengths?
• RQ6: What is the computational complexity of proposed

TE-GNN?

4.1. DataSets

We employ four widely used benchmark datasets, including
iginetica, Tmall, Nowplaying and Retailrocket to evaluate the

erformance of TE-GNN.

6

Table 1
Statistics of datasets used in the experiment.
Dataset Diginetica Tmall Nowplaying Retailrocket

#click 982961 818479 1367963 2756101
#train 719470 351268 825304 175325
#test 60858 25898 89824 24283
#unique items 43097 40728 60417 22305
#Average length 5.12 6.69 7.42 3.96

• Diginetica.1 This dataset is released from the CIKM Cup
2016. Because of its transaction data, it is often used in
session-based recommendation task. Following [15,17,27,
37], we extract the data of the last week as the test set and
use the remainder for training.
• Tmall.2 It is extracted from the IJCAI-15 competition, which

is made up of anonymous users’ shopping logs on Tmall
online shopping platform. As the number of items is too
large, following [17], we select the portions 1/64 of sessions
as the dataset, in which sessions of the last day are used as
test data, the remaining sessions are leveraged for training.
• Nowplaying.3 This dataset is built from Twitter which de-

scribes the music listening habits of users [41]. Similar
to [17], we split the sessions for training and test, where
the sessions of last two months are utilized for test and the
remaining historical data as the training set.
• Retailrocket.4 It is released by the Kaggle competition 2016,

and is collected from a real world e-commerce website.
Retailrocket includes the behavior data of website visitors
within 4.5 months, and the behavior of visitors are divided
into three categories: click, join shopping cart and transac-
tion. We select the most recent portions of 1/4 sessions as
the dataset, where sessions of last 15 days are employed as
the test set and the remaining data for training.

Following [15,17], we filter out sessions of length 1 and items
ppearing less than 5 times. We also utilize sequence splitting
re-processing to generate sequences as well as their correspond-
ng labels. Taking the session sequence S = (v1, v2, v3, . . . , vn)
s an example, we generate sequences and labels as ([v1], v2),
[v1, v2], v3), . . ., ([v1, . . . , vn−1], vn) for training and testing data.
The statistics of datasets are illustrated in Table 1.

4.2. Evaluation metrics

Following previous works [15,17,27,35], we adopt two widely
used metrics, i.e., P@K and MRR@K to evaluate the performance
of our model.

• P@K (Precision): It measures the proportion of cases when
the target item is ranked within the top-K recommenda-
tions. P@K is a metric which is used to evaluate unranked
results.

P@K =
nhit

N
, (25)

where N indicates the number of test cases and nhit is the
number of cases that the target item is in the top-K items
of the ranked list.
• MRR@K (Mean Reciprocal Rank): It is the average of the re-

ciprocal ranks of the target item in the recommendation list.

1 https://competitions.codalab.org/competitions/11161.
2 https://tianchi.aliyun.com/dataset/dataDetail?dataId=42.
3 http://dbis-nowplaying.uibk.ac.at/#nowplaying.
4 https://www.kaggle.com/retailrocket/ecommerce-dataset.

https://competitions.codalab.org/competitions/11161
https://tianchi.aliyun.com/dataset/dataDetail?dataId=42
http://dbis-nowplaying.uibk.ac.at/#nowplaying
https://www.kaggle.com/retailrocket/ecommerce-dataset
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This metric considers the position of correct recommended
items in a ranked list.

MRR@K =
1
N

N∑
i=1

1
ranki

, (26)

where N is the number of test cases and ranki is the position
of the ith target item in the list of recommended items. Note
that if the target item is not in the top-K items, its MRR@K
score is set to 0.

Note that the K = 20 and a higher value of P@K and MRR@K
ndicate a better model performance.

.3. Baselines

To evaluate the performance of our model comprehensively,
e compare it with eleven baseline methods which can be
rouped into three categories, i.e., traditional recommendation
ethods, RNN and attention based methods, graph neural net-
ork based methods. The details of all baselines are briefly
escribed as follows:
Traditional recommendation methods:

• POP: This is a frequently used baseline method in recom-
mendation system, which recommends the top-N most fre-
quent items in the training set.
• Item-KNN [3]: This method recommends items which are

most similar to the current item in the session, where sim-
ilarity is defined as the co-occurrence relationship between
items.
• FPMC [1]: It is a hybrid method for sequential recommen-

dation based on Markov chain. The user representation is
ignored as it is not available in the scenario of session-based
recommendation.

NN and attention based methods

• GRU4REC [5]: This method applies the GRU for session-
based recommendation. It modifies the basic GRU by in-
troducing session-parallel mini-batches, mini-batch based
output sampling and ranking loss function.
• NARM [8]: It employs RNN to model the user’s sequential

behavior and captures a user’s main preference with the
attention mechanism. The recommendation probability for
each candidate item is computed by a bi-linear matching
scheme based on the unified session representation.
• STAMP [9]: This method attempts to address the user inter-

ests drift issue by capturing both a user’s general interests
from the long-term memory of a session and her current
interests from the short-term memory of the last-clicks.
• CSRM [26]: This approach is composed of an inner memory

encoder and an outer memory encoder. The former is used
to model a user’s own information in the current session via
RNN and attention mechanism, while the latter is designed
to capture the intent of the current session by exploiting
collaborative information from neighborhood sessions.
• SR-IEM [27]: This method utilizes an improved attention

mechanism to generate item’s importance score, and gen-
erates session representation based on a user’s global pref-
erence and her current interest.

Graph neural network based methods:

• SR-GNN [15]: SR-GNN attempts to capture the complex
transitions of items by modeling session sequences as graph
structured data. It employs the gated graph neural networks
to obtain the representation of items and combines a self
attention mechanism to generate session representation.
7

• TAGNN [35]: It captures the complex item transitions within
sessions by modeling items in sessions as session graphs
and obtains item embeddings using graph neural networks.
It also introduces a target attentive module to reveal the
relevance of historical actions given a target item to improve
the session representations.
• GCE-GNN [17]: It is a state-of-the-art GNN-based model,

which learns item representations from two different levels,
i.e., session-level and global-level. The session-level item
representation aims to model pairwise item-transitions
within the current session while the global-level item repre-
sentation attempts to model pair-wise item-transitions over
all sessions.

4.4. Parameter setting

In our implementation, we choose the training mini-batch as
256 and the embedding dimension of item as 256 in all exper-
iments. We set the number of interest blocks M to 6 in Eq. (9),
and the number of T-GNN layers to 2. Following [16,17,27,35],
all parameters are initialized using a Gaussian distribution with
a mean of 0 and a standard deviation of 0.1. The initial learning
rate for Adam is set to 0.001 and will decay by 0.1 after every
3 training epochs. The L2 penalty is set to 10−5 and the dropout
rate is set to 0.3 to avoid overfitting.

4.5. Overall comparison (RQ1)

To verify the effectiveness of TE-GNN, we report the perfor-
mance comparison between TE-GNN and all baseline methods
in Table 2. From Table 2, we can observe that Item-KNN [3]
mostly achieves the best performance on all datasets among all
traditional recommendation methods. This is attributed to that
the potential preference of users have an important impact on
the effect of recommendation.

Comparing with the traditional recommendation methods,
RNN and attention based methods usually demonstrate a superior
performance. In particular, GRU4REC, which is the first RNN based
approach for the task of session based recommendation, performs
better than Item-KNN on Tmall and Retailrocket, while performs
worse than it on Diginetica and Nowplaying. Both NARM and
STAMP perform better than GRU4REC and Item-KNN as they fur-
ther incorporate the attention mechanism in order to capture the
importance of items in session dynamically. CSRM [26] usually
achieves a better performance than NARM and STAMP on all
datasets as it incorporates auxiliary information from other ses-
sions to enhance the current session representation. SR-IEM [27]
obtains a competitive performance as that of CSRM. It modifies
the self-attention mechanism to obtain a better user’s long-term
preference and then it combines user’s long-term preference and
short-term preference conveyed by the last item in the session to
make recommendation.

Among all baseline methods, these graph neural network
(GNN) based methods usually show a superior performance. The
main reason may be that GNN slightly relaxes the assumption
of temporal dependence between consecutive items and models
more complex user item transitions as pairwise relations (e.g., di-
rected graph). For example, SR-GNN [15] attempts to capture
more implicit connections between items in a session and models
session sequences as graph-structured data. TAGNN [35] further
takes into account user preferences with target-aware attentions.
Among all GNN-based methods, GCE-GNN [17] mostly presents
the best performance on all datasets, as it can effectively learn
item representations from both global context and local context.

Our proposed approach TE-GNN shows superiority over all
state-of-the-art baseline methods on all datasets. Specifically, the
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Table 2
Comparison of the effects of each model on four datasets. The best results in terms of the corresponding metric are
highlighted in bold.
Dataset Diginetica Tmall Nowplaying Retailrocket

Methods P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 P@20 MRR@20

POP 1.18 0.28 2.00 0.90 2.28 0.86 1.97 0.75
Item-KNN 35.75 11.57 9.15 3.31 15.94 4.91 10.23 3.96
FPMC 22.14 6.66 16.06 7.32 7.36 2.82 9.65 4.32

GRU4REC 30.79 8.22 10.93 5.89 7.92 4.48 41.35 25.54
NARM 48.32 16.00 23.30 10.42 18.59 6.93 59.46 41.48
STAMP 46.62 15.13 26.47 13.36 17.66 6.88 58.48 38.96
CSRM 50.55 16.38 29.46 13.96 18.14 6.08 61.09 40.28
SR-IEM 52.35 17.64 23.98 11.03 19.85 8.22 59.85 38.92

SR-GNN 51.26 17.78 27.57 13.72 18.87 7.47 60.19 39.64
TAGNN 51.31 18.03 33.75 15.91 18.65 7.15 59.31 39.65
GCE-GNN 54.22 19.04 33.42 15.42 22.37 8.40 63.29 40.35

TE-GNN 54.78* 19.35* 39.01* 18.47* 23.85* 7.88 65.02* 44.02*

*Indicates that TE-GNN significantly outperforms the best baseline GCE-GNN at p-value < 0.01 using the t-test.
Table 3
Performance comparison of each GCN.
Datasets Diginetica Tmall Nowplaying Retailrocket

Methods P@20 M@20 P@20 M@20 P@20 M@20 P@20 M@20

TE-GNN-MLP 51.43 15.79 29.36 13.83 20.38 8.42 61.27 38.81
TE-GNN-GGNN 51.36 17.65 33.94 16.62 21.35 8.18 63.57 44.11
TE-GNN-GAT 54.45 18.98 38.95 17.88 23.61 7.41 63.81 41.46
TE-GNN 54.78 19.35 39.01 18.47 23.85 7.88 65.02 44.02
performance improvements of TE-GNN over the best performing
baseline GCE-GNN on Diginetica, Tmall, Nowplaying, Retailrocket
in terms of P@20 are 1.03%, 16.73%, 6.62%, 2.73%, respectively.
Similar performance improvements can also be observed in terms
of MRR@20. The results reveal the effectiveness to model the
complex user interest drift pattern and user common interest
pattern. In addition, TE-GNN can effectively model both pattern
information by introducing the Temporal Graph Convolutional
Network (T-GCN) and the Temporal Interest Attention Network
(TIAN).

4.6. Impact of Temporal Graph Convolutional Network (T-GCN)
(RQ2)

To investigate the impact of the Temporal Graph Convolutional
etwork (T-GCN), we compare it with several variants, including:

• TE-GNN-MLP: We replace the T-GCN component in TE-GNN
with a multilayer perceptron (MLP).
• TE-GNN-GGNN: It uses the gated graph neural network

(GGNN) [12,15] to replace the T-GCN in TE-GNN.
• TE-GNN-GAT: It replaces the T-GCN in TE-GNN with the

graph attention network (GAT) [17,42].

Table 3 shows that all three variants mostly lead to a consider-
ble performance degradation on all four datasets in term of both
etrics. More precisely, replacing T-GCN with MLP demonstrates

he worst performance as it lacks the capability to capture the
omplex user item transition information. Both TE-GNN-GGNN
nd TE-GNN-GAT show a superior performance to TE-GNN-MLP
s they effectively model the rich structure information between
tems based on a graph neural network. Among them, TE-GNN-
AT performs better than TE-GNN-GGNN which would be at-
ributed to that it considers the importance of neighboring items
ia the graph attention network. Our proposed method TE-GNN
chieves a superior performance to all three variants, which
eveals the effectiveness of incorporating the Temporal Graph
onvolutional Network (T-GCN) in our model.
8

4.7. Impact of Temporal Interest Attention Network (TIAN) (RQ3)

To answer RQ3, we compare the performance of Temporal
Interest Attention Network (TIAN) with the self attention network
and the position-aware attention network, which are utilized in
SASRec [23] and SGNN [16], respectively. Different from both
self attention network and position-aware attention network, the
fine-grained temporal information are explored with the pro-
posed Temporal Interest Attention Network. In addition, we fur-
ther investigate the effectiveness of the proposed component
Asymmetric Bidirectional Gated Recurrent Unit (Asym-BiGRU) in
TIAN by discarding the Asym-BiGRU component or replacing it
with the conventional BiGRU. A brief description of all variants
are listed as follows:

• TE-GNN-w/o TIAN: We remove the Temporal Interest Atten-
tion Network (TIAN) in TE-GNN.
• TE-GNN-SA: We replace the Temporal Interest Attention

Network (TIAN) in TE-GNN with the self attention network.
• TE-GNN-PA: We adopt the position-aware attention net-

work in SGNN [16] rather than the Temporal Interest Atten-
tion Network (TIAN) in TE-GNN.
• TIAN-w/o GRU: We discard the Asym-BiGRU in TIAN and do

not consider the sequential relationships of bins within a
session.
• TIAN-BiGRU: We replace the Asym-BiGRU with the conven-

tional BiGRU in TIAN.

From Table 4, we can observe that incorporating TIAN will
achieve a substantial performance improvement, which shows
the effectiveness of TIAN. TE-GNN-w/o TIAN shows a significant
performance degradation as it cannot model the user tempo-
ral interest information. Comparing to TE-GNN-w/o TIAN, both
TE-GNN-SA and TE-GNN-PA do not demonstrate a substantial
performance improvement. Since TE-GNN-SA only captures the
semantic relationships among items and TE-GNN-PA focuses on
model items’ position information, both of them ignore the user
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Table 4
Performance comparison of our proposed method and all variants.
Datasets Diginetica Tmall Nowplaying Retailrocket

Methods P@20 M@20 P@20 M@20 P@20 M@20 P@20 M@20

TE-GNN-w/o TIAN 52.47 18.21 35.96 17.13 21.65 7.31 54.83 35.42
TE-GNN-SA 52.14 18.12 32.35 15.18 21.29 7.15 55.03 35.98
TE-GNN-PA 52.53 18.46 32.25 15.28 22.13 7.35 53.54 35.97

TIAN-w/o GRU 53.42 18.89 37.25 17.73 22.74 7.56 60.21 39.66
TIAN-BiGRU 54.47 19.18 38.55 18.19 23.64 7.69 63.84 42.67

TE-GNN 54.78 19.35 39.01 18.47 23.85 7.88 65.02 44.02
Table 5
Analysis of the computational complexity of different comparing models. n is
the session length, s denotes the number of graph neural networks layers, d is
the dimension of item embedding, |V | is the number of all candidate items, k
is the number of GRU layers, and K is the number of global neighbors of item.
Methods Complexity

SR-GNN O(s(nd2 + n3)+ d2)
TAGNN O(s(nd2 + n3)+ n|V |d2 + d2)
GCE-GNN O(sn2d+ nKd+ d2)

TE-GNN O((s+ k)n2d+ d2)

temporal interest information. Differ from these variants, TIAN-
w/o GRU obtains a superior performance as it utilizes a multi-
grain interest separating strategy to explicitly model user tempo-
ral interest information. It is worth noting that the performance
drop of TIAN-w/o GRU is relatively smaller than that of the other
three comparing methods (i.e., TE-GNN-w/o TIAN, TE-GNN-SA
and TE-GNN-PA). The main reason is that the other three compar-
ing methods choose to discard the important sub-module TIAN or
replace it with a simple attention-based network (e.g., the self-
attention network or the position-aware attention network), thus
they have a considerable performance drop. However, in TIAN-
w/o GRU, we still keep the sub-module TIAN and only remove
the GRU part (i.e., Asym-BiGRU) from TIAN. TIAN-BiGRU boosts
the performance by further taking the contextual information of
each interest bin within a session into consideration. However,
in the scenario of session-based recommendation, the forward
contextual information would play a more important role as com-
pared with the backward contextual information. Comparing with
all variants, our proposed approach TE-GNN achieves the best
performance by incorporating the Asym-BiGRU which models the
two sides of contextual information differently.

4.8. Impact of the number of Temporal Graph Convolutional Net-
work (T-GCN)

layers L (RQ4) In order to check the impact of the number
f Temporal Graph Convolutional Network (T-GCN) layers in TE-
NN, we study the performance of TE-GNN with various number
f T-GCN layers ranging from 1 to 5. Meanwhile, we also compare
he performance of our method with its corresponding variant TE-
NN-w/o HN, which discards the HighWay Network, on different
umber of T-GCN layers. The results on all datasets are demon-
trated in Fig. 4. We can observe that on the Diginetica dataset the
erformance of TE-GNN first rises up and reaches the peak when
= 2, after that it starts to decrease if L becomes larger. Similar
esults are observed on both Nowplaying and Retailrocket. On
he Tmall dataset, the performance of TE-GNN increases gradually
nd reaches the peak when L = 4 in terms of both metrics. It

will present a considerable performance degradation if we further
enlarge the number of the layers. The trend demonstrates that our
model can effectively capture transition relationships between
distant items when we increase the number of T-GCN layers.
However, if the number of T-GCN layers becomes too large, more
9

irrelevant or noise high-order neighboring items will be injected
into the model which leads to a sub-optimal performance. We
can also observe in Fig. 4 that our model TE-GNN consistently
performs better than its corresponding variant TE-GNN-w/o HN.
In addition, with the increase of number of T-GCN layers, the
performance degradation of TE-GNN-w/o HN as comparing to
our method TE-GNN becomes larger. The results verify that in-
corporating the HighWay Network can effectively alleviate the
over-smoothing issue caused by these multiple layers of GCN
architecture.

4.9. Impact of the session length (RQ5)

To investigate the performance of our method on sessions
with different lengths, we separate all sessions into two groups,
i.e., short sessions and long sessions, based the session length.
Specifically, the sessions with length larger than 5 are considered
as long sessions and the remaining sessions are considered as
short sessions. We also report the performance of the two best
performing baselines, i.e., TAGNN [35] and GCE-GNN [17]. Fig. 5
demonstrates the performance of three methods with respect to
different session lengths. From the results, we have the following
observations: Firstly, on both Diginetica and Retailrocket datasets,
all methods demonstrate a relatively higher performance on the
short sessions than that on the long sessions. However, on both
Tmall and Nowplaying datasets, all methods show a higher per-
formance on the long sessions than that on the short sessions.
The reason may be that both Diginetica and Retailrocket datasets
have a smaller session length as compared with that of Tmall
and Nowplaying datasets. Secondly, our proposed method TE-
GNN is consistently better than both TAGNN and GCE-GNN on
both short and long sessions for all datasets with an exception of
Nowplaying in terms of the metric MRR@20.

4.10. Comparison of computational complexity (RQ6)

To analyze the computational complexity of our proposed
method TE-GNN, we compare it with three state-of-the-art base-
lines, i.e., SR-GNN, TAGNN, and GCE-GNN. Table 5 reports the
results of theoretical analysis of the time complexity. For SR-GNN,
the computational complexity is O(s(nd2+ n3)+ d2) where d and
n are the dimension of item embeddings and the session length,
respectively. Here, we use s to denote the number of layers in
graph neural networks. TAGNN demonstrates a higher computa-
tional complexity, i.e., O(s(nd2 + n3) + n|V |d2 + d2) where |V |
indicates the number candidate items, than that of SR-GNN. This
is because TAGNN applies the GGNN [43] to learn node vector,
which is similar to SR-GNN. In addition, it also adopts a local tar-
get attentive module to measure attention scores between each
item in the current session and all items in V . The computational
complexity of GCE-GNN is O(sn2d + nKd + d2), where K is the
number of global neighbors of an item. For our proposed method
TE-GNN, the computational complexity is O((s+k)n2d+d2), where
k is the number of GRU layers. From the results, we can observe
that the computational complexity of TE-GNN is much lower than
that of TAGNN, and comparable to that of SR-GNN and GCE-GNN.
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Fig. 4. Impact of the number of T-GCN layers L.
w
d

. Conclusion

This work investigates the problem of session-based recom-
endation by effectively modeling the complex user interest shift
attern. To this end, we extend the conventional session graph by
ncorporating the user interest drift and propose a novel time-
nhanced session graph (TES-Graph). Based on the TES-Graph,
Temporal Graph Convolutional Network (T-GCN) is designed

o learn better item embeddings. In addition, we also introduce
Temporal Interest Attention Network (TIAN) to model items
hich share a similar user interest along the temporal dimension.
xtensive experiments on four datasets show that our proposed
pproach TE-GNN consistently outperforms all state-of-the-art
aseline methods.
Existing works mainly focus on exploring local information

ithin the current session for recommendation, while rich global
nformation from other neighboring sessions are largely ignored.
n addition, there are noisy transition information between items
aused by users’ accidental or wrong clicks, which may be in-
ected into the model training process. In the future, we will
10
develop a more effective model by incorporating the rich infor-
mation from a global perspective, and dealing with noisy items
in order to alleviate the noisy transition issue.
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