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ABSTRACT
First-stage retrieval is a critical task that aims to retrieve relevant
document candidates from a large-scale collection. While existing
retrieval models have achieved impressive performance, they are
mostly studied on static data sets, ignoring that in the real-world,
the data on the Web is continuously growing with potential distri-
bution drift. Consequently, retrievers trained on static old datamay
not suit new-coming data well and inevitably produce sub-optimal
results. In this work, we study lifelong learning for first-stage re-
trieval, especially focusing on the setting where the emerging doc-
uments are unlabeled since relevance annotation is expensive and
may not keep up with data emergence. Under this setting, we aim
to develop model updating with two goals: (1) to effectively adapt
to the evolving distribution with the unlabeled new-coming data,
and (2) to avoid re-inferring all embeddings of old documents to
efficiently update the index each time the model is updated.

We first formalize the task and then propose a novel Lifelong
Learning method for the first-stage Retrieval, namely L2R. L2R
adopts the typical memory mechanism for lifelong learning, and
incorporates two crucial components: (1) selecting diverse support
negatives for model training and memory updating for effective
model adaptation, and (2) a ranking alignment objective to ensure
the backward-compatibility of representations to save the cost of
index rebuilding without hurting the model performance. For eval-
uation, we construct two new benchmarks from LoTTE and Multi-
CPR datasets to simulate the document distribution drift in realistic
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retrieval scenarios. Extensive experiments show that L2R signifi-
cantly outperforms competitive lifelong learning baselines.
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1 INTRODUCTION
First-stage retrieval aims to quickly retrieve a few relevant docu-
ment candidates from a large-scale collection, which has become a
core component in information retrieval (IR) applications [12, 47].
While retrieval models based on pre-trained language models
(PLMs) [21, 36, 45, 48] have demonstrated impressive performance,
most of them are studied on static datasets, neglecting that in the
real world, new documents are continuously emerging on theWeb.
For example, when a new event (e.g., ChatGPT) breaks out, a large
number of documents on this topic were generated and shared,
accompanied by booming information needs regarding the topic
(searching for not only new documents but also old ones). The
emerging documents and queries on the new topics may cause the
distribution of retrieval collection to drift over time. Consequently,
directly applying the model trained on previous data to the new
collection is obviously not an optimal solution. Then, how can we
continuously learn a retrieval model to adapt to the evolving data
distribution effectively and efficiently? To study this problem, we
formalize the task of lifelong learning for first-stage retrieval.
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Lifelong learning [6, 41] has been widely studied in the ma-
chine learning community, especially on computer vision (CV)
tasks [25, 43]. In a typical setting of lifelong learning, a model is set
to learn with non-identically and independently distributed (non-
I.I.D.) new-coming data [43], with the goal of preserving acquired
knowledge and learning new knowledge. Most research [1, 18, 35]
in this field focuses on addressing the catastrophic forgetting is-
sue [11, 26], i.e., themodel’s inability to performwell on previously
seen data after being updated with new data. One representative
paradigm for lifelong learning is the memory-based method [1, 5],
which stores and replays historical samples while training on new
data to mitigate the forgetting of acquired knowledge. These life-
long learning methods have been shown to be effective in various
CV tasks [30, 46]. However, there has been limited research on the
lifelong learning problem for IR tasks.

In this paper, we study the task of lifelong learning for first-
stage retrieval in a setting where new documents are unlabeled.
We focus on this setting in our initial attempt because relevance
annotation on the new data is expensive and may not catch up
with data emergence. In this setting, besides the essential goal of
general lifelong learning, i.e., preserving acquired knowledge and
learning new knowledge, it poses several new challenges:
1) Without labeled positive samples, new data could have limited

benefit to supervise model learning. Moreover, the unlabeled
positives in new data could mislead the model if we simply take
all new documents as irrelevant for training.

2) It incurs significant costs to re-compute all document represen-
tations and rebuild the entire index each time the model is up-
dated. It would be ideal to avoid repeated representation com-
putation without harming model performance.

3) The pairwise modeling of query-document pairs in IR makes
the taskmore complicated, compared to the pointwisemodeling
of the classification tasks in CV. For any query, either seen or
unseen, the model needs to achieve good retrieval performance
on both new and old documents.

Due to these challenges, existing lifelong learning methods in
other fields cannot be directly applied to the retrieval task. Al-
though some work has explored the catastrophic forgetting issue
of re-ranking models under the lifelong learning setting, no feasi-
ble solutions are proposed to solve it [10, 23].

To address the above challenges, we propose a memory-based
Lifelong Learning method for first-stage Retrieval, named as L2R.
L2R maintains a buffer to store the historical support negatives
(i.e., negative samples that are important for learning the decision
boundary of the model) for each training query, and when a ses-
sion of unlabeled new documents arrives, it updates the model as
follows: 1) To adapt the model to the new distribution, L2R se-
lects diverse support negatives from the unlabeled new data for
model training, by estimating their confidence of being hard neg-
atives and redundancy with other selected ones. 2) To balance
the model’s ability to preserve acquired knowledge and learn new
knowledge, L2R selects historical support documents distinct from
the selected new samples and uses them together for model updat-
ing. 3) To avoid re-inferring embeddings of old documents each
time the model is updated, L2R incorporates a novel ranking align-
ment objective to ensure the backward compatibility of document
representations without harming retrieval performance. Overall,

through the selection strategy of diverse support negatives and the
ranking alignment objective for compatible learning, L2R enables
effective and efficient retrieval model lifelong learning.

For evaluation, we construct two benchmarks based on the
LoTTE [36] and Multi-CPR [22] datasets, namely LL-LoTTE and
LL-MultiCPR, to simulate the realistic retrieval scenariowhere doc-
uments emerge continuously with distribution drift. The empirical
results on both benchmarks show that L2R outperforms represen-
tative and state-of-the-art lifelong learning baselines in terms of
metrics on both learning new data and addressing the forgetting is-
sue. Moreover, our proposed ranking alignment objective achieves
not only representation backward compatibility but also remark-
ably even better performance. We further confirm the advantages
of our model through in-depth studies on the data selection strat-
egy and the backward-compatible alignment objectives.

2 RELATEDWORK
Lifelong Learning. Lifelong learning [6], also referred to as con-
tinual learning [41] or incremental learning [4], has received much
attention in building adaptive systems that are able to gain, retain,
and transfer knowledge when facing non-stationary data streams.
Research in this field mainly focuses on solving the catastrophic
forgetting issue [25, 43]. There are three main method paradigms,
including regularization-based [16, 18], architecture-based [7, 35]
and memory-based methods [1, 5, 17, 32].

Lifelong learning has been widely studied in various machine
learning tasks [30, 32, 39, 46]. Recently, Mai et al. [25] surveyed
a wide range of methods to address the lifelong learning problem
for image classification. In natural language processing tasks, the
research on lifelong learningmostly focuses on pre-training [3, 44].
For example, Qin et al. [29] proposed ELLE for incremental pre-
training on emerging data efficiently. Wu et al. [44] compared the
performance over the combination of five PLMs and four lifelong
learning approaches. However, to our best knowledge, there have
been no studies on lifelong learning for first-stage retrieval.
First-stage Retrieval. In recent years, substantial efforts have
beenmade on various retrieval models [12, 47], including both clas-
sical term-based methods like BM25 [34], and more recent PLMs-
based dense retrieval models [9, 19, 20, 24]. PLMs-based retrieval
models have compelling performance and are widely adopted in
the industry. However, most existing studies are on static docu-
ment sets, ignoring the realistic scenario wherein new documents
continually arrive at the system.

Lifelong learning for information retrieval (IR) is an important
but less-explored topic, including both the first-stage retrieval and
re-ranking stage. Recently, Lovón-Melgarejo et al. [23] and Gerald
and Soulier [10] studied the lifelong learning problem for PLMs-
based re-ranking models. They observed the catastrophic forget-
ting issue in lifelong IR model learning. Later, Mehta et al. [27]
studied continual learning for generative IR models [40], in which
they studied how to incrementally index new documents into the
model parameters, instead of the distribution shift caused by newly
emerged data. Lifelong learning has been studied in image re-
trieval [37, 42]. However, the experiments were conducted on fine-
grained image classification datasets, the settings of which com-
pletely differ from the realistic scenario for document retrieval.
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CompatibleRepresentationLearning. Learning compatible rep-
resentations [8, 13, 31, 37] is a practical need in many scenarios,
with the goal of ensuring the embeddings generated by different
models are compatible. For example, BCT [37] and LCE [28] learn
compatible representations for image recognition, where the em-
beddings computed by the updated model are directly compara-
ble to those generated by previous models. Specifically, BCT [37]
constrains the feature space by simultaneously enabling gradient
flow from both the old and new classifiers. However, this method
is not suitable for first-stage retrieval, since the relevance score
is calculated on the embeddings directly and there are no classi-
fication layers. LCE [28] bridges the multiple feature spaces via a
lightweight transformation function. However, they still need to
re-compute all embeddings of the previous images, which is ineffi-
cient for large collection in retrieval. Beyond these, representation
compatibility has received increasing attention in asymmetric re-
trieval [8], where the query and document use differentmodels due
to the constrained resources of the computing platform. In contrast
to these methods, we study compatible representation learning un-
der the lifelong learning setting for first-stage retrieval.

3 TASK DESCRIPTION
First-stage Retrieval. Given a query 𝑞 and a document collec-
tion D0, first-stage retrieval aims to find potentially relevant doc-
uments. With a labeled training dataset C0= {(𝑞, 𝐷+𝑞 )}, where 𝑞 is
a query and 𝑑+𝑞 ∈𝐷+𝑞 is one of the relevant documents for 𝑞, we can
build an initial retrieval model 𝑓0 using a dual-encoder architec-
ture with a standard contrastive learning objective [12, 47]. Then,
the embeddings of documents inD0 are extracted and indexed, and
the retrieval is performed by estimating the similarity between the
query embedding with the document embeddings in the index.
Lifelong Learning for First-stage Retrieval. A stream of docu-
ment sets {D1, · · · ,D𝑇 } having different distributions arrive in 𝑇
sessions sequentially. Note that these new documents have no rel-
evance labels. For any session 𝑡 ∈ {1, · · · ,𝑇 }, the lifelong learning
algorithm A utilizes documents in D𝑡 to update 𝑓𝑡−1 to 𝑓𝑡 , aiming
to adapt the retriever to the new distribution,

A𝑡 : ⟨𝑓𝑡−1, C0,D𝑡 , 𝑀𝑡−1 ⟩ → ⟨𝑓𝑡 , 𝑀𝑡 ⟩ , (1)
where 𝑀𝑡−1 and 𝑀𝑡 are the external memory for session 𝑡 − 1
and 𝑡 respectively, which store useful information for lifelong
model learning, e.g., a subset of training samples or historical
versions of the model. If the model updating is representation
backward-compatible, at session 𝑡 , we only need to compute doc-
ument embeddings for D𝑡 using model 𝑓𝑡 . The embeddings of
D0:𝑡−1 =

⋃𝑡−1
𝑖=0 D𝑖 that are computed with historical models can

be reused when updating the index with existing techniques [14].
Otherwise, we need to use 𝑓𝑡 to compute the embeddings for all
documents in D0:𝑡 to rebuild the retrieval index.

4 METHODOLOGY
4.1 Overview of the Approach
We employ the typical memorymechanism [5, 38] in L2R andmain-
tain a restricted external memory to store a subset of historical
documents for each training query. This memory mechanism en-
ables the model to efficiently determine the replay samples to ad-
dress the catastrophic forgetting issue, without browsing from the
entire collection. Based on the memory mechanism, for effective

Algorithm 1: OveRview of L2R.
Input: Dataset C0, Retrieval model 𝑓0, Memory buffer 𝑀0 with 𝑛

slots for each query, Total sessions𝑇
Output: Retrieval Model 𝑓𝑇

1 for 𝑡 ∈ {1, · · · ,𝑇 } do
2 𝑓𝑡 ← 𝑓𝑡−1; 𝑀𝑐 ← {};
3 for (𝑞,𝑑+𝑞) ∼ C0 do
4 𝐷new

q ← NewDataSelection(𝑞,𝑑+𝑞,D𝑡 ) ;
5 𝑀𝑐 ← 𝑀𝑐 ∪𝐷new

q ;
6 𝐷mem

q ← MemoryDataSelection(𝑞, 𝐷new
q , 𝑀𝑡−1) ;

7 𝑓𝑡 ← ModelUpdate(𝑞,𝑑+𝑞, 𝐷new
q ∪𝐷mem

q , 𝑓𝑡 ) ;
8 end
9 𝑀𝑡 ← MemoryUpdate (𝑞,𝑀𝑐 , 𝑀𝑡−1, 𝑛) ;

10 end
11 return 𝑓𝑇

and efficient lifelong learning of retrieval models, L2R incorporates
two important components, including the selection strategy of di-
verse support negatives and the ranking alignment objective
for backward-compatible representation learning.

As shown in Algorithm 1, when the newly emerged dataD𝑡 ar-
rives at session 𝑡 , L2R selects diverse support negative documents
from the new data and the memory buffer 𝑀𝑡−1 respectively, then
updates the retriever from 𝑓𝑡−1 to 𝑓𝑡 with the selected samples, and
finally updates the memory with the new data. Next, we introduce
the detailed data selection method (Section 4.2), and the optimiza-
tion objective for compatible learning (Section 4.3).
4.2 Diverse Support Negative Selection
To effectively adapt the retriever to the new distribution, we desire
to select support and diverse negatives for model training. Thus,
we define positive sample superiority (𝑃𝑆𝑆) and inter sample diver-
sity (𝐼𝑆𝐷) criteria to instruct the data selection in each step.

Let 𝒒 and 𝒅 denote the embedding of query 𝑞 and document 𝑑 ,
and 𝒅∥𝒒 and 𝒅⊥𝒒 denote the projection of 𝒅 on the directions that
are horizontal and vertical to 𝒒. Intuitively, 𝒅∥𝒒 and 𝒅⊥𝒒 represent
the information in 𝑑 that is related and unrelated to 𝑞 respectively.
Definition 1 (Positive Sample Superiority).The positive sample
superiority between 𝑑 and 𝑑+𝑞 for the query 𝑞 is given by

𝑃𝑆𝑆 (𝑑,𝑑+𝑞 ;𝑞) = 𝑠𝑖𝑔𝑛 (𝒅+
∥𝒒−𝒅∥𝒒) ·




𝒅+
∥𝒒−𝒅∥𝒒





2
, (2)

where 𝑠𝑖𝑔𝑛(·) = 1 if 𝒅+∥𝒒 − 𝒅∥𝒒 and 𝒅+∥𝒒 are in the same direction
and −1 otherwise, ∥·∥2 is the ℓ2 norm, 𝑑 can be any document and
𝑑+𝑞 is a relevant document for 𝑞, and 𝒅∥𝒒 is defined as

𝒅∥𝒒 =
(𝒅 · 𝒒) ∗ 𝒒
|𝒒 | ∗ |𝒒 | . (3)

The 𝑃𝑆𝑆 measures the superiority of 𝑑+𝑞 being more relevant to
the query 𝑞 than 𝑑 , by comparing the differences between their
information related to 𝑞. Therefore, a higher 𝑃𝑆𝑆 value suggests
that 𝑑 is less likely to be an unlabeled relevant sample for 𝑞.
Definition 2 (Inter Sample Diversity). For a given query 𝑞, the
inter sample diversity between 𝑑 and a document set 𝐷 is

𝐼𝑆𝐷 (𝑑, 𝐷 ;𝑞) = 1
|𝐷 |

∑
𝑑′∈𝐷




𝒅⊥𝒒 − 𝒅′
⊥𝒒





2
, (4)

where 𝒅⊥𝒒 = 𝒅−𝒅∥𝒒 .The 𝐼𝑆𝐷 measures the diversity of document
𝑑 relative to the document set 𝐷 , by comparing the differences be-
tween the information unrelated to 𝑞 among the documents.
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Figure 1: Memory-based lifelong learning method for first-stage retrieval (L2R).
Based on the two defined criteria, we introduce each step of the

model learning, taking (𝑞, 𝑑+𝑞 ) ∼C0 in session 𝑡 as an example.
STEP 1: New Data Selection. For using the new data to adapt to
the current session 𝑡 , we have the following principles: (1) Docu-
ments that are likely to be unlabeled positives should be avoided
during selection, since mistakenly identifying relevant documents
for model learning could cause serious damage to the performance.
(2) The selected documents should be the negatives that can sup-
port the model to learn the decision boundary (we refer to them
as support negatives). Such documents should be not trivial for
the model to differentiate. (3) The selected documents should have
minimum redundancy. With these principles, we propose the fol-
lowing selection strategy for the new data.

We first retrieve top results for 𝑞 from the new-coming docu-
ment collectionD𝑡 with BM25 to filter outmassive non-informative
samples, and obtain its potential support samples 𝐷𝑆

𝑞 . Then, based
on the defined 𝑃𝑆𝑆 and 𝐼𝑆𝐷 criteria, we adaptively select𝑛1 diverse
support negatives from 𝐷𝑆

𝑞 with:

𝐷new
q =

{
argmax
𝑑∈𝐷𝑆

𝑞

(𝑛1 ) 𝛼 ·𝑃𝑆𝑆 (𝑑,𝑑+𝑞 ;𝑞) + (1−𝛼) ·𝐼𝑆𝐷 (𝑑, 𝐷𝑆
𝑞 ;𝑞)

}
, (5)

where the embedding 𝒒 and 𝒅 used to calculate 𝑃𝑆𝑆 and 𝐼𝑆𝐷 are
obtained from the latest model 𝑓𝑡 . The 𝑃𝑆𝑆 component helps to by-
pass unlabeled relevant documents and the 𝐼𝑆𝐷 component prefers
the samples that are distinct from the majority. We use a hyper-
parameter 𝛼 to reconcile the two measures. With Eq. (5), we select
𝑛1 new documents 𝐷new

q from D𝑡 that satisfy the aforementioned
three principles. These selected samples are reserved for model up-
dating and also added to the temporary memory𝑀𝑐 as candidates
to update the memory 𝑀𝑡−1.
STEP 2: Memory Data Selection. To prevent the model from for-
getting old knowledge when learning from the new data D𝑡 , we
also select replay samples for model training from 𝑀𝑡−1 that are:
(1) pivotal for learning the historical versions of the model, i.e.,
historical support samples; (2) not redundant with each other for
efficiency concerns; (3) different from the selected samples in𝐷new

q
to better balance the acquired knowledge and new knowledge.

With the memory updating strategy in STEP 4, the samples in
𝑀𝑡−1 already satisfy the first two desiderata. To filter with the third
principle, we select 𝑛2 documents 𝐷mem

q from 𝑀𝑡−1 that have the

maximum 𝐼𝑆𝐷 score regarding 𝐷new
q :

𝐷mem
q =

{
argmax
𝑑∈𝐷𝑂

𝑞

(𝑛2 ) 𝐼𝑆𝐷 (𝑑, 𝐷new
q ;𝑞)

}
, (6)

where 𝐷𝑂
𝑞 denotes the stored old documents for 𝑞 in the memory

buffer 𝑀𝑡−1. Note that for computing the 𝐼𝑆𝐷 score, the embed-
ding 𝒅 of memory samples are the existing ones computed in pre-
vious sessions when the learning is backward-compatible. Other-
wise, the embedding is obtained using the latest model 𝑓𝑡 . In the
rest of this paper, we adopt the same approach to compute 𝐼𝑆𝐷 , and
we will omit this reminder unless there are special circumstances.
STEP 3: Model Update. With the selected new documents 𝐷new

q
(from STEP 1) and memory documents 𝐷mem

q (from STEP 2), we
can update a standard retrieval model from 𝑓𝑡−1 to 𝑓𝑡 . Without loss
of generality, the retrieval model 𝑓𝑡 can be formalized as,

𝑓𝑡 (𝑞,𝑑) = ⟨E𝑞𝑡 (𝑞), E𝑑𝑡 (𝑑) ⟩, (7)
where E𝑞𝑡 and E𝑑𝑡 are the query and document encoders, and the
dot-product function is used to calculate the relevance score based
on their embeddings. For model training, we use the standard con-
trastive learning objective [15, 45] to compute the loss for the pos-
itive document 𝑑+𝑞 (no compatibility is ensured)1:

𝐿no−com𝑡 = − log
exp(𝑓𝑡 (𝑞,𝑑+𝑞))∑

𝑑∈{𝑑+𝑞 }∪𝐷new
q ∪𝐷mem

q
exp(𝑓𝑡 (𝑞,𝑑))

. (8)

When the model updating is not backward-compatible for docu-
ment representations, we need to re-embed all the documents up to
the 𝑡-th session, i.e., 𝐷0:𝑡 , with 𝑓𝑡 to rebuild the retrieval index. To
eliminate the need for re-inferring embeddings of old documents,
we can replace the learning objective in Eq. (8) with the backward-
compatible learning objective in Section 4.3.
STEP 4: Memory Update. In practice, the memory buffer size is
often limited to ensure efficiency in selecting replay samples, even
though it does not impose a heavy storage burden. Given the lim-
ited budget 𝑛 for each query, selecting which samples to include
or replace in the memory is critical. We consider two principles
to populate the memory: (1) The sample should have a strong im-
pact on the learning of the decision boundary; (2) The redundancy
between stored samples should be minimized. In contrast to most
work that updates thememory in each training step [1, 5], we delay
thememory update until after the completion of model updating in
each session in order not to occupy the limited slots in the buffer.

1Here, we omit the in-batch negatives in Eq. (8) for brevity.
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To preserve important information of the current session 𝑡 for
the future, we follow the first principle and consider only the sup-
port samples in 𝑀𝑐 as candidates to update 𝑀𝑡−1. We calculate the
𝐼𝑆𝐷 score of documents in 𝑀𝑡−1 and 𝑀𝑐 regarding 𝑘 randomly-
sampled anchor documents in 𝑀𝑡−1, and use the new documents
with the maximum diversity to replace 𝑛3 memory samples with
the minimum diversity. Finally, we empty the temporary memory
buffer to prepare for the next session. Note that, for the initial ses-
sion (𝑡 =0), we use reservoir sampling [5] to fill the memory.

4.3 Backward-compatible Learning
To save the cost of repeated embedding computation, it is desir-
able for the model updating to ensure backward-compatibility of
document representations. It means that existing embeddings for
D0:𝑡−1 do not need to be updated, and only the embeddings of new
documents inD𝑡 are computed with the lastest model 𝑓𝑡 to update
the index.We first introduce a vanilla method that can ensure back-
ward compatibility, and two auxiliary alignment objectives for ef-
fective compatible learning.
Vanilla Compatible Learning. A straightforward approach is to
optimize a new contrastive learning loss by fixing the embeddings
of previous documents (i.e., the positive sample and the memory
samples selected in the current training):

𝐿rank𝑡 =−log
exp( ⟨E𝑞𝑡 (𝑞), 𝒅+

𝒒 ⟩)
𝑍

, (9)

where 𝑍 is a normalization term:
𝑍 =

∑
𝑑∈{𝑑+𝑞 }∪𝐷mem

q

exp( ⟨E𝑞𝑡 (𝑞), 𝒅 ⟩) +
∑

𝑑∈𝐷new
q

exp(𝑓𝑡 (𝑞,𝑑)) . (10)

The Eq. (9) optimizes the model on the new data and existing docu-
ment embeddings in a unified space to ensure compatibility. How-
ever, since all the new samples in 𝐷new

q are negatives and only
the embeddings of new samples are learnable, the model could
easily learn the wrong correlation between a document being in
the new distribution and it being irrelevant, leading to significant
performance regression (see the experimental results in Section 6).
In order to facilitate effective backward-compatible representation
learning, we introduce two auxiliary alignment objectives.
Embedding-aligned Learning. As in [37], a common approach
to ensure backward-compatible model updating is to minimize the
ℓ2 distance between the embeddings of previous documents (i.e.,
{𝑑+𝑞 }∪𝐷mem

q ) calculated with the new model 𝑓𝑡 and their existing
embeddings:

𝐿
aligne
𝑡 =

∑
𝑑∈{𝑑+𝑞 }∪𝐷mem

q

1
2




E𝑑𝑡 (𝑑) − 𝒅


2
2
. (11)

By guiding the model to encode the old documents similarly to
their existing embeddings, it could urge the model to learn decent
document representations instead of blindly demoting new doc-
uments. However, this pointwise alignment is too strict for the
model to adapt to the new documents sufficiently.
Ranking-aligned Learning. To relax the constraint on themodel
to learn new knowledge, we propose a loose listwise alignment
objective. The goal is to minimize the divergence between the pre-
dicted distributions of the candidate documents calculated based
on the existing and currently learned embeddings, i.e., 𝑝 (𝐷 |𝑞) and
𝑝 ′(𝐷 |𝑞), respectively:

𝐿
alignr
𝑡 = KL

(
𝑝 (𝐷 |𝑞) ∥ 𝑝′ (𝐷 |𝑞)

)
=

∑
𝑑∈𝐷

𝑝 (𝑑 |𝑞) log 𝑝 (𝑑 |𝑞)
𝑝′ (𝑑 |𝑞) , (12)

where 𝐷 = {𝑑+𝑞 } ∪ 𝐷mem
q ∪ 𝐷new

q , and

𝑝 (𝑑 |𝑞) =
{ exp(𝑓𝑡 (𝑞,𝑑 ) )

𝑍 if 𝑑 ∈𝐷new
q

exp(⟨E𝑞𝑡 (𝑞),𝒅⟩)
𝑍 if 𝑑 ∈ {𝑑+𝑞 } ∪𝐷mem

q

, (13)

𝑝′ (𝑑 |𝑞) = exp(𝑓𝑡 (𝑞,𝑑))∑
𝑑∈𝐷 exp(𝑓𝑡 (𝑞,𝑑))

. (14)

Theprobability distribution 𝑝 (𝐷 |𝑞) represents themodel inference
when backward compatibility is enabled, and 𝑝 ′(𝐷 |𝑞) represents
the model predictions without compatible learning where all the
embeddings need to be learned. In contrast to the pointwise em-
bedding alignment, this ranking-based alignment not only allows
more flexible exploration in the representation space but also fa-
cilitates bidirectional supervision for model learning: 1) 𝑝 ′(𝐷 |𝑞)
can adapt the model better to the new data since the embeddings
of candidates are all currently learned including the new ones. So
it could guide 𝑝 (𝐷 |𝑞), the backward-compatible inference we fi-
nally use, to better acquire new knowledge. 2) In 𝑝 (𝐷 |𝑞), since
the positive document and memory negative samples are ranked
based on their existing embeddings up until session 𝑡−1, 𝑝 (𝐷 |𝑞)
captures their relative rankings from the model at session 𝑡−1. This
older model has seen the negatives from session 1 to 𝑡−1 including
the ones that have been removed from the memory, which could
cover various types of negatives. Hence, by aligning with 𝑝 (𝐷 |𝑞),
𝑝 ′(𝐷 |𝑞) can learn from the older more experienced model. Given
the above mutual supervisions between the new and old model,
our proposed ranking alignment objective ensures the representa-
tion compatibility without compromising the model performance,
obtaining even better results (see more analysis in Section 6.3).
Overall Compatible Learning Objective. The final training ob-
jective to enable backward compatibility is the combination of the
vanilla ranking loss and the alignment loss:

𝐿com𝑡 = 𝐿rank𝑡 + 𝜆 · 𝐿align𝑡 , (15)
where 𝐿align𝑡 is either 𝐿aligne𝑡 or 𝐿alignr𝑡 , and 𝜆 is a hyper-parameter
to control the effect of the alignment regularization.

5 EXPERIMENTAL SETTINGS
5.1 Benchmark Construction
There are no publicly available datasets that could show the con-
tinuous growth of documents in realistic retrieval scenarios, poten-
tially with distribution drift, booming events, and newly emerged
relevant documents to previous queries. Thus, we build two bench-
marks, i.e., LL-LoTTE and LL-MultiCPR, based on two retrieval
datasets LoTTE [36] and Multi-CPR [22], to simulate the scenario
with the aforementioned properties through the following steps:

Preprocessing. LoTTE andMulti-CPR are two retrieval datasets
that consist of 5 and 3 domains with separate subsets of documents
and queries respectively. For each domain of the two datasets, we
merge all the data and re-split them into train/dev/test sets with
a ratio of 0.7:0.15:0.15 for LoTTE and 0.9:0.05:0.05 for Multi-CPR.
Table 1 lists the statistics of the two datasets.

Session Partitioning. We build an initial collection D0 and 3
upcoming sessions with different document distributions for both
LL-LoTTE and LL-MultiPCR. In LL-LoTTE, we use technology and
writing as the common domains where documents emerge evenly
over time, and lifestyle, recreation, and science as the booming do-
mains in each of the upcoming sessions. We keep 70% and 40% of
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Table 1: Statistical information of LoTTE and Multi-CPR.
domain #query #document len_q len_d #qrels
LoTTE
technology 5519 1,914,731 9.00 124.69 6.59
writing 5571 477,066 9.11 171.39 5.89
lifestyle 5156 388,354 10.04 166.65 5.10
recreation 5491 430,000 9.16 193.16 4.27
science 5185 2,037,806 9.08 139.83 5.98
Multi-CPR
e-commerce 101,000 1,002,822 6.90 32.96 1.0
medical 100,999 959,526 17.07 121.90 1.0
entertainment 101,000 1,000,000 7.41 27.45 1.0

the random documents from the common and booming domains
respectively inD0. Next, we construct 3 corpora {D1,D2,D3} for
the following three sessions. Each corpus consists of 10%, 50%, and
5% of documents from the two common domains, a booming do-
main, and the remaining two domains respectively. With the doc-
uments in each session, we collect their connected queries from
the new split train/dev/test sets of LoTTE to construct the train-
ing dataset and dev/test sets. Note that, under the setting where
new-coming documents have no labels, the labeled relevant query-
document pairs for model training remains the C0, but the dev/test
sets Qdev

𝑡 and Qtest
𝑡 (∀𝑡 ∈ {0, · · · , 3}) can have more annotated rel-

evant documents for evaluation. In LL-MultiCPR, similar to LL-
LoTTE, we choose e-commerce as the common domain, medical
and entertainment as the booming domains for Session 1 and 2 re-
spectively. Since there are only three domains, Session 3 has no
booming domains and simply includes the remaining documents.

Postprocessing. In LoTTE, almost all relevant documents of
each query have positive labels. This makes it hard to simulate the
realistic scenario where quite a few relevant documents to train-
ing queries may appear in the upcoming sessions and not be la-
beled. To overcome this issue, we collect extra pseudo-relevant doc-
uments for training queries using OpenAI API (text-davinci-003),
and distribute these unlabeled documents to each coming session
with the same sampling ratios in session partitioning. Specifically,
we use two types of instructions for pseudo-relevant document
generation: (1) “Given a question {𝑞} and a relevant document {𝑑+𝑞 },
please generate 5 other relevant documents.”; (2) “Given a docu-
ment {𝑑+𝑞 }, please rephrase it.”. Through this process, we obtain
approximately 18.5 documents for each training query2. For LL-
MultiCPR, we have not conducted post-processing since there are
sizable unlabeled relevant documents in Multi-CPR (see [22]).

Table 2 lists the statistics of the final LL-LoTTE and LL-MultiCPR
datasets. Following similar steps, other existing retrieval datasets
can also be transformed to evaluate lifelong learning of first-stage
retrieval.When there are no explicitly separate domains, topic clus-
tering could be applied for simulation and we leave such investiga-
tion for future research.

5.2 Evaluation Metrics
We define metrics to evaluate lifelong learning methods for first-
stage retrieval. Considering the realistic scenario, for each session,
we care more about the retrieval performance on the queries in the
2We perform quantitative analysis on these generated pseudo documents to ensure
that they are of high quality. It shows that 63% of them can be retrieved in the top-200
results of BM25 for training queries in each upcoming session.

Table 2: Statistics of LL-LoTTE and LL-MultiCPR datasets.
Session0 Session1 Session2 Session3

LL-LoTTE
#document 2,816,720 654,266 670,026 1,405,225
#train_q 16,147 - - -
#dev_q 3449 1681 1750 1666
#test_q 3448 1707 1752 1700
#test_qrels 4.16 6.79 7.55 8.31
LL-MultiCPR
#document 1,486,184 630,545 648,307 198,310
#train_q 136,282 - - -
#dev_q 7551 3340 3270 989
#test_q 7653 3242 3223 1032
#test_qrels 1.0 1.0 1.0 1.0

current session. Let 𝑝𝑖, 𝑗 be the retrieval performance evaluated on
the test queries of session 𝑗 (i.e, Qtest

𝑗 ) over the document collec-
tion D0:𝑗 after the learning of session 𝑖 , and 𝑝𝑖, 𝑗 can be measured
using any common retrieval metric like Recall or MRR. We take
the performance at session 𝑡 , namely 𝑃𝑡 , and average performance
over all coming sessions, namely𝐴𝑃 , to compare various methods:

Pt = 𝑝𝑡,𝑡 , AP =
1
𝑇

𝑇∑
𝑡=1

𝑝𝑡,𝑡 . (16)

Following [25], we also apply auxiliary metrics to assess how
fast a model learns (Training Time), how much the model forgets
(Forgett), and how well the model transfers knowledge from one
session to future sessions (FWT). Formally, they are defined as:

Forgett=
1
𝑡

𝑡−1∑
𝑗=0

max
𝑙∈{0,...,𝑡−1}

(
𝑝𝑙,𝑗 −𝑝𝑡,𝑗

)
, FWT=

∑𝑗−1
𝑖=1

∑𝑇
𝑗=2 𝑝𝑖,𝑗

𝑇 (𝑇−1)
2

. (17)

To instantiate the above metrics in our work, we consider the
evaluation method of the original LoTTE [36] and Multi-CPR [22].
Besides Recall (R@𝑁 ), Success (S@𝑁 ) and Mean Reciprocal Rank
(MRR@𝑁 ) are used in LoTTE and Multi-CPR respectively. Follow-
ing the official cutoffs for 𝑁 , we show the lifelong learning perfor-
mance on the above defined metrics regarding S@5 and R@100 for
LL-LoTTE, and MRR@10 and R@1000 for LL-MultiCPR.
5.3 Baselines
We consider two types of baselines for comparison:
Memory-based Methods: (1) ER [5] applies random sampling
for memory data selection and reservoir sampling for memory up-
date. Despite its simplicity, ER outperforms many complex lifelong
learning methods [25]. (2) MIR [1] chooses replay samples accord-
ing to their loss increment regarding the updated model learned
on the new data, and also uses reservoir sampling for memory up-
date. (3) GSS [2] has the samememory data selection strategy as ER
but refines the memory update by trying to diversify the samples
in the memory buffer based on their gradients. However, it incurs
huge computation costs. (4) OCS [46] is one of the latest methods
for lifelong learning containing noisy data. It selects high-affinity
samples to previous data based on their gradients for model and
memory update.
Naive Methods: (1) Initial conducts no model updating and uses
the model trained in the initial session for the retrieval in the up-
coming sessions. (2) Incre-train initializes the model training from
the previous session and updates it with the new data in the current
session. (3) Retrain trains the model from scratch in each session
using the whole available data until that session.
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To see the separate effect of our proposed data selection strategy
and ranking alignment objective, we compare our method with the
baselines both without and with backward-compatible representa-
tion learning (based on Eq. (8) or Eq. (15)). Note that: (1) Initial
has the same performance under the two settings since the model
is not updated; (2) Retrain works only without backward compat-
ibility since the model is retrained from scratch in each session.
For the comparisons with the backward-compatibility constraint,
we equip the baselines with the embedding alignment objective in
Eq. (15), and our model L2R uses no or one of the two alignment ob-
jectives, named as L2Rvanilla, L2Remb , and L2Rrank , respectively.

5.4 Implementation Details
We implement the retrieval model with DPR [15], and the parame-
ters are initialized with BERT-base released by Google. The hyper-
parameters in baselines and our method are tuned on the dev set.
For LL-LoTTE, we truncate the input query and passage to a max-
imum of 32 and 256 tokens respectively. We train retrieval models
with BM25 top-500 results for the initial session and top-200 re-
sults for the upcoming sessions, and the key hyper-parameters of
BM25 are tuned to 𝑘1=0.80 and 𝑏=0.72. We use a batch size of 96,
and a learning rate of 5e-6 and 1e-6 for the initial session and up-
coming sessions respectively. For LL-MultiCPR, we set the query
and passage length to 32 and 128 respectively. We train the initial
session and upcoming sessions with BM25 top-500 results, with
𝑘1 = 0.20 and 𝑏 = 0.72. We use a learning rate of 1e-5 and 3e-6 for
the initial and upcoming sessions respectively, and a batch size of
192. For the two datasets, we pair each positive document with 5
negatives for training, including 3 new documents and 2 memory
documents. For data selection, we upsample a subset with twice
the desired number of documents in each training step, instead of
the entire collection, to save the computation cost. For memory
update, we set the number of anchor documents and replaced doc-
uments are 1/3 of the memory buffer size 𝑛. We set 𝛼 to 0.6 and 0.8
for LL-LoTTE and LL-MultiCPR respectively, and 𝜆 to 1.0 and 3.0
for both. For each dataset, we set the buffer size 𝑛 of each training
query with two settings that can hold: (1) half of training negatives
in the initial session (i.e., 30 for LL-LoTTE and 10 for LL-MultiCPR);
(2) total training negatives in all the sessions (i.e., 100 for LL-LoTTE
and 30 for LL-MultiCPR). We use the former as the default setting.

We adopt the Transformers for implementations and all exper-
iments run on Nvidia Tesla V100-32GB GPUs. Statistically signifi-
cant differences are measured by a two-tailed t-test. The datasets
and code are available at https://github.com/caiyinqiong/L-2R.

6 RESULTS AND DISCUSSION
In this section, we present the experimental results and conduct
thorough analysis of L2R to clarify its advantages.

6.1 Main Evaluation
We compare the performance of L2R with all the baselines in Sec-
tion 5.3, and record their results under both settings in Table 3 & 4.

PerformancewithoutRepresentationCompatibility. From
Table 3, we find that: (1) Without special measures for lifelong
learning, neural retriever DPR (i.e., Initial) shows poorer gener-
alization ability than the term-based retrievers (i.e., BM25), espe-
cially when the distribution changes violently. For example, DPR
outperforms BM25 on LL-LoTTE in Session 0-2 but underperforms

it when massive science documents influx in Session 3 (note that
there are significantly more documents in the science domain than
others). This observation is consistent with the conclusion in [33]
that neural retrievers are less robust than BM25. (2) For the meth-
ods that learn from new data (i.e., methods except Initial), Incre-
train performs poorly than memory-based methods, probably be-
cause it does nothing to address the catastrophic forgetting issue.
Additionally, Incre-train is not always superior to Initial, particu-
larly on LL-MultiCPR. Apart from the forgetting issue, we believe a
potential reason is that the sizable unlabeled relevant documents in
the new data could hurt model updating. (3) It is worth noting that
Retrain exhibits worse performance, particularly on recall, which
deviates from findings in other lifelong learning tasks like image
classification [1]. It is probably because the retrained retriever has
seen fewer varieties of negative samples and has a higher probabil-
ity of using emerged unlabeled positive documents for training. (4)
Among the memory-based methods, MIR has the overall best per-
formance on both datasets and OCS can not exceed it. This shows
that the gradient-based method to filter out noisy data in OCS does
not work effectively for unlabeled relevant documents in the re-
trieval task. (5) On both benchmarks, L2R consistently outperforms
the baselines in all upcoming sessions. Especially in Session 3 of
LL-LoTTE that has violent distribution drift, L2R beats others by
a large margin and surpasses BM25. These performance gains con-
firm the advantages of our proposed data selection strategy in L2R.

Performance with Representation Compatibility. The per-
formance of all the methods with representation compatibility is
presented in Table 4. Compared to Table 3, we have the following
observations. From the perspective of effectiveness: (1) Adding
the embedding alignment to ensure representation compatibility
leads to significantly lower model performance, even worse than
Initial. It shows that enforced embedding alignment could hurt
model learning on new data. Among these methods, Incre-train is
hurt the least, probably because the regularization is applied on
fewer documents. (2) For the three variants of L2R with represen-
tation compatibility, L2Rvanilla suffers frommodel collapse by only
optimized with the contrastive learning loss on existing embed-
dings of previous documents. By injecting an alignment regulariza-
tion, the model could be updated more effectively with backward-
compatible representations. (3) It is exciting that L2Rrank can sig-
nificantly exceed L2Remb , and even outperform L2R that without
representation compatibility in some sessions (e.g., Session 1 of
LL-LoTTE and almost all the sessions of LL-MultiCPR). It shows
that the alignment on predicted ranking lists allows for more flex-
ible encoder updates than direct embedding alignment, and the
prediction results based on existing embeddings (computed by old
models) provide beneficial information based on the previously ac-
quired knowledge to guide the model to learn new data (see fur-
ther analysis in Section 6.3). From the perspective of efficiency:
(1) With representation backward-compatibility, it can save 79%
(2.73M vs. 13.16M) and 81% (1.47M vs. 7.85M) of computation costs
for inferring document representations than that without compat-
ibility on LL-LoTTE and LL-MultiCPR respectively (accumulated
on 3 upcoming sessions). Overall, these results demonstrate that
the ranking alignment objective in L2R could promote both the ef-
fectiveness and efficiency of model lifelong learning.
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Table 3: Evaluation results on LL-LoTTE and LL-MultiCPR without representation compatibility. Bold and underline indicate
the best overall and baseline performance. ∗ indicates statistically significant improvements over all baselines (p < 0.05).

Method
LL-LoTTE LL-MultiCPR

S@5 R@100 MRR@10 R@1000
P0 P1 P2 P3 AP P0 P1 P2 P3 AP P0 P1 P2 P3 AP P0 P1 P2 P3 AP

BM25 40.0 45.3 43.6 44.5 44.5 47.1 43.0 40.2 37.6 40.3 19.69 14.78 17.04 15.97 15.93 72.43 51.79 73.35 68.99 64.71
Initial 41.0 47.4 44.3 41.6 44.4 48.4 43.7 41.7 35.4 40.3 25.16 16.22 20.79 19.88 18.96 83.88 66.66 79.77 78.20 74.88
Incre-train / 47.3 45.5 42.1 45.0 / 43.7 41.9 35.1 40.2 / 15.32 20.67 19.85 18.61 / 65.21 78.68 78.07 73.99
Retrain / 47.4 44.5 41.0 44.3 / 43.6 40.2 33.9 39.2 / 15.51 20.25 19.50 18.42 / 64.37 78.93 76.65 73.32
ER / 47.8 45.4 42.6 45.3 / 44.0 42.0 35.3 40.4 / 16.15 20.87 20.14 19.05 / 66.93 79.74 78.59 75.09
MIR / 48.7 46.1 43.4 46.1 / 44.2 42.7 36.0 41.0 / 16.07 21.01 20.32 19.13 / 66.90 79.77 78.49 75.05
GSS / 48.3 45.8 43.3 45.8 / 44.2 42.3 35.4 40.6 / 16.43 20.78 19.95 19.05 / 67.02 79.37 78.71 75.03
OCS / 48.6 46.1 43.4 46.0 / 44.3 42.5 35.9 40.9 / 16.39 20.57 20.22 19.06 / 66.75 79.46 78.29 74.83
L2R / 50.0∗ 48.0∗ 46.5∗ 48.2∗ / 45.9∗ 44.5∗ 38.2∗ 42.9∗ / 17.25∗ 22.34∗ 21.57∗ 20.39∗ / 68.69∗ 80.55∗ 80.17∗ 76.47∗

Table 4: Evaluation results on LL-LoTTE and LL-MultiCPR with representation compatibility. Bold and underline indicate the
best overall and baseline performance. ∗ indicates statistically significant improvements over all baselines (p < 0.05).

Method
LL-LoTTE LL-MultiCPR

S@5 R@100 MRR@10 R@1000
P1 P2 P3 AP P1 P2 P3 AP P1 P2 P3 AP P1 P2 P3 AP

Initial 47.4 44.3 41.6 44.4 43.7 41.7 35.4 40.3 16.22 20.79 19.88 18.96 66.66 79.77 78.20 74.88
Incre-train 44.9 42.2 39.0 42.0 41.1 39.1 33.9 38.0 8.85 14.54 12.11 11.83 57.77 76.02 72.45 68.75
ER 45.2 41.6 37.8 41.5 41.4 38.3 32.8 37.5 9.31 13.61 11.66 11.53 57.80 75.18 71.03 68.00
MIR 45.2 42.2 38.3 41.9 41.5 38.5 33.0 37.7 9.23 13.62 11.50 11.45 57.87 75.09 70.93 67.96
GSS 45.1 42.1 38.2 41.8 41.4 38.8 33.1 37.8 9.29 13.46 11.32 11.36 57.95 75.37 71.14 68.15
OCS 45.1 42.3 38.3 41.9 41.5 38.8 33.2 37.8 9.28 13.16 11.42 11.29 57.77 75.01 70.89 67.89
L2Rvanilla 40.3 36.8 33.3 36.8 31.0 27.0 22.0 26.7 3.31 9.64 7.75 6.90 23.87 47.16 41.67 37.57
L2Remb 46.3 43.8 38.8 43.0 42.4 38.7 33.4 38.2 9.38 14.20 12.27 11.95 58.11 75.80 72.38 68.76
L2Rrank 50.6∗ 47.3∗ 44.6∗ 47.5∗ 46.9∗ 44.1∗ 37.8∗ 42.9∗ 22.61∗ 25.80∗ 29.11∗ 25.84∗ 70.64∗ 80.05∗ 80.91∗ 77.20∗

Table 5: Evaluation results of the last session (𝑃3) with differ-
ent buffer size on LL-LoTTE and LL-MultiCPR. All themeth-
ods run with representation compatibility.

Method
LL-LoTTE LL-MultiCPR

𝑛=30 𝑛=100 𝑛=10 𝑛=30
S@5 R@100 S@5 R@100 MRR@10 R@1000 MRR@10 R@1000

ER 37.8 32.8 38.1 32.9 11.66 71.03 11.71 71.32
MIR 38.3 33.0 37.9 33.0 11.50 70.93 11.72 71.41
GSS 38.2 33.1 38.4 33.1 11.32 71.14 11.44 71.33
OCS 38.3 33.2 38.8 33.1 11.42 70.89 11.43 71.01
L2Rrank 44.6 37.8 45.2 38.2 29.11 80.91 30.27 81.30

Performance with Larger Memory Buffer Size. To investi-
gate the impact of memory buffer size on model performance, we
conduct experiments using a larger buffer that can hold all the
training samples used in the four sessions. Only the results of the
last session using different𝑛 are reported in Table 5 for a clear com-
parison. We observe that with a larger buffer size, the performance
of L2Rrank is further improved, particularly on precision metrics
such as S@5 and MRR@10 (e.g., the improvement is 1.3% on S@5
for LL-LoTTE and 4.0% on MRR@10 for LL-MultiCPR.). However,
the baseline methods do not benefit as much from a larger memory,
probably because ER and MIR store random-sampled documents,
and more importantly, all of them cannot filter out the unlabeled
positives. In contrast, L2R stores diverse support negative samples,
thereby making more efficient use of the memory buffer slots.

6.2 Studies on Data Selection Strategy
We run ablation studies on the data selection strategy to investi-
gate its impact on model learning.

For data selection, we define 𝑃𝑆𝑆 and 𝐼𝑆𝐷 to measure the
likelihood of a document being negative and its diversity rela-
tive to others. We compare L2Rrank with several ablation vari-
ants to verify the effectiveness of our criteria in Table 6: (1) For
the 𝑁𝑒𝑤𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 module, we observe that without the 𝑃𝑆𝑆
component to filter out unlabeled relevant documents in the new
data, the retrieval performance on the two datasets significantly de-
creases. Removing 𝐼𝑆𝐷 also causes a performance drop, especially
on recall, since the retriever has seen fewer varieties of negative
samples if redundancy among the selected samples is not consid-
ered. These results demonstrate that both criteria are important in
selecting new data for the model to adapt to new distributions. (2)
For the 𝑀𝑒𝑚𝑜𝑟𝑦𝐷𝑎𝑡𝑎𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 module, we remove the 𝐼𝑆𝐷 com-
ponent and randomly select replay samples from the memory. The
performance decreases on both datasets, showing that selecting
samples different from the new data for replaying is critical for ef-
fective model updating. It is probably because the cooccurrence of
discrepant or even conflicting data encourages the model to delib-
erate the balance between learning new knowledge and preserving
old knowledge. (3) For the𝑀𝑒𝑚𝑜𝑟𝑦𝑈𝑝𝑑𝑎𝑡𝑒 module, we remove the
𝐼𝑆𝐷 component and replace the samples in the memory randomly.
The results show that LL-LoTTE has less regression in performance
compared to LL-MultiCPR, probably because LL-MultiCPR uses a
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Table 6: Ablation studies on the data selection strategy in
L2Rrank. Evaluation results of the last session (𝑃3) in LL-
LoTTE and LL-MultiCPR are reported.

Module Strategy LL-LoTTE LL-MultiCPR
S@5 R@100 MRR@10 R@1000

L2Rrank 44.6 37.8 29.11 80.91

NewDataSelection
-𝑃𝑆𝑆 43.8 37.3 28.99 79.65
-𝐼𝑆𝐷 44.3 37.4 29.14 80.62
-Both 43.6 37.2 28.82 79.36

MemoryDataSelection -𝐼𝑆𝐷 44.4 37.1 28.19 79.75
MemoryUpdate -𝐼𝑆𝐷 44.3 37.5 28.59 80.10
Table 7: Investigations on the alignment objectives. Evalua-
tion of each session (𝑃1 − 𝑃3) in LL-LoTTE are reported.

Method Query L2R L2Remb L2Rrank
S@5 R@100 S@5 R@100 S@5 R@100

Session1 #seen: 1469 51.1 43.3 48.5 41.5 50.9 44.2
#unseen: 238 40.3 57.1 32.4 47.5 48.7 63.3

Session2 #seen: 1525 48.9 41.3 46.6 37.4 47.8 41.6
#unseen: 227 39.2 58.0 25.1 47.3 44.1 60.6

Session3 #seen: 1573 47.7 37.5 40.6 33.0 45.3 36.9
#unseen: 127 30.7 47.6 17.3 38.1 36.2 50.2

smaller buffer size (𝑛=10), and storing non-redundant samples be-
comes more important for it to address the forgetting issue.
6.3 Studies on Alignment Objectives
We conduct studies on the embedding and ranking alignment ob-
jectives to probe their impact on model updating.

Performance on Seen and Unseen Queries. To understand
how the alignment objectives affect model updating, we split the
test set of each coming session in LL-LoTTE to previously seen
queries and newly unseen queries, and evaluate the performance of
L2R, L2Remb , and L2Rrank . From Table 7, we find that: (1) The seen
queries generally achieve higher S@5 but lower R@100. It is be-
cause the seen queries usually have more relevant documents than
the unseen queries, which is less favourable for them on recall. (2)
In L2Remb , both seen and unseen queries experience a significant
performance drop compared to L2R that without compatibility. Es-
pecially, the drop on unseen queries is more dramatic than that on
seen queries. It shows that direct embedding alignment constrains
the model to learn new knowledge. (3) It is interesting that L2Rrank
demonstrates improved performance on unseen queries compared
to L2R. It shows that the ranking results predicted on the old em-
beddings provide beneficial supervision to the model to learn rel-
evance matching on new data. Moreover, the ranking alignment
does not harm seen queries, unless the distribution changes dras-
tically and the model compromises to fit new data (i.e., Session 3).

Performance on Auxiliary Metrics. We compare all the
methodswith representation compatibility on auxiliarymetrics, in-
cluding ForgetT, FWT, and Training Time, to gain insights into the
model updating process. From Figure 2, we observe: (1) Among all
the methods, L2Rrank performs best in addressing the catastrophic
forgetting issue. Particularly on LL-LoTTE, it has negative val-
ues on ForgetT. Apart from the superior memory mechanism in
L2R, one possible reason is that, during the lifelong learning pro-
cess, models with ranking-aligned compatible leaning could effec-
tively acquire new knowledge, and the query encoder is adjusted
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Figure 2: Evaluation on auxiliary metrics. Each column de-
notes a metric and each row denotes a dataset.

to better differentiate the relevant and irrelevant documents for
test queries in historical sessions. (2) Besides the forgetting issue,
L2Rrank shows promising forward transfer ability than the mod-
els optimized with embedding alignment, probably because tight
embedding alignment with existing embeddings hinders model up-
dating and generalizing to new queries. (3) On the training time,
our methods have significantly lower training costs compared to
GSS and OCSwhich require gradient calculations for each training
sample and MIR which requires extra estimated model updating.

7 CONCLUSION AND FUTUREWORK
In this work, we study a common scenario in real-world search
engines, where numerous documents are continuously emerging
with potential distribution drift. To adapt the retriever to new dis-
tributions, we propose a memory-based lifelong learning method
for first-stage retrieval (i.e., L2R). By employing the selection strat-
egy of diverse support negatives for model updating, along with a
ranking alignment objective for backward-compatible representa-
tion learning, L2R could continuously learn the retriever on unla-
beled emerging documents both effectively and efficiently. Exten-
sive experiments on our constructed benchmarks demonstrate the
superiority of L2R over competitive lifelong learning baselines.

Our work presents an initial step towards solving the critical
challenges in lifelong learning for first-stage retrieval. Due to page
limitations, certain promising directions remain unexplored in this
study. Firstly, it is worth investigating whether the methods pro-
posed for domain adaptation still work well in the lifelong learning
setting, as both address the distribution changes. Secondly, the cur-
rent method does not yet have specialized techniques to handle
queries related to booming topics, which presents an avenue for
future research. In conclusion, we believe that our study, despite
its limited scope, provides valuable and generalizable insights that
could guide future research on this task.
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