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ABSTRACT
The mainstream of data-driven abstractive summarization models

tends to explore the correlations rather than the causal relation-

ships. Among such correlations, there can be spurious ones which

suffer from the language prior learned from the training corpus

and therefore undermine the overall effectiveness of the learned

model. To tackle this issue, we introduce a Structural Causal Model

(SCM) to induce the underlying causal structure of the summariza-

tion data. We assume several latent causal factors and non-causal

factors, representing the content and style of the document and

summary. Theoretically, we prove that the latent factors in our

SCM can be identified by fitting the observed training data under

certain conditions. On the basis of this, we propose a Causality

Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the

causal representations that can mimic the causal factors, guiding

us to pursue causal information for summary generation. The key

idea is to reformulate the Variational Auto-encoder (VAE) to fit the

joint distribution of the document and summary variables from the

training corpus. Experimental results on two widely used text sum-

marization datasets demonstrate the advantages of our approach.

CCS CONCEPTS
• Information systems→ Summarization; •Computingmethod-
ologies → Learning latent representations.
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1 INTRODUCTION
Text summarization is an important task in natural language pro-

cessing (NLP), which targets to produce a fluent and condensed sum-

mary for a document, while preserving the key information [36, 45].

Abstractive summarization is a mainstream approach to generate

compact summaries from scratch [3, 72]. Advances in deep learn-

ing have fueled research in applying neural sequence-to-sequence

(Seq2Seq) networks to automatically extract effective features and

generate summaries in an end-to-end manner [40, 47, 57].

Despite the promising performance, current data-driven sum-

marization models possess an inherent issue. These efforts often

exploit all types of correlations to fit data well, overlooking the un-

derlying data generating process (DGP) that reveals how observed

data is generated [1]. Such correlations are probably spurious due

to the biased statistical dependencies caused by confounder in-

herited from the training corpus. For instance, if the term “lion”

frequently co-occurs with “Africa” in training data, a model might

erroneously generate a summary containing “Africa” even for the

document describing the core information “lion pregnancy” with

the side information “Africa”. The occurrence of such stereotyping,

arising from spurious correlations, impacts the effectiveness of text

summarization techniques and hinders practical applications.

Recently, structural causal model (SCM) has attracted great in-

terest from the research community to identify the underlying DGP

of the observed data [2, 39, 49, 50, 58]. Learned causal models aid

stable prediction and generalization by capturing causal relation-

ships. In this work, we aim to devise a SCM for describing the DGP

in text summarization, with the goal of inducing causal structure

of the data, especially the causal relationships between documents
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and summaries. We would like the latent space to be separated

into content and style space. For the content space, we assume two

kinds of latent factors, i.e., Core-Content (CC) factors and Side-

Content (SC) factors, referring to the core content (main points)

and side content (non-essential information) in the document, re-

spectively. For the style space, we also assume two kinds of latent

factors, i.e., Document-Style (DS) factors and Summary-Style (SS)

factors, referring to the lengthy writing style of the document and

the concise writing style of the summary, respectively. Among such

latent factors, there can be confounder representing the statistical

dependencies inherited from the training corpus.

Specifically, as shown in Figure 1, we assume that CC and SS

factors are summary-causal factors whose relationship with the

summary remains invariant across the corpus, while other factors

are non-causal for the summary and only causally influence the

document. Each document is generated from the summary-causal

factor CC and the non-causal factors SC and DS. Besides, we incor-

porate core topics and side topics in the documents to guide the

learning of CC and SC factors. Theoretically, we prove that certain

conditions ensure the identifiability of causal factors, enabling the

generation of summaries containing only causal information.

Based on the SCM, we propose a Causality Inspired Sequence-to-

Sequence model (CI-Seq2Seq) for abstractive text summarization,

which enforces the learned representations to mimic the latent

factors. The key idea is to learn the causal generative mechanisms
for the document and summary, by adapting Variational Auto-

encoder (VAE) [26] to supervised training. Specifically, we first

partition each dataset into subsets through Latent Dirichlet Al-

location (LDA) [4] and define confounder information as topical

features of subsets. Then, we utilize LDA and Compression Rate

(CR) [18] as the guidance to learn the content and style factors,

respectively. During testing, we first infer CC and DS factors based

on the learned document-causal generative mechanisms, and then

use the summary-causal generative mechanisms for controlled sum-

mary generation based on the given CR between DS and SS factors.

To the best of our knowledge, it is the first work to combine

causality and text summarization with a rigorous theoretical guar-

antee. Experimental results on two widely-used datasets, i.e., CNN/-

Daily Mail [19] and XSUM [43], demonstrated that CI-Seq2Seq can

achieve significant improvements over prevailing baselines in terms

of prediction performance, generalizability and interpretability. The

code is available at https://github.com/ict-bigdatalab/CI-Seq2Seq.

2 RELATEDWORK
Text Summarization. Text summarization can be categorized into

extractive and abstractive methods. Extractive methods directly

extract and rearrange sentences from the document to generate

the summary [40, 44, 79, 80]. Abstractive methods aim to generate

a summary by comprehending the document [14, 16, 32, 47, 57].

Recently, researchers have explored to utilize pre-trained language

models (PLMs) to enhance the performance of both extractive [55,

63, 69, 78] and abstractive methods [7, 28, 33, 82]. However, most

studies capture only correlations rather than causal relationships.

Causality for NLP. Causality targets to explore the causal relation-
ships in the data [50, 70], which has been widely studied in various

tasks, e.g., information retrieval [24], recommendation [65, 76, 77]

and computer vision [46, 60, 75]. The mainstream methods include

Document

Summary

Core topics

Side topics

Confounders

DS factors

SC factors

SS factors

CC factors

𝑙𝑑𝑠
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𝑙𝑐𝑐

𝑢

𝑜𝑠𝑡
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𝑜𝑐𝑡

Figure 1: The proposed SCM for text summarization. Solid
and dashed circles denote observed and latent variables. The
solid arrows pointing to𝑥 and𝑦 represent the invariant causal
generative mechanisms 𝑝 (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) and 𝑝 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 ), while
the dashed arrows pointing from𝑢 represent the varied latent
distributions given confounder. The blue arrows pointing
to 𝑜𝑠𝑡 and 𝑜𝑐𝑡 represent the content guidance for 𝑙𝑠𝑐 and 𝑙𝑐𝑐 ,
while the yellow dashed line between 𝑙𝑑𝑠 and 𝑙𝑠𝑠 represents
their relation as the style guidance. Details see Section 3.

potential outcome model [56] and structural causal model (SCM)

[48, 51]. Specifically, SCM has two primary applications: causal

inference and causal representation learning. The former explores

variable impact via causal intervention [17] and counterfactual

reasoning [5]. The latter identifies causal factors by studying data

generating process, which enhances robustness and generalizability,

even when facing distributional shifts [31, 35, 38, 64, 75].

As for NLP, the causality-aware methods are mainly studied in

text classification [53, 62], table-to-text generation [8] and language

model pre-training [6], for debiasing [53], controlling [21] or style

transferring [42]. For example, some works [6, 8, 21] applied causal

intervention to eliminate the spurious correlations introduced by

backdoor path. Some works [9, 21, 42, 53, 68] utilized counterfac-

tual reasoning to measure the causal effect by excluding the direct

effect from its total effect, or control textual attributes by assigning

counterfactual values. Yet there have been few works that apply

causal perspective to text summarization [68], particularly in terms

of causal representation learning.

Disentangled Representation Learning. Disentangled represen-

tation learning aims to map different aspects of data into distinct

low-dimensional latent spaces. It has attracted considerable atten-

tion in machine learning [20] and NLP [11, 42, 73, 81]. Besides

disentangling latent factors, we focus on characterizing the causal

and non-causal factors for text summarization.

3 A CAUSAL VIEW ON SUMMARIZATION
Following the definition that two variables have a causal relationship,
denoted as “cause → effect”, if intervening the cause may alter the
effect, but not vice versa [50, 52], we first define the causal relation-
ships in text summarization, and then formulate it using structural

causal model (SCM) [51], followed by the identifiability analysis to

ensure that the latent factors in our SCM can be correctly separated

and learned under certain conditions.
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3.1 Causal Relationships
We introduce step-by-step about how we characterize the causal

relationships in text summarization.

(1) Assuming latent factors with causal relationships. It is
likely that there exist correlations between a document 𝑥 and its

summary 𝑦. According to the Reichenbach’s common cause princi-

ple [52], correlations mean there exist common causes that causally

influence 𝑥 and 𝑦. We assume latent factors 𝑧 as common causes,

carrying mixed information of 𝑥 and 𝑦. That is, 𝑧 → 𝑥 and 𝑧 → 𝑦.

(2) Clarifying the causes for document and summary. To
separate the mixed information in 𝑧, we decompose 𝑧 in terms

of content and style, i.e., Core-Content (CC) factor 𝑙𝑐𝑐 and Side-

Content (SC) factor 𝑙𝑠𝑐 in content space, as well as Document-Style

(DS) factor 𝑙𝑑𝑠 and Summary-Style (SS) factor 𝑙𝑠𝑠 in style space. For

content, summary 𝑦 should preserve the core content while omit

the side content of document 𝑥 , i.e., 𝑙𝑐𝑐 → 𝑦, 𝑙𝑐𝑐 → 𝑥 and 𝑙𝑠𝑐 → 𝑥 .

For style, considering different style of 𝑥 and 𝑦, we assume 𝑙𝑑𝑠 is

the style factor for 𝑥 and 𝑙𝑠𝑠 for 𝑦, i.e., 𝑙𝑑𝑠 → 𝑥 and 𝑙𝑠𝑠 → 𝑦.

(3) Capturing correlations among latent factors. Latent fac-
tors may mix through spurious correlation from biased statistical

dependencies of the training corpus [41, 53].We use𝑢 to denote con-

founder resulting in the spurious correlation, and orient four edges

from 𝑢 to latent factors, i.e., 𝑢 → 𝑙𝑐𝑐 , 𝑢 → 𝑙𝑠𝑐 , 𝑢 → 𝑙𝑑𝑠 , 𝑢 → 𝑙𝑠𝑠 .

(4) Adding guidance to separate latent factors. Practically, we
use weakly-supervised signals to guide latent factor learning. For

content factors, we introduce core topics 𝑜𝑐𝑡 and side topics 𝑜𝑠𝑡
for 𝑙𝑐𝑐 and 𝑙𝑠𝑐 respectively. That is, 𝑙𝑐𝑐 → 𝑜𝑐𝑡 and 𝑙𝑠𝑐 → 𝑜𝑠𝑡 . For

style factors, we define the function relation between 𝑙𝑑𝑠 and 𝑙𝑠𝑠 to

bridge them. Thus, we link 𝑙𝑑𝑠 − 𝑙𝑠𝑠 by an undirected edge.

3.2 Structural Causal Model
Based on the above analysis, we devise the SCM for text summa-

rization (Figure 1). It describes the data generating process (DGP) –

latent factors generate the observations (document and summary)

given the confounder. The nodes denote variables, and the edges

denote relationships (directed: causal, undirected: non-causal).

We refer to 𝑝 (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) and 𝑝 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 ) as the causal gen-

erative mechanisms for the document and summary, respectively.

They are assumed to be invariant to the prior 𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 , 𝑙𝑠𝑠 ) ac-
cording to the Independent Causal Mechanisms (ICM) Principle

[52, 59], denoted by solid arrows in Figure 1, while the latent distri-

butions given the confounder may vary across domains, denoted

by dashed arrows. Besides, the topic distributions 𝑝 (𝑜𝑐𝑡 |𝑙𝑐𝑐 ) and
𝑝 (𝑜𝑠𝑡 |𝑙𝑠𝑐 ) denote the content guidance, and the function relation

between 𝑙𝑑𝑠 and 𝑙𝑠𝑠 denotes the style guidance. We formally present

a comprehensive functional form for the DGP as outlined below.

We define Θ ≜ {𝑓 ,𝚽} as the parameters to generate observed

variables, where 𝑓 is the invertible function mapping latent factors

to observed variables, and 𝚽 denotes the parameters to generate

latent factor given confounder 𝑢. The parent set is denoted as 𝑃𝑎(·).
Taking 𝑥 as an example, 𝑃𝑎(𝑥) = {𝑙𝑠𝑐 , 𝑙𝑑𝑠 , 𝑙𝑐𝑐 }. The joint proba-

bility density of 𝑥 and 𝑃𝑎(𝑥) can be written as:

𝑝Θ𝑥
(𝑥, 𝑃𝑎(𝑥) |𝑢) =𝑝Θ𝑥

(𝑥, 𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢)
=𝑝 𝑓𝑥 (𝑥 |𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 ) · 𝑝𝚽𝑥

(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢) . (1)

For 𝑝
𝚽𝑥

(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢), we assume it follows exponential family:

𝑝
𝚽𝑥

(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢)=𝑝T𝑙𝑠𝑐 ,𝝀𝑙𝑠𝑐 (𝑙𝑠𝑐 |𝑢) · 𝑝T𝑙𝑐𝑐 ,𝝀𝑙𝑐𝑐 (𝑙𝑐𝑐 |𝑢) · 𝑝T𝑙𝑑𝑠 ,𝝀𝑙𝑑𝑠
(𝑙𝑑𝑠 |𝑢)

=

𝑑𝑠𝑐∏
𝑖=1

𝑝T𝑙𝑠𝑐 ,𝝀𝑙𝑠𝑐 (𝑙𝑠𝑐𝑖 |𝑢) ·
𝑑𝑐𝑐∏
𝑖=1

𝑝T𝑙𝑐𝑐 ,𝝀𝑙𝑐𝑐 (𝑙𝑐𝑐𝑖 |𝑢) ·
𝑑𝑑𝑠∏
𝑖=1

𝑝T𝑙𝑑𝑠 ,𝝀𝑙𝑑𝑠
(𝑙𝑑𝑠𝑖 |𝑢)

=
∏

𝑃𝑎∈{𝑙𝑠𝑐 ,𝑙𝑐𝑐 ,𝑙𝑑𝑠 }

𝑑𝑃𝑎∏
𝑖=1

𝑄𝑃𝑎
𝑖

(𝑃𝑎𝑖 )
𝑍𝑃𝑎
𝑖

(𝑢)
· exp


𝑘𝑃𝑎∑︁
𝑗=1

𝑇𝑃𝑎𝑖,𝑗 (𝑃𝑎𝑖 )_
𝑃𝑎
𝑖,𝑗 (𝑢)

 , (2)

where 𝚽𝑥 contains sufficient statistics T and coefficient 𝝀, 𝑄𝑃𝑎
𝑖

is

the base measure, and 𝑍𝑃𝑎
𝑖

is the normalization function.

For 𝑝 𝑓𝑥 (𝑥 |𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 ), we constrain it by Additive Noise Model

(ANM) assumption [23], where the DGP for 𝑥 can be expressed as:

𝑥 = 𝑓𝑥 (𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 ) + 𝜺, 𝜺 ∼ 𝑝𝜺 (𝜺) . (3)

We rewrite Equation 1 using Equation 3, i.e.,

𝑝Θ𝑥
(𝑥, 𝑃𝑎(𝑥) |𝑢) = 𝑝𝜺 (𝑥 − 𝑓𝑥 (𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 )) · 𝑝𝚽𝑥

(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢) .
(4)

Similarly, we can obtain the results for 𝑦, 𝑜𝑠𝑡 and 𝑜𝑐𝑡 , i.e.,

𝑝Θ𝑦
(𝑦, 𝑃𝑎(𝑦) |𝑢) = 𝑝𝜺 (𝑦 − 𝑓𝑦 (𝑙𝑠𝑠 , 𝑙𝑐𝑐 )) · 𝑝𝚽𝑦

(𝑙𝑠𝑠 , 𝑙𝑐𝑐 |𝑢), (5)

𝑝Θ𝑜𝑠𝑡
(𝑜𝑠𝑡 , 𝑃𝑎(𝑜𝑠𝑡 ) |𝑢) = 𝑝𝜺 (𝑜𝑠𝑡 − 𝑓𝑜𝑠𝑡 (𝑙𝑠𝑐 )) · 𝑝𝚽𝑜𝑠𝑡

(𝑙𝑠𝑐 |𝑢), (6)

𝑝Θ𝑜𝑐𝑡
(𝑜𝑐𝑡 , 𝑃𝑎(𝑜𝑐𝑡 ) |𝑢) = 𝑝𝜺 (𝑜𝑐𝑡 − 𝑓𝑜𝑐𝑡 (𝑙𝑐𝑐 )) · 𝑝𝚽𝑜𝑐𝑡

(𝑙𝑐𝑐 |𝑢). (7)

In summary, using the DGP in our SCM, we can express the joint

probability density functions as Equations 4-7.

Notice that latent variables cannot be directly obtained. Instead,

we can only learn their representations by mimicking these distri-

butions. This raises a crucial question: Can we learn representations

for each latent factor without mixing information with others, while

ensuring that the difference between the learned representations

and the true representations remains within acceptable bounds of

uncertainty? This refers to the identifiability of the latent variables.

How to ensure identifiability, i.e, how to solve the question, is

presented in the subsequent section.

3.3 Identifiability Analysis
As discussed in Section 3.2, we aim to learn representations for

latent factors while ensuring their identifiability. To achieve this,

we begin by defining an equivalence relation denoted as ∼𝑃 .

Definition 3.1 (∼𝑃 Equivalent). Suppose Θ and Θ̃ are two set of

parameters for the SCM as defined in Section 3.2.Θ and Θ̃ are called

∼𝑃 equivalent if the following conditions are met:

𝑝Θ (𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑥,𝑦) = 𝑝Θ̃ (𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑥,𝑦), (8)

∀𝑜,∀𝑙, ∃(A𝑙 , c𝑙 ), s.t. T𝑙 ( [𝑓𝑜 ]−1

𝑙
(𝑜)) = A𝑙 ˜T𝑙 ( [ ˜𝑓𝑜 ]−1

𝑙
(𝑜)) + v𝑙 (9)

where 𝑜 ∈ {𝑥,𝑦, 𝑜𝑐𝑡 , 𝑜𝑠𝑡 } , 𝑙 is a latent factor in 𝑃𝑎(𝑜), expressed as

𝑙 ∈ 𝑃𝑎(𝑜), A is an invertible permutation matrix, and v is a vector.

The following Theorem 3.2 provides a sufficient condition which

ensures ourmodel to learn parameters Θ̃ that satisfy∼𝑝 equivalence
with true parameters Θ.

Theorem 3.2 (∼𝑃 Identifiability). Considering the SCM de-
scribed in Section 3.2, if we have an adequate number of distinct 𝑢
values, denoted as 𝑘𝑢 , that satisfy the variety assumption, i.e., the
matrix L ≜ [𝝀(𝑢1)−𝝀(𝑢0), ...,𝝀(𝑢𝑘𝑢 )−𝝀(𝑢0)] has full column rank,
where 𝝀(𝑢) represents the vector parameter for the probability den-
sity function of an exponential family distribution. Then the learned
parameter Θ̃ and the true parameter Θ exhibit ∼𝑝 equivalent.

Discussion Theorem 3.2 ensures that the learned parameters are

∼𝑝 equivalent with the true parameters, that is: (1) The joint distri-

butions given by learned parameters and true parameters match
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Figure 2: The overall architecture of CI-Seq2Seq model.

(Equation 8). (2) Latent factors can be separated, as only one appears

in Equation 9 each time. (3) The difference between learned latent

factors and true ones is limited to a permutation transformation

with a linear shift applied to their sufficient statistics (Equation 9).

Besides, Theorem 3.2 requires that the number 𝑘𝑢 of different

values for confounder 𝑢 is sufficient. It can be satisfied by proper

definition for confounder. Proofs are provided in Section 5.

4 CAUSALITY INSPIRED SEQ2SEQ MODEL
Under the theoretical guarantees on modeling latent factors sepa-

rately (Theorem 3.2), we propose the Causality Inspired Sequence-

to-Sequence (CI-Seq2Seq) model to learn representations that can

mimic the latent factors by fitting the observed training data.

In the following, we first present our model architecture, a re-

structured Variational Auto-Encoder (VAE) [26], which learns latent

representations from input and produces samples resembling the

original data. Then, we detail learning strategy for causal genera-

tive mechanisms 𝑝 (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) and 𝑝 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 ), followed by the

controlled generation procedure using these learned mechanisms.

4.1 Model Architecture
As depicted in Figure 2, the proposed CI-Seq2Seq contains three

main components: Confounder-aware Variational Encoder, Recon-

struction Decoder, and Prediction Decoder.

4.1.1 Confounder-aware Variational Encoder. This encoder targets
to obtain representations h𝑐𝑐 , h𝑠𝑐 , h𝑑𝑠 and h𝑠𝑠 for the CC, SC,

DS and SS factors from the input document 𝑥 = {𝑥1, 𝑥2, ..., 𝑥𝑁 } of
length 𝑁 . Based on Theorem 3.2, confounder 𝑢 is essential in distin-

guishing latent factors. It can be defined as the intrinsic properties

of training data, e.g., topic, style and domains. Here, we denote 𝑢 as

the topic extracted from documents. Then, the encoder maps 𝑥 and

𝑢 into h𝑐𝑐 , h𝑠𝑐 , h𝑑𝑠 and h𝑠𝑠 according to 𝑞𝜙 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢) and
the relation between 𝑙𝑑𝑠 and 𝑙𝑠𝑠 , where 𝜙 denotes the parameters

of the confounder-aware variational encoder.

• Encoding Confounder Information h𝑢 . To achieve different

values of confounder 𝑢, we denote 𝑢 as the topical features. We

first partition each summarization corpus into 𝑘𝑢 subsets via LDA

topic classification, where each document belongs to one subset.

Specifically, each document obtains a topic distribution from

LDA, and the topic id 𝑡𝑖𝑑 with the highest probability is assigned

to the document. Then, following the practice of word embedding

[37], 𝑡𝑖𝑑 is applied to look up a hidden vector h𝑢 ∈ R𝑑𝑢 from a

trainable embedding matrix E𝑢 ∈ R𝑘𝑢×𝑑𝑢 , i.e., h𝑢 = E𝑢 (𝑡𝑖𝑑).
• Encoding Source Information h𝑑𝑜𝑐 . CC, SC and DS factors

are probably influenced by the full information of the document.

Therefore, we propose to model the distribution of them condi-

tioned on the global semantic representation of 𝑥 . Specifically,

given an input document 𝑥 , we first add a special token “[CLS]”

in front of it, and then leverage the final hidden state of this token

as its global representation h𝑑𝑜𝑐 ∈ R𝑑ℎ . It is a flexible aggregate
and comprehensive understanding of the entire sequence.

• Sampling h𝑐𝑐 , h𝑠𝑐 and h𝑑𝑠 .We mix h𝑑𝑜𝑐 with h𝑢 and encode

them into the distribution of h𝑐𝑐 , h𝑠𝑐 and h𝑑𝑠 to model the

posterior distributions 𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢). Specifically, the true

posterior 𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢) is approximated via the variational

distribution 𝑞𝜙 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢). We constraint the prior distri-

butions 𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) as standard Gaussian distributions follow-

ing [26, 29]. Gaussian parameters mean `𝑐𝑐,𝑠𝑐,𝑑𝑠 and variance

𝜎2

𝑐𝑐,𝑠𝑐,𝑑𝑠
are projected from the concatenation of h𝑑𝑜𝑐 and h𝑢 :

[`𝑐𝑐 ; `𝑠𝑐 ; `𝑑𝑠 ] = W1 [h𝑑𝑜𝑐 ;h𝑢 ] + b1, (10)

( [log𝜎2

𝑐𝑐 ; log𝜎2

𝑠𝑐 ; log𝜎2

𝑑𝑠
])= W2 [h𝑑𝑜𝑐 ;h𝑢 ] + b2,

where W1, W2 ∈ R(𝑑ℎ+𝑑𝑢 )×(𝑑𝑐𝑐+𝑑𝑠𝑐+𝑑𝑑𝑠 )
, b1, b2 ∈ R𝑑𝑐𝑐+𝑑𝑠𝑐+𝑑𝑑𝑠

are learnable. Finally, we sample h𝑐𝑐 ∈ R𝑑𝑐𝑐 , h𝑠𝑐 ∈ R𝑑𝑠𝑐 and

h𝑑𝑠 ∈ R𝑑𝑑𝑠 from the learned distribution using a reparametriza-

tion trick [26], respectively.

• Computing h𝑠𝑠 with Style Guidance. Since the SS factors

are only causally related to the summary 𝑦 = {𝑦1, 𝑦2, ..., 𝑦𝑀 } of
length 𝑀 , it is not suitable to directly extract them from 𝑥 like

DS factors. Therefore, we introduce compression rate (CR) [18]

between DS and SS factors as the style guidance. Specifically,

CR help bridge DS and SS factors smoothly, which indicates the

information ratio between the target summary and the source
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document. Following previous work [71], we define CR as the

ratio of the text length between the summary and the document,

i.e., 𝐶𝑅 = 𝑀/𝑁 ∈ (0, 1). Based on 𝐶𝑅, we can obtain h𝑠𝑠 :
h𝑠𝑠 = h𝑑𝑠 ×𝐶𝑅 (11)

4.1.2 Reconstruction Decoder. This decoder targets to utilize the
representations h𝑐𝑐 , h𝑠𝑐 and h𝑑𝑠 of the CC, SC and DS factors to

reconstruct the input document 𝑥 according to 𝑝\ (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ),
where \ denotes the parameters of the reconstruction decoder.

First, we apply a fully connected (FC) layer to combine h𝑐𝑐 , h𝑠𝑐
and h𝑑𝑠 into the composed information h𝑥 . Then, we propose to
replace the first token of decoder input with h𝑥 , since the first token
matters much for the generation of following tokens. Besides, the

first token is only allowed to attend to itself, which could alleviate

the vanishing latent factor problem to some extent [66].

To further enhance the impact of h𝑥 , we add it to all the out-

put hidden states {o𝑖 }𝑁𝑖=1
from the last Transformer layer in the

reconstruction decoder. The vocabulary selection probability 𝑃𝑥
for generating 𝑥 is computed as

𝑃𝑥 = W3 (o𝑖 + h𝑥 ) + b3, (12)

where W3 ∈ R𝑑ℎ×𝑑𝑣 and b3 ∈ R𝑑𝑣 are learnable.

4.1.3 Prediction Decoder. This decoder only allows the injection

of the CC representation h𝑐𝑐 along with the SS representation h𝑠𝑠
for generating the summary 𝑦 according to 𝑝𝜏 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 ), where 𝜏
denotes the parameters of the prediction decoder.

First, similar to the reconstruction decoder, we obtain the com-

posed representation h𝑦 for summary prediction, by combining

h𝑐𝑐 and h𝑠𝑠 using a FC layer. Then, we replace the first token with

h𝑦 in the prediction decoder. Simultaneously, we add h𝑦 to all the

output hidden states {r𝑗 }𝑀𝑗=1
from the last transformer layer in the

prediction decoder. The final vocabulary selection probability 𝑃𝑦
for generating 𝑦 is calculated in the same way as 𝑃𝑥 .

4.2 Learning Strategy
To learn 𝑝 (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) and 𝑝 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 ) for invariant prediction,
we reformulate the learning objective function of VAE in the super-

vised scenario to fit the training corpus. Specifically, we apply four

learning objectives as follows.

• Reconstruction Loss is applied to train the reconstruction de-

coder to reconstruct the input document, i.e.,

L𝑅 = −E𝑞𝜙 (𝑙𝑐𝑐 ,𝑙𝑠𝑐 ,𝑙𝑑𝑠 |𝑥,𝑢 ) [log 𝑝\ (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 )] . (13)

• Prediction Loss is applied to encourage the prediction decoder

to generate the summary based on the summary-causal repre-

sentations, i.e.,

L𝑃 = −E𝑞𝜙 (𝑙𝑐𝑐 ,𝑙𝑠𝑐 ,𝑙𝑑𝑠 |𝑥,𝑢 ) [log𝑝𝜏 (𝑦 |𝑙𝑐𝑐 , 𝑙𝑠𝑠 )] . (14)

• KL Loss is a regularizer based on the Kullback-Leibler (KL) di-

vergence, applied to push the posterior 𝑞𝜙 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢) to be

closed to the prior 𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 ) which is constrained as standard

Gaussian distributions, i.e.,

L𝐾𝐿 = D𝐾𝐿 [𝑞𝜙 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 |𝑥,𝑢)∥𝑝 (𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 )] . (15)

• Content Guidance Loss is further applied to guide the opti-

mization of the CC and SC factors, which is calculated by three

steps. (i) We first extract the core topics 𝑜𝑐𝑡 and side topics 𝑜𝑠𝑡 in

𝑥 according to the LDA topic distribution 𝑝 (𝑜𝑡 |𝑥) on 𝑘𝑢 topics.

Specifically, given a threshold 𝑡ℎ, a topic 𝑜𝑎𝑡 (𝑎 ∈ {1, 2, ..., 𝑘𝑢 })
belongs to the core topics of document 𝑥 if 𝑝 (𝑜𝑡 = 𝑜𝑎𝑡 |𝑥) > 𝑡ℎ,

otherwise side ones. To indicate the type of each topic, we intro-

duce a 𝑘𝑢−dimension binary indicator g, where “1” represents
the core topics and “0” represents the side ones. (ii) We then

transform such topic information into hidden representations

h𝑐𝑡 ,h𝑠𝑡 ∈ R𝑑ℎ based on another learnable embedding matrix

E𝑡 ∈ R𝑘𝑢×𝑑ℎ . Similar to E𝑢 , each row of E𝑡 represents a topic
embedding. Specifically, to achieve the aggregated hidden repre-

sentation h𝑐𝑡 which combines information of all core topics, we

obtain the core topic distribution 𝑝 (𝑜𝑐𝑡 |𝑥) based on the binary

indicator g, i.e.,
𝑝 (𝑜𝑐𝑡 |𝑥) = 𝑁𝑜𝑟𝑚(𝑝 (𝑜𝑡 |𝑥) ⊙ g), (16)

where ⊙ denotes element-wise multiplication and 𝑁𝑜𝑟𝑚() de-
notes normalization operation. After that, we linearly combine

topic embeddings from E𝑡 according to 𝑝 (𝑜𝑐𝑡 |𝑥) as below:
h𝑐𝑡 = 𝑝 (𝑜𝑐𝑡 |𝑥)E𝑡 . (17)

Similarly, for side topics, we have

𝑝 (𝑜𝑠𝑡 |𝑥) = 𝑁𝑜𝑟𝑚(𝑝 (𝑡 |𝑥) ⊙ (1 − g)), (18)

h𝑠𝑡 = 𝑝 (𝑜𝑠𝑡 |𝑥)E𝑡 . (19)

(iii) Finally, we compute the Euclidean distance (i.e., L2 distance)

of ⟨h𝑐𝑐 ,h𝑐𝑡 ⟩ and ⟨h𝑠𝑐 ,h𝑠𝑡 ⟩ as the content guidance loss, i.e.,
L𝐿𝐷𝐴 = 𝐿2(h𝑐𝑐 ,h𝑐𝑡 ) + 𝐿2(h𝑠𝑐 ,h𝑠𝑡 ) . (20)

The total loss is a summation of the four losses:

L = L𝑅 + L𝑃 + _𝑘𝑙L𝐾𝐿 + _𝑙𝑑𝑎L𝐿𝐷𝐴, (21)

where _𝑘𝑙 and _𝑙𝑑𝑎 are used to control the strength of the regular-

ization and the content guidance.

4.3 Controlled Generation
During the test stage, we first optimize the following log-likelihood

to infer 𝑙∗𝑐𝑐 , 𝑙
∗
𝑠𝑐 and 𝑙

∗
𝑑𝑠
, i.e.,

max

𝑙𝑐𝑐 ,𝑙𝑠𝑐 ,𝑙𝑑𝑠

log𝑝\ (𝑥 |𝑙𝑐𝑐 , 𝑙𝑠𝑐 , 𝑙𝑑𝑠 )+_𝑐𝑐 ∥𝑙𝑐𝑐 ∥2

2
+_𝑠𝑐 ∥𝑙𝑠𝑐 ∥2

2
+_𝑑𝑠 ∥𝑙𝑑𝑠 ∥2

2
,

(22)

where _𝑐𝑐 , _𝑠𝑐 and _𝑑𝑠 control the learned 𝑙𝑐𝑐 , 𝑙𝑠𝑐 and 𝑙𝑑𝑠 in a

reasonable scale. Specifically, we sample some candidate points

from 𝑁 (0, 𝐼 ) and select the optimal one in terms of Equation 22 as

the initial point for further optimization.

Finally, we employ the optimized 𝑙∗𝑐𝑐 and 𝑙∗
𝑑𝑠

to generate sum-

maries with different styles by varying 𝐶𝑅1. In this way, we can

actively control the compression rate of the summary. That is, with

different 𝑙∗𝑠𝑠 values and the optimized 𝑙∗𝑐𝑐 , we generate the summary

𝑦 based on the learned 𝑝𝜏 (𝑦 |𝑙∗𝑐𝑐 , 𝑙∗𝑠𝑠 ).

5 PROOF
Proof. For Theorem 3.2, we will demonstrate that we can learn

a parameter Θ̃ that is ∼𝑃 equivalent to the true parameter Θ, satis-
fying two conditions: Equation 8 and Equation 9 in Definition 3.1.

The first condition means the correct fitting of the joint distribution

of observed variables, which can be guaranteed by the universal

approximation ability of neural networks. Therefore, our main task

is to prove the validity of the second condition.

The proof is roughly divided into two steps: Denoising and Iden-
tifying. We will present the proof step by step.

(1) Denoising. This step serves the purpose of eliminating noise

variables while retaining only the latent factors. Assuming that the

1
Note that𝐶𝑅 is the ground-truth summary-document length ratio during training.
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learned distribution of observed variables is identical to the true dis-

tribution (i.e., the first condition holds), we have 𝑝Θ (𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑥,𝑦) =
𝑝Θ̃ (𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑥,𝑦). By integrating variables 𝑜𝑠𝑡 , 𝑜𝑐𝑡 , and 𝑦, we can

obtain 𝑝Θ𝑥
(𝑥) = 𝑝Θ̃𝑥

(𝑥). Then, we express it given confounder:

𝑝
𝑓𝑥 ,T𝑙𝑠𝑐 ,𝝀𝑙𝑠𝑐 ,T𝑙𝑑𝑠 ,𝝀𝑙𝑑𝑠 ,T𝑙𝑐𝑐 ,𝝀𝑙𝑐𝑐 (𝑥 |𝑢)=𝑝 ˜𝑓𝑥 , ˜T𝑙𝑠𝑐 , ˜𝝀𝑙𝑠𝑐 , ˜T𝑙𝑑𝑠 , ˜𝝀𝑙𝑑𝑠 , ˜T𝑙𝑐𝑐 , ˜𝝀𝑙𝑐𝑐

(𝑥 |𝑢),
(23)

⇒
∫

𝑝𝜺 (𝑥 − 𝑓𝑥 (𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 ))𝑝𝚽𝑥
(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢) · 𝑑𝑙𝑠𝑐𝑑𝑙𝑐𝑐𝑑𝑙𝑑𝑠

=

∫
𝑝𝜺 (𝑥 − ˜𝑓𝑥 (𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 ))𝑝 ˜

𝚽𝑥
(𝑙𝑠𝑐 , 𝑙𝑐𝑐 , 𝑙𝑑𝑠 |𝑢) · 𝑑𝑙𝑠𝑐𝑑𝑙𝑐𝑐𝑑𝑙𝑑𝑠 , (24)

⇒
∫

𝑝𝜺 (𝑥 − 𝑥)𝑝
𝚽𝑥

(𝑓 −1

𝑥 (𝑥) |𝑢)
���det(𝐽𝑓 −1

𝑥
(𝑥))

���𝑑𝑥
=

∫
𝑝𝜺 (𝑥 − 𝑥)𝑝

˜
𝚽𝑥

( ˜𝑓 −1

𝑥 (𝑥) |𝑢)
���det(𝐽

˜𝑓 −1

𝑥
(𝑥)

���𝑑𝑥, (25)

⇒
∫

𝑝𝜺 (𝑥 − 𝑥)𝑝
𝚽𝑥 ,𝑓𝑥 ,𝑢 (𝑥)𝑑𝑥 =

∫
𝑝𝜺 (𝑥 − 𝑥)𝑝

˜
𝚽𝑥 , ˜𝑓𝑥 ,𝑢

(𝑥)𝑑𝑥, (26)

⇒ (𝑝𝜺 ∗ 𝑝𝚽𝑥 ,𝑓𝑥 ,𝑢 ) (𝑥) = (𝑝𝜺 ∗ 𝑝 ˜
𝚽𝑥 , ˜𝑓𝑥 ,𝑢

) (𝑥), (27)

⇒ 𝐹 [𝑝𝜺 ] (𝜔)𝐹 [𝑝𝚽𝑥 ,𝑓𝑥 ,𝑢 ] (𝜔) = 𝐹 [𝑝𝜺 ] (𝜔)𝐹 [𝑝 ˜
𝚽𝑥 , ˜𝑓𝑥 ,𝑢

] (𝜔), (28)

⇒ 𝑝
𝚽𝑥 ,𝑓𝑥 ,𝑢 (𝑥) = 𝑝

˜
𝚽𝑥 , ˜𝑓𝑥 ,𝑢

(𝑥). (29)

In Equation 25, 𝐽 represents the Jacobian matrix, and |det| de-
notes generalized determinant, defined as |det(𝐴) | ≜

√︁
det(𝐴⊤𝐴).

The symbol ≜ is read as "is defined as". Equation 26 introduces

the function 𝑝
𝚽𝑥,𝑓 ,𝑢 (𝑥) ≜ 𝑝

𝚽𝑥 (𝑓 −1

𝑥 (𝑥) |𝑢) det(𝐽𝑓 −1

𝑥
(𝑥)) for conve-

nience. Note that Equation 26 corresponds to a convolution opera-

tion as expressed in Equation 27. In Equation 28, 𝐹 means Fourier

transformation, a useful tool to simplify convolution. In Equation 29,

we obtain the denoised result. Similar results can be obtained for

the other observed variables 𝑦, 𝑜𝑠𝑡 , and 𝑜𝑐𝑡 , i.e.,

𝑝
𝚽𝑦 ,𝑓𝑦 ,𝑢 (𝑦) = 𝑝

˜
𝚽𝑦 , ˜𝑓𝑦 ,𝑢

(𝑦), (30)

𝑝
𝚽𝑜𝑠𝑡 ,𝑓𝑜𝑠𝑡 ,𝑢

(𝑜𝑠𝑡 ) = 𝑝
˜
𝚽𝑜𝑠𝑡 ,

˜𝑓𝑜𝑠𝑡 ,𝑢
(𝑜𝑠𝑡 ), (31)

𝑝
𝚽𝑜𝑐𝑡 ,𝑓𝑜𝑐𝑡 ,𝑢

(𝑜𝑐𝑡 ) = 𝑝
˜
𝚽𝑜𝑐𝑡 ,

˜𝑓𝑜𝑐𝑡 ,𝑢
(𝑜𝑐𝑡 ) . (32)

Furthermore, notice that different observed variables share com-

mon latent factors. To capture this characteristic, we specifically

target pairs of observed variables and apply the aforementioned

denoising method to these pairs. This idea is inspired by LaCIM [60].

For the variable pairs (𝑥 , 𝑜𝑠𝑡 ), (𝑥 , 𝑜𝑐𝑡 ) and (𝑦, 𝑜𝑐𝑡 ), we can obtain

the similar denoised results:

𝑝
𝚽𝑥 ,𝚽𝑜𝑠𝑡 ,𝑓𝑎,𝑢

(𝑎) = 𝑝
˜
𝚽𝑥 , ˜𝚽𝑜𝑠𝑡 ,

˜𝑓𝑎,𝑢
(𝑎), (33)

𝑝
𝚽𝑥 ,𝚽𝑜𝑐𝑡 ,𝑓𝑏 ,𝑢

(𝑏) = 𝑝
˜
𝚽𝑥 , ˜𝚽𝑜𝑐𝑡 ,

˜𝑓𝑏 ,𝑢
(𝑏), (34)

𝑝
𝚽𝑦 ,𝚽𝑜𝑐𝑡 ,𝑓𝑐 ,𝑢

(𝑐) = 𝑝
˜
𝚽𝑦 , ˜𝚽𝑜𝑐𝑡 ,

˜𝑓𝑐 ,𝑢
(𝑐), (35)

where 𝑎 ≜ [𝑥⊤, 𝑜⊤𝑠𝑡 ]⊤, 𝑓 −1

𝑎 ≜ [[𝑓𝑥 ]−1

𝑙𝑑𝑠 ,𝑙𝑐𝑐
(𝑥)⊤, 𝑓 −1

𝑜𝑠𝑡
(𝑜𝑠𝑡 )⊤]⊤, 𝑏 ≜

[𝑥⊤, 𝑜⊤𝑐𝑡 ]⊤, 𝑓 −1

𝑏
≜ [[𝑓𝑥 ]−1

𝑙𝑠𝑐 ,𝑙𝑑𝑠
(𝑥)⊤, 𝑓 −1

𝑜𝑐𝑡
(𝑜𝑐𝑡 )⊤]⊤, 𝑐 ≜ [𝑦⊤, 𝑜⊤𝑐𝑡 ]⊤,

𝑓 −1

𝑐 ≜ [[𝑓𝑦]−1

𝑠𝑐
(𝑦)⊤, 𝑓 −1

𝑜𝑐𝑡
(𝑜𝑐𝑡 )⊤]⊤.

(2) Identifying. This step aims to establish the validity of Equa-

tion 9, which asserts the identifiability of each latent factors. Firstly,

we present the process for separating these variables. Subsequently,

we will transform the resulting equations to derive Equation 9.

Considering that we have sufficient number 𝑘𝑢 of different val-

ues of 𝑢. Taking the logarithm on the both sides of Equations 29-35,

then we plug these different 𝑢 (i.e., 𝑢0, 𝑢1, ...𝑢𝑘𝑢 ) into each equation.

Subtracting the first equation (containing 𝑢0) from the second equa-

tion (𝑢1) to the last equation (𝑢𝑘𝑢 ), we obtain 𝑘𝑢 different equations

for each of Equations 29-35, indexing by 𝑞 = 1, 2, . . . , 𝑘𝑢 :

∑︁
𝑙∈𝑃𝑎 (𝑜 )

[
⟨T𝑙 (𝑓 −1

𝑜 (𝑜)),𝝀𝑙 (𝑢𝑞) ⟩ +
∑︁
𝑖

log

𝑍 𝑙
𝑖
(𝑢0)

𝑍 𝑙
𝑖
(𝑢𝑞)

]
=

∑︁
𝑙∈𝑃𝑎 (𝑜 )

[
⟨ ˜T𝑙 ( ˜𝑓 −1

𝑜 (𝑜)), ˜𝝀𝑙 (𝑢𝑞) ⟩ +
∑︁
𝑖

log

𝑍 𝑙
𝑖
(𝑢0)

𝑍 𝑙
𝑖
(𝑢𝑞)

]
. (36)

In Equation 36,𝑜 represents both observed variables and the variable

pairs, i.e., 𝑜 ∈ {𝑥,𝑦, 𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑎, 𝑏, 𝑐}, where 𝑎, 𝑏, 𝑐 are the variable

pairs defined in the first step. When 𝑜 represents variable pair, such

as 𝑎 = [𝑥⊤, 𝑜⊤𝑠𝑡 ], then 𝑃𝑎(𝑜 = 𝑎) = 𝑃𝑎(𝑥) ∪ 𝑃𝑎(𝑜𝑠𝑡 ). And we define

𝝀𝑙 (𝑢𝑞) ≜ 𝝀𝑙 (𝑢𝑞) −𝝀𝑙 (𝑢0). In order to further simplify Equation 36,

we define w𝑙𝑞 ≜
∑
𝑖
�̃� 𝑙
𝑖
(𝑢0 )𝑍 𝑙

𝑖
(𝑢𝑞 )

�̃� 𝑙
𝑖
(𝑢𝑞 )𝑍 𝑙

𝑖
(𝑢0 )

. Then we rewrite these equations

in matrix form:∑︁
𝑙∈𝑃𝑎 (𝑜 )

[
𝐿𝑙,⊤T𝑙 (𝑓 −1

𝑜 (𝑜))
]
=

∑︁
𝑙∈𝑃𝑎 (𝑜 )

[
�̃�𝑙,⊤ ˜T𝑙 ( ˜𝑓 −1

𝑜 (𝑜)) +w𝑙
]
. (37)

We denote Equation 37 as Eq(·). Notice that 𝑃𝑎(𝑥) = {𝑙𝑠𝑐 , 𝑙𝑑𝑠 , 𝑙𝑐𝑐 },
we will now outline the procedure for separating the latent factors

in the parent set of 𝑥 . By evaluating the expression 𝐸𝑞(𝑜 = 𝑥) +
𝐸𝑞(𝑜 = 𝑜𝑠𝑡 ) − 𝐸𝑞(𝑜 = 𝑎), we can separate the latent factor 𝑙𝑠𝑐 of

observed variable 𝑥 :

𝐿𝑙𝑠𝑐 ,⊤T𝑙𝑠𝑐 ( [𝑓𝑥 ]−1

𝑙𝑠𝑐
(𝑥)) = �̃�𝑙𝑠𝑐 ,⊤ ˜T𝑙𝑠𝑐 ( [ ˜𝑓𝑥 ]−1

𝑙𝑠𝑐
(𝑥)) +w𝑙𝑠𝑐 . (38)

Using the same method we can separate 𝑙𝑐𝑐 of 𝑥 by evaluating

𝐸𝑞(𝑜 = 𝑥) + 𝐸𝑞(𝑜 = 𝑜𝑐𝑡 ) − 𝐸𝑞(𝑜 = 𝑏):
𝐿𝑙𝑐𝑐 ,⊤T𝑙𝑐𝑐 ( [𝑓𝑥 ]−1

𝑙𝑐𝑐
(𝑥)) = �̃�𝑙𝑐𝑐 ,⊤ ˜T𝑙𝑐𝑐 ( [ ˜𝑓𝑥 ]−1

𝑙𝑐𝑐
(𝑥)) +w𝑙𝑐𝑐 . (39)

Afterwards, the only remaining latent factor of 𝑥 , 𝑙𝑑𝑠 , is naturally

separated. The above results show that for the observed variable 𝑥 ,

all of its latent factors can be separated while preserving their indi-

viduality, without mixed information. This conclusion also holds

true for other observed variables, i.e., 𝑦, 𝑜𝑐𝑡 , and 𝑜𝑠𝑡 . The equations

for each separated latent factors can be expressed as follows:

𝐿𝑙,⊤T𝑙 ( [𝑓𝑜 ]−1

𝑙
(𝑜)) = �̃�𝑙,⊤ ˜T𝑙 ( [ ˜𝑓𝑜 ]−1

𝑙
(𝑜)) +w𝑙 , (40)

where 𝑜 ∈ {𝑥,𝑦, 𝑜𝑠𝑡 , 𝑜𝑐𝑡 , 𝑎, 𝑏, 𝑐}, 𝑙 ∈ 𝑃𝑎(𝑜).
Based on Equation 40, we will demonstrate the validity of Equa-

tion 9. Since number 𝑘𝑢 is enough to ensure matrix 𝐿𝑙,⊤ has full

rank, we multiply it’s inverse matrix on both sides of Equation 40:

T𝑙 ( [𝑓𝑜 ]−1

𝑙
(𝑜)) = A𝑙 ˜T𝑙 ( [ ˜𝑓𝑜 ]−1

𝑙
(𝑜)) + v𝑙 , (41)

whereA𝑙 = (𝐿𝑙,⊤)−1�̃�𝑙,⊤, v𝑙 = (𝐿𝑙,⊤)−1 w𝑙 . Notice that Equation 41

is already in the same form as Equation 9.

The remaining task is to prove that the matrix A𝑙 is an invertible

permutation matrix, which can be achieved by directly applying

Lemma 3, Theorem 2, and Theorem 3 from [25]. □

6 EXPERIMENTAL SETTINGS
6.1 Datasets
We conduct experiments on two public text summarization datasets

in English: (1) XSUM [43] contains BBC articles accompanied

with single sentence summaries (training/validation/testing size are

204,045/11,332/11,334 respectively); and (2) CNN/DM [19] contains

news articles from CNN and Daily Mail websites paired with multi-

sentence human generated summaries (training/validation/testing

size are 286,817/13,368/11,487 respectively).
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6.2 Evaluation Methodology
• Automatic Evaluation:We adopt Rouge scores [30] to auto-

matically evaluate the quality of the summaries generated by our

model and the baselines. Specifically, we use Rouge-1 (R1), Rouge-
2 (R2) and Rouge-L (RL) to measure the the uni-gram, bi-gram

and longest-common subsequence similarities, respectively.

• Human Evaluation: We measure the Informativeness, Faith-
fulness, and Fluency referring to [13, 22, 27]. Each summary is

rated on a 5-point Likert scale (higher better), to measure whether

the generated summary can satisfy: (i) Informativeness, covering
core information (i.e., the most necessary pieces) of the source

document and excluding side information that may mislead the

understanding of the main idea of the document; (ii) Faithfulness,
containing only information present in the document, without

introducing any made-up facts (i.e., hallucination [67]); (iii) Flu-
ency, being natural and grammatically correct. Specifically, we

ask three college students to score 200 samples randomly picked

from the test set of CNN/DM and XSUM (100 for each).

6.3 Baselines
We compare CI-Seq2Seq against several recently proposed baseline

methods: (i) Unified VAE-PGN [10] leverages VAE to eliminate

non-critical information at a sentence-level for abstractive sum-

marization. (ii) VHTM [15] jointly accomplishes summarization

with topic inference via variational encoder-decoder. (iii) T5 [54]

is a pre-trained framework that converts all text-based language

problems into a text-to-text format. (iv) BART [28] is a denoising

autoencoder for pre-training Seq2Seq models. (v) GLM [12] is a

General Language Model pre-trained with autoregressive blank in-

filling. (vi) PtLAAM [34] uses a length-aware attention mechanism

to generate summaries with desired length. (vii) PEGASUS [74] is

a pre-trained model tailored for abstractive summarization, with

Gap Sentences Generation (GSG) as pre-training objective.

6.4 Implementation Details
The proposed CI-Seq2Seq can be adapted to other Seq2Seq PLMs.

Here, we choose BART-large and PEGASUS-large for initialization,

denoted as CI-Seq2Seq
𝑏𝑎𝑟𝑡

and CI-Seq2Seq
𝑝𝑒𝑔𝑎

, where the hidden

size 𝑑ℎ is 1024, and the vocabulary size 𝑑𝑣 is 50265 or 96103 for

CI-Seq2Seq
𝑏𝑎𝑟𝑡

and CI-Seq2Seq
𝑝𝑒𝑔𝑎

, respectively. BART is chosen

for its outstanding performance as well as less computing cost

than its peers [34], and PEGASUS is chosen for its state-of-the-art

performance in summarization. The number of new parameters

added to CI-Seq2Seq compared to backbones is about 256M.

For hyper parameters, we use grid search to automatically find

the best setup based on the validation set. We select 𝑑𝑢 as 16 from

[8, 32], 𝑘𝑢 as 5 from [1, 20], and 𝑡ℎ as 0.25 from [0.02, 0.3]. We

choose𝑑𝑑𝑠 and𝑑𝑠𝑠 as 128 from {128, 256},𝑑𝑠𝑐 as 256 from {256, 512},
and 𝑑𝑐𝑐 as 128 from {128, 256}. Note that the dimension of the SC

representations 𝑑𝑠𝑐 is set larger than that of the CC representa-

tions 𝑑𝑐𝑐 , for it is very likely that the SC representations include

more diverse information than the CC representations describing

the core information. During training, we select _𝑘𝑙 and _𝑙𝑑𝑎 as 1

from [1𝑒−3, 1]. The batch size is searched from {256, 512}, and the

learning rate is searched from [1𝑒−5, 1𝑒−4]. During test, we select
the best number of candidate points in the range of [5, 20] and the

best optimization steps in the range of [20, 100]. _𝑐𝑐 , _𝑠𝑐 , _𝑑𝑠 are

searched from [0.001, 0.5], batch size is searched from [1, 4], and
learning rate is searched from [0.001, 0.5].

Adam optimizer is utilized at both stages. We train our model

on one NVIDIA Tesla V100 32GB GPUs for about 5k∼10k steps for

each dataset, which takes approximately six days. All experimental

results are reported on the test set. Note that for baseline methods,

we reproduce and evaluate our backbone models (i.e., BART and

PEGASUS) ourselves to provide a fair comparison, while we report

scores of other baselines from the papers. For BART, the results re-

produced ourselves are almost consistent with those of the original

paper [28]. For PEGASUS, the results on XSUM are almost consis-

tent. However, our reproduced results and the reported results in

the original paper [74] have a gap
2
. The result difference between

this work and the original paper may come from our restriction on

the maximum sequence length, which is set to 512 for the source

documents and 64 for the summaries.

7 EXPERIMENTAL RESULTS
We aim to answer four research questions: (RQ1) Does CI-Seq2Seq
enhance prediction performance on in-domain datasets? (RQ2)
Does CI-Seq2Seq enhance generalization ability on out-of-domain

datasets? (RQ3) Is CI-Seq2Seq Interpretable? (RQ4) How do latent

factors and their constraints affect the performance of CI-Seq2Seq?

For each question, we conduct experiments as follow.

7.1 In-domain Prediction Performance
To answer RQ1, we compare CI-Seq2Seq with various strong base-

lines on the test set of CNN/DM and XSUM, where models are

trained on the training set of the same corpus.

7.1.1 Automatic Evaluation. We have the following observations

from Table 1: (i) VAE-based neural summarization models (i.e., Uni-
fied VAE-PGN and VHTM) perform well by automatically learning

text representations containing critical information of documents.

(ii) The improvements of PLMs (i.e., T5, BART and GLM) over pre-

vious methods demonstrate the utility of pre-training on massive

corpora for downstream summarization tasks. (iii) By incorporating

length-aware attention mechanism, PtLAAM could further enhance

the performance of BART. (iv) PEGASUS outperforms all baselines

on XSUM, showing the power of its tailored pre-training objective

for summarization. On CNN/DM, PEGASUS performs less well than

models initialized with BART under the same maximum sequence

length constraint. The reason may lie in the different matching

degree between the pre-training objective and the downstream

datasets. Specifically, BART’s denoising objective is to reconstruct

full text, while the GSG objective for PEGASUS is to reconstruct

corrupted text. Consequently, BART, with its longer target text, can

better handle the long summaries of CNN/DM than PEGASUS.

When we look at our CI-Seq2Seq model, we can find that: (i) Our

CI-Seq2Seq implemented by both BART and PEGASUS can outper-

form all the baselines on two datasets. For example, CI-Seq2Seq
𝑝𝑒𝑔𝑎

performs 12.98% better than PEGASUS on XSUM in terms of RL.

This indicates the insufficiency of only modeling statistical depen-

dence and the effectiveness of modeling the causal relationships

between observed documents and summaries. (ii) Between them,

CI-Seq2Seq
𝑝𝑒𝑔𝑎

performs better on XSUM, while CI-Seq2Seq
𝑏𝑎𝑟𝑡

2
Our reproduced results were consistent with directly leveraging the checkpoint from

https://huggingface.co/google/pegasus-cnn_dailymail.
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Table 1: In-domain performance comparisons between our CI-Seq2Seq and the baselines on XSUM and CNN/DM datasets. Best
results are marked in boldface. * indicates statistically significant improvements over baselines (p-value < 0.05).

Method

XSUM CNN/DM

Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

Unified VAE-PGN [10] - - - 39.32 17.07 29.43

VHTM [15] - - - 40.57 18.05 37.18

T5 [54] - - - 42.50 20.68 39.75

BART 45.02 21.65 36.56 43.84 20.95 40.92

GLM [12] 45.50 23.50 37.30 43.80 21.00 40.50

PtLAAM [34] 45.53 21.82 36.85 44.21 20.77 40.97

PEGASUS 47.11 24.32 38.98 42.23 20.01 38.92

CI-Seq2Seq
𝑏𝑎𝑟𝑡

48.17* 25.41* 40.24* 45.05* 22.01* 41.96*
CI-Seq2Seq

𝑝𝑒𝑔𝑎 51.07* 28.68* 44.04* 44.48 22.88* 41.30

performs better on CNN/DM. Under the same fine-tuning setting,

the possible explanation aligns with that accounting for the perfor-

mance difference between BART and PEGASUS.

7.1.2 Human Evaluation. As shown in Table 2, we can observe

that: (i) Informativeness: CI-Seq2Seq models implemented by two

backbones perform better than baselines. It indicates that introduc-

ing causality helps to extract the core information into summaries,

meanwhile effectively reducing the interference of side information.

This is consistent with our purpose of distinguishing core content

from side one in the document and leveraging the causal part for

summary generation. (ii) Faithfulness: CI-Seq2Seq models also

outperform baselines, indicating that our method could alleviate the

hallucination by pursuing only core information in the document,

though the hallucination problem is not our focus and deserves

further exploration. (iii) Fluency: CI-Seq2Seq models are compara-

ble to baselines, indicating that our models can retain the ability to

generate fluent text while removing non-essential information.

Table 2: Average scores of human evaluation about Infor-
mativeness (Info.), Faithfulness (Faith.) and Fluency (Flu.).
The consistency between annotators is measured by Fleiss’s
kappa, which is 0.71.

Method

XSUM CNN/DM

Info. Faith. Flu. Info. Faith. Flu.

BART 3.25 3.99 4.86 2.73 4.95 4.78

PEGASUS 3.57 4.21 4.92 3.13 4.95 4.88

CI-Seq2Seq
𝑏𝑎𝑟𝑡

4.01 4.35 4.91 3.62 4.96 4.92
CI-Seq2Seq

𝑝𝑒𝑔𝑎 4.03 4.37 4.97 3.33 5.00 4.90

7.2 Out-of-domain Generalization Ability
To answer RQ2, we compare model performance on unseen cor-

pus under the zero-shot setting. That is, given a model trained on

XSUM, we evaluate its performance on the out-of-domain (OOD)

test examples from CNN/DM and vice versa. Specifically, we sample

2000 examples from each test set for evaluation.

As shown in Table 3, we observe that: though all the models

struggle with OOD test examples, CI-Seq2Seq outperform baselines.

For example, when training on XSUM and testing on CNN/DM, CI-

Seq2Seq
𝑝𝑒𝑔𝑎

beats PEGASUS by 11.55% in terms of RL. These results

demonstrate that capturing the invariant causal relationships can

empower the summarization model with generalization ability.

Table 3: OOD performance comparisons in terms of the gen-
eralization ability on unseen corpus. Best results are marked
in boldface. * indicates statistically significant improvements
over baselines (p-value < 0.05).

Train→Test

XSUM→CNN/DM CNN/DM→XSUM

R1 R2 RL R1 R2 RL

BART 25.10 6.87 17.86 21.42 3.78 14.29

PEGASUS 28.14 9.76 19.83 20.87 3.88 14.00

CI-Seq2Seq
𝑏𝑎𝑟𝑡

25.49 7.61 18.32 23.92* 4.86* 15.52*
CI-Seq2Seq

𝑝𝑒𝑔𝑎 30.37* 11.24* 22.12* 21.75 4.05 14.48

7.3 Interpretability of Latent Factors
To answer RQ3, we analyze the roles of content factors and style

factors through case study and visual analysis.

Content Factors Analysis. To understand the influence of the

CC and SC factors, we compare the top-3 attended words in the

document when generating each token of the summary and doc-

ument, based on the cross attention weights of Transformer. As

shown in Table 4, summary generation guided by h𝑐𝑐 prefers the
tokens (Attended𝑆 ) conveying the core information of the doc-

ument, e.g., “shale” and “safely”, while document reconstruction

guided by h𝑠𝑐 and h𝑐𝑐 attends to inessential words (Attended𝐷 ),
e.g., “involves” and “acking”. Without h𝑠𝑐 , the generated summary

only captures the core content “safe” and “strengthen regulations”,

omitting the side content “protect public health” which exhibits fre-

quent co-occurrence with “safe” in the corpus. This case indicates

that the learned representations h𝑐𝑐 and h𝑠𝑐 can mimic the CC and

SC factors to capture the core and side content in the document,

respectively. We also visually analyze the learned CC and SC rep-

resentations. Specifically, we randomly sample 2000 test examples

from XSUM and CNN/DM respectively, and then apply t-SNE [61]

to visualize h𝑑𝑜𝑐 , h𝑐𝑐 and h𝑠𝑐 . As shown in Figure 3, we can observe
that: (i) The distributions of both h𝑐𝑐 and h𝑠𝑐 are smoother than

that of h𝑑𝑜𝑐 , indicating that by splitting the mixed information into

distinct parts, each part will contain purer information. (ii) The

distribution of h𝑐𝑐 exhibits higher uniformity, whereas h𝑠𝑐 demon-

strates greater scattering. This observation indicates that the SC

factors capture diverse side information for document generation

and thus are dispersive.
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Table 4: An example (No.8) from the XSUM test data, to analyze the roles of content factors (CC and SC) and style factors (DS
and SS). We mark the core content in blue and the side content in red.
Document: ...The joint report from the Royal Society and Royal Academy of Engineering say the technique is safe if firms follow best practice and rules

are enforced..."Our main conclusions are that the environmental risks of hydraulic fracturing for shale can be safely managed provided there is best practice

observed and provided it’s enforced through strong regulation,"...

Ground-truth summary: A gas extraction method which triggered two earth tremors near Blackpool last year should not cause earthquakes or

contaminate water but rules governing it will need tightening, experts say.

BART: Shale gas extraction can be carried out safely in the UK, but stronger regulations are needed to protect public health, a report says.

CI-Seq2Seq: Shale gas extraction in the UK can be relatively safe, but the government should strengthen regulations, say scientists.

Attended𝑆 : (strengthening, environmental, shale), (strengthening, environmental, strong), (technique, safely, regulations), (technique, extraction, explo-

ration), (technique, and, environmental), (being, moot, safely), (earth, small, tremors)...

Attended𝐷 : (exploratory, fracking, involves), (involves, fracking, scientist), (fracking, acking, involves), (acking, atory, to), (involves, and, is), (involves, say,
from), (and, or, into)...

CR=0.1: The environmental risks of fracking for shale gas in the UK are "very low", according to a new report.

CR=0.4: The use of fracking to extract shale gas in the UK can be safely done, according to a new report.

CR=0.7: Fracking, the controversial technique used to extract shale gas, can be safely done in the UK, according to a new report.

𝒉𝑑𝑜𝑐

𝒉𝑑𝑜𝑐

𝒉𝑐𝑐

𝒉𝑐𝑐

CNN/DM

XSUM

!sc

𝒉sc

Figure 3: The t-SNE plot of h𝑑𝑜𝑐 , h𝑐𝑐 and h𝑠𝑐 learned by ours.

Style Factors Analysis. To understand the influence of the DS

and SS factors, we vary 𝐶𝑅 between them to explicitly control the

summary generation. Specifically, we vary 𝐶𝑅 from 0.1 to 0.7 to

change h𝑠𝑠 . As shown in Table 4, the generated summary is concise

when 𝐶𝑅 = 0.1, only including the necessary information, e.g.,

“low” and “risks”. When𝐶𝑅 = 0.7, the generated summary contains

more specific description, e.g., “the controversial technique”. The

summary becomes more detailed as 𝐶𝑅 increases. Note that the

goal of controlled generation here is not precise length control,

but to control the style of the summary by utilizing 𝐶𝑅 as weakly-

supervised signal. The results indicate that h𝑠𝑠 can mimic the SS

factors to actively control the writing style of the summary.

7.4 Impact of Latent Factors and Constraints
To answer RQ4, we perform ablations on XSUM to analyze injec-

tion ways of latent factors as well as the necessity of confounder

information and the content/style guidance served as constraints.

Impact of Latent Factors. We removed the addition of ℎ𝑥/ℎ𝑦 ,
and the replacement of the first token in the decoder, respectively.

As shown in the middle of Table 5, we found that both addition and

replacement operations contribute the prediction performance, and

the replacement of the starting token matters more.

Impact of Constraints. For confounder, we set 𝑘𝑢 = 1 to elimi-

nate its information. For content, we remove the content guidance

loss in Equation 20. For style, we sample 𝑙𝑠𝑠 in the same way as

𝑙𝑑𝑠 without additional bridge between them. As shown in the bot-

tom of Table 5, removing constraints on either the confounder

or content/style guidance hurts the prediction performance. This

Table 5: Ablations of injection ways of latent factors (middle)
as well as their constraints (bottom) on the subset of XSUM.

Model R1 R2 RL

CI-Seq2Seq 41.4 17.75 33.87

w/o addition 40.97 17.78 33.77

w/o replacement 36.00 14.84 28.74

w/o confounder information 40.46 17.60 33.45

w/o content guidance 40.87 17.47 33.14

w/o style guidance 39.74 16.55 32.21

demonstrates the necessity of all constraints, which is consistent

with our theory that they are essential for identifying latent factors.

8 CONCLUSION
In this paper, we presented a principled causal perspective for text

summarization. Theoretically, we proved the identifiability of the

causal and non-causal factors in SCM to ensure these latent factors

to be separated. Inspired by the identifiability theory, we proposed

CI-Seq2Seq to learn causal representations that could mimic the

causal factors for summary generation. We hope the paradigm can

illuminate a promising technical direction of causality in NLP.

One limitation of ourmethod is the slightly higher computational

cost than the original Seq2Seq architecture, due to the introduction

of additional parameters and the optimization procedure during

inference. To address this, we plan to reduce the dimension of latent

representations and explore other optimization tools. We also want

to explore diverseways to utilize confounder information and define

causal factors, which can better showcase our model’s strengths

under the identifiability guarantees. Besides, we are interested in

inducing the causal structure into extractive summarization, and

exploring the controllability on more aspects.
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