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ABSTRACT
Neural ranking models (NRMs) and dense retrieval (DR) models
have given rise to substantial improvements in overall retrieval
performance. In addition to their effectiveness, and motivated by
the proven lack of robustness of deep learning-based approaches
in other areas, there is growing interest in the robustness of deep
learning-based approaches to the core retrieval problem. Adversar-
ial attack methods that have so far been developed mainly focus
on attacking NRMs, with very little attention being paid to the
robustness of DR models.

In this paper, we introduce the adversarial retrieval attack (AREA)
task. The AREA task is meant to trick DR models into retrieving
a target document that is outside the initial set of candidate docu-
ments retrieved by theDRmodel in response to a query.We consider
the decision-based black-box adversarial setting, which is realistic
in real-world search engines. To address the AREA task, we first
employ existing adversarial attack methods designed for NRMs. We
find that the promising results that have previously been reported
on attacking NRMs, do not generalize to DR models: these methods
underperform a simple term spamming method. We attribute the
observed lack of generalizability to the interaction-focused architec-
ture of NRMs, which emphasizes fine-grained relevance matching.
DR models follow a different representation-focused architecture
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that prioritizes coarse-grained representations. We propose to for-
malize attacks on DR models as a contrastive learning problem in
a multi-view representation space. The core idea is to encourage
the consistency between each view representation of the target
document and its corresponding viewer via view-wise supervision
signals. Experimental results demonstrate that the proposedmethod
can significantly outperform existing attack strategies in misleading
the DR model with small indiscernible text perturbations.
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1 INTRODUCTION
Information retrieval (IR) systems typically employ a multi-stage
search pipeline, including the first-stage retrieval and the re-ranking
stage [13]. The first-stage retrieval returns an initial set of candidate
documents from a large repository, and the re-ranking stage re-
ranks those candidates. Dense retrieval (DR) models [13, 55] and
neural ranking models (NRMs) [7, 49] offer substantial performance
improvements in the retrieval and re-ranking stage, respectively.

By modifying normal examples with malicious human-impercep-
tible perturbations, deep learning-based models can be deceived
into providing attacker-desired inaccurate predictions [43]. DR
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Figure 1: The adversarial retrieval attack (AREA) task.
models and NRMs are prone to inherit the adversarial vulnerabil-
ity of general neural networks, emphasizing the need for reliable
and robust neural IR systems. Exploring potential adversarial at-
tacks against neural models in IR is an important step towards
this goal: Such explorations help identify vulnerabilities, serve as
a surrogate to evaluate robustness before real-world deployment,
and, consequently, aid in devising appropriate countermeasures.

To date, much attention has been devoted to the design of ad-
versarial attacks against NRMs [25, 27, 47]. Given a neural ranking
model, the attack aims to promote a low-ranked target document
to higher positions via human-imperceptible perturbations. In con-
trast, little e�ort has been devoted to investigating how adversarial
attacks a�ect DR models. We believe it is important to address
this knowledge gap. Firstly, like NRMs, DR models are increasingly
vital in practical IR systems. Adversarial attacks can expose their
weaknesses and provide insights for developing more robust search
engines. Secondly, within a multi-stage search pipeline, if black-hat
search engine optimization practitioners [15] cannot ensure a target
document successfully passes the �rst-stage retrieval, they will not
have the chance to promote it in rankings in the �nal ranked list.

Adversarial attacks against DR models. We are the �rst to
develop adversarial attacks against DR models. The �rst research
question is: What is the goal of attacking DR models? Based on
the adversarial attacks against NRMs and inspired by properties
of the �rst-stage retrieval, we propose to de�ne an attack task, the
adversarial retrieval attack(AREA) against DR models. As shown
in Figure 1, given a DR model, the AREA task is to retrieve a target
document outside the initial set of candidate documents for a
given query, by perturbing the document content in a semantic-
preserving way. We focus on a practical and challenging decision-
based black-box setting, akin to the adversarial attacks against
NRMs [25, 27, 47], where the adversary can only query the target
DR model without direct model information access. For consistency
with the multi-stage search pipeline in practical IR systems, we
simulate a black-box �retrieval and re-ranking� pipeline, wherein
the target DR model initially narrows down the candidate set to
 documents, followed by an NRM determining the �nal top- 
documents ordering. In this way, we query the pipeline and assess
the �nal decision to perform attacks in a black-box manner.

Using NRM attack methods against DR models. To address
the AREA task, the second research question arises: Do existing
attack methods against NRMs perform as well against DR models
as against NRMs? Our results show that these methods lag behind
a simple term spamming attack typically involving query keyword
stu�ng [ 15]. Deep neural networks with interaction-focused archi-
tectures are usually employed for NRMs, while less complicated

models with representation-focused architectures are adopted in DR
models [9, 14, 51]. Speci�cally, when attacking NRMs, the perturba-
tion update relies on modeling �ne-grained interactions between
attacked documents and queries. In contrast, DR models depend
on coarse-grained text representations for e�ective search in the
representation space. This distinction renders the existing attacks
against NRMs unsuitable for deceiving DR models.

Attack models tailored for DR models. The analysis we have
just summarized leads to our third research question: Can we design
an e�ective adversarial attack method tailored for DR models? As
DR conducts retrieval purely in the representation space [13, 55],
we introduce amulti-view contrastive learning-based adversarial
retrieval attack(MCARA) to generate adversarial examples. Our
key idea is to enhance the consistency of semantic representations
between the target document and the retrieved documents in
the initial set using view-wise supervision. Speci�cally, after train-
ing a surrogate model to demystify the target DR model, we �rst
obtain di�erent viewers to represent documents in the initial set
via a clustering technique. We produce multi-view representations
for the target document through viewers. Then, a view-wise con-
trastive loss is applied to draw each view representation of the
target document closer to its corresponding viewer in the semantic
space while distancing it from nearest-neighbor documents outside
the initial set. In this way, the attacker captures informative and
discriminative semantic signals via view-level contrastive supervi-
sion. Finally, following [47], we use prior-guided gradients of the
view-wise contrastive loss to identify the important words in a
document, and adopt projected gradient descent [32] to generate
gradient-based adversarial perturbations.

Experiment on two web search benchmark datasets show that
MCARA e�ectively promotes the target document into the candi-
date set with high attack success and low time cost. According to
both automatic and human evaluations, MCARA retains target doc-
uments semantics and �uency. Moreover, the adversarial examples
produced by MCARA can deceive the NRM to some extent.

2 RELATED WORK
Dense retrieval. Dense retrieval [55] conducts �rst-stage retrieval
[13] in the embedding space and has demonstrated several advan-
tages over sparse retrieval [24]. It typically employs a dual-encoder
architecture to embed queries and documents into low-dimension
embeddings [45]using these similarities as estimated relevance
scores [13]. By �ne-tuning BERT with in-batch negatives [19], DR
models have been shown to outperform BM25 [39]. Subsequently,
research has explored various pre-training [10, 31], and �ne-tuning
techniques [21, 37, 53] to enhance DR models, achieving state-of-
the-art performance on IR tasks. Besides high e�ectiveness, the
robustness of DR models, such as out-of-distribution [26, 44, 52]
and query variations [4, 36], has been focused. Unlike the work
listed above, we focus on theadversarialrobustness of DR models.

Adversarial attacks in IR. In IR, black-hat search engine opti-
mization (SEO) has been a threat to search systems since the dawn
of the world wide web [15]. Black-hat SEO usually aims to increase
the exposure of a document owner's pages by maliciously manip-
ulating documents, resulting in a decline in the quality of search
results and inundation of irrelevant pages [1]. Research has shown
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that neural ranking models (NRMs) inherit the adversarial vulnera-
bilities of deep neural networks, making them susceptible to small
perturbations added to documents [48]. Research into adversarial
attacks against NRMs has been growing, with the goal of promoting
a target document in the rankings w.r.t. a query via imperceptible
perturbations. Prior work investigates the vulnerability of NRMs in
white-box [42, 46] or black-box [27, 47] scenarios, using word sub-
stitution [47] or trigger injection [25] as document perturbations.
Similar to NRMs, DR models are also likely to inherit adversarial
vulnerabilities of deep neural networks. The adversarial vulnerabil-
ity of DR models remains under-explored.

Multi-view document representations. A single representation
vector may not be able to properly model the �ne-grained seman-
tics of a document [55]. To tackle this issue, previous work has
proposed approaches to explore multiple representations for en-
hancing the semantic interaction in DR. Poly-Encoder [18] learns
multi-representations for modeling the semantics of a text accord-
ing to multi-views. Zhang et al. [54] introduce multiple viewers to
produce multi-view representations to represent documents and en-
force them to align with di�erent queries. In this work, we generate
multi-view representations of a target document through viewers.

Contrastive learning. Contrastive learning [22] is a branch of
self-supervised representation learning, which has been widely
applied in computer vision [16, 17] and natural language process-
ing [11, 41]. The key idea is to contrast pairs of semantically similar
and dissimilar pairs of data, encouraging the representations of
similar pairs to be close and those of dissimilar pairs to be further
apart. In the context of dense retrieval, some work has adopted con-
trastive learning in guiding models to learn more distinguishable
representations of documents [29, 50]. Unlike existing work, we
aim to obtain an e�ective attack signal by pulling each view repre-
sentation of the target document towards its corresponding viewer,
while pushing it away from representations of counter-viewers.

3 PROBLEM STATEMENT
Given a query@, the aim of �rst-stage retrieval is to recall a subset of
potentially relevant documents from a large corpusC = f31•32, . . . ,
3# gwith a total of # documents. In general, a �rst-stage retrieval
model produces a relevance scoreB¹@•3º of the query@for each
document3 in C, and then recalls a set of candidates' by selecting
the top- documents with the highest predicted scores. Here, rep-
resents the number of candidates in' , which is usually signi�cantly
smaller than the corpus size# . For example, the retrieval model
outputs the initial set' = f31•32• ” ” ” •3 gwith  candidates if it de-
termines thatB¹@•31º ¡ B¹@•32º ¡ � � � ¡ B¹@•3 º ¡ � � � ¡ B¹@•3# º.
In this case,3 possesses the lowest relevance score within' .

Objective of the adversary. Theadversarial retrieval attack(AREA)
task is to fool the DR models into retrieving a target document out-
side the initial set of candidates in response to a query appearing
in the  initial candidates, by �nding an optimized and impercepti-
ble perturbation?. Formally, given a query@and a target document
3 out of the initial set, the goal is to construct a valid adversarial
example303E = 3 � ?, that can be ranked above the -th position.
Speci�cally,? is crafted to conform to the following requirements,

Recall¹@•3� ?º �  such that? � n• (1)

whereRecall¹@•3� ?º denotes the ranking position of the adversar-
ial example recalled by@. A smaller value ofRecalldenotes a higher
ranking. In this case, the rank position of the original3 is larger
than  . n is the maximum perturbation upper bound of?. Ideally,
the perturbation? should preserve the semantics of document3
and be imperceptible to human judges yet misleading to DR models.
In this work, we use the number of word substitutions and the
similarity of the substituted words as restrictions.

Decision-based black-box attacks. Since most real-world search
engines are black boxes, here, we focus on the decision-based black-
box attack setting for the AREA task, where the model parameters
are inaccessible to the adversary. To align with practical IR systems'
multi-stage pipelines, we simulate a retrieval-ranking pipeline by
incorporating a representative NRM following the target DR model,
refer to as black-box. We train a surrogate model [35] to imitate
the target DR model, by querying the pipeline for the �nal ranking.

4 OUR METHOD
We �rst analyze the di�erence between attacking NRMs and DR
models, and then introduce our attack method for AREA task.

4.1 Representation and interaction behavior
To address the AREA task, it is natural to consider existing attack
methods designed for NRMs. However, as our experimental results
of Section 6.1 show, unlike the success in NRMs, these methods
designed for NRMs do not achieve promising performance. Below,
we investigate the potential reasons from several perspectives.

Di�erent model architectures in DR models and NRMs. Dur-
ing �rst-stage retrieval the aim is to discriminate a small set of candi-
date documents from (potentially) millions of documents in acoarse-
grainedway [13]. To this end, DR models with their representation-
focused architectures (i.e., dual-encoder) are extensively adopted to
evaluate relevance based on high-level representations of each input
text and to ensure e�ciency [55]. In contrast, the re-ranking stage
conducts�ne-grainedrelevance matching between a query and a
small set of candidate documents [14]. To this end, NRMs with their
interaction-focused architectures (i.e., cross-encoder) are widely
used to directly learn from interactions rather than from individual
representations and to maintain good system performance [51].

Di�erent guidelines when attacking DR models and NRMs.
To promote a target document in rankings, attacks on NRMs lever-
age the interaction signals with attention across the query and
the target document tokens. The adversary captures the signal of
inner-document representativeness[30, 37], which guides the com-
putation of the update direction for adversarial perturbation. In
contrast, when attacking DR models, it is important to consider
inter-document representativeness[28, 29], since the dual-encoder
architecture enables the encoding of queries and documents inde-
pendently. To include the target document in the initial candidate
set, the adversary aims to �nd a minimal perturbation that maxi-
mizes the probability of the DR model in distinguishing the target
document from millions of documents in the embedding space.

In summary, the variation in model architectures and attack su-
pervision signals pose considerable challenges when attempting to
deceive DR models using attacks intended for NRMs. Consequently,
it is important to develop attack techniques tailored for DR models.
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Figure 2: The overall architecture of MCARA. After training the surrogate retrieval model: (a) We learn the multi-view
representations of the target document by identifying viewers and counter-viewers. (b) During the attack, a view-wise contrast
is used to force each view of the target document close to its corresponding viewer, while away from other counter-viewers.

4.2 Overview of MCARA
High-quality text representation is the foundation of DR [29]. We
propose to formalize the AREA task as a contrastive learning prob-
lem [22] in the representation space: (i) Push target document3
away from other documents outside the initial set; and (ii) Pull3
closer to the candidates inside the initial set. However, contrasting
all documents inside and outside the initial set incurs computational
overhead and lacks directional control. In this paper, we introduce
representative viewers for the candidates in the initial set and
use the nearest neighbors of the target document in the semantic
space as counter-viewers to serve as counterexamples.

Considering the viewers, a simple method to conduct contrastive
learning is to directly encourage the representation of the target
document and that of each viewer in the semantic space to be closer
while keeping counter-viewers away. Nevertheless, such simulta-
neous attraction in multiple directions towards a single document
representation could potentially lead to information loss. Here, we
introduce a novelmulti-view contrastive adversarial retrieval at-
tack(MCARA). The key idea is to disentangle the target document
embedding into multi-view representations through viewers, and
then enhance the consistency between each view representation
and the representation of its corresponding viewer. MCARA can
be decomposed into three dependent components: (i) Asurrogate
model imitation trains a surrogate retrieval model to prepare for
a gradient attack; (ii)Multi-view representation learning �nds
the viewers and counter-viewers, and generates multi-view repre-
sentations for the target document; and (iii)Attack via view-wise
contrastive loss generates the embedding space perturbations by
calculating the gradients of the surrogate model via contrast. The
overall architecture of MCARA is shown in Figure 2.

4.3 Surrogate model imitation
To simulate a realistic scenario, we regard the �retrieval and re-
ranking� pipeline as a uni�ed black-box model, where the retrieval
model serves as the target DR model for our attack. For each dataset
used in this study, we �rst train the target DR model and then train
the NRM based on the retrieved candidates given by the DR model.
We use state-of-the-art models [10, 30] as the backbone of the DR
model and the NRM in the pipeline, respectively. By sending queries
to the black-box pipeline and obtaining the ranked list (given by

the NRM), following [3, 47], we leverage the relative relevance
information among the ranked list [8] to construct a synthetic
dataset, for training a surrogate retrieval model.

Given a query@2 from a pre-collected query collectionQ that
accesses the black-box pipeline, we get the ranking result' 0 of  
documents returned by the pipeline. We generate pseudo-labels as
the ground-truth by treating the �rst � ranked documents' 0 »: � ¼
as relevant documents' ¸

0 . Generally, training a well-performed
DR model needs to combine random negative sampling and hard
negative sampling [50]. Therefore, we treat the other documents
' 0 »� ¸ 1 :  ¼as hard negative examples' �

0 , and the ranked docu-
ments of other queries except for@2 in & are regarded as random
negative examples. We initialize the surrogate retrieval model~5
using the vanilla BERT. The relevance score calculated by the surro-
gate retrieval model is~5 ¹�•�º. We train ~5 by optimizing a pairwise
loss function as the negative log-likelihood of relevant documents:

L = �
1

jQj

Õ

@2 2 Q

log
~5¹@2• ' ¸

0 º
~5¹@2• ' ¸

0 º¸ ~5¹@2• ' �
0 º¸

Í
' 0

2 2R•f ' 0 g
~5¹@2• ' 0

2º
• (2)

whereR denotes the set of query collection's ranking results, and
' 0

2 is the ranking result of other queries.

4.4 Multi-view representation learning
Based on the surrogate model~5, we �rst learn multiple viewers
from representations of documents within the initial set returned
to a query@, and then generate multi-view representations to repre-
sent the target document3 through the learned viewers. In addition
to the viewers, we employ a set of counter-viewers from represen-
tations of documents outside the initial set to prepare for attacks.

Deriving multiple viewers from the initial set of  candidates.
The key idea is to �nd several indicative viewers to represent the
documents within the initial set and provide guidance for the at-
tack process. Here, the viewer is de�ned as a cluster of documents
sharing the same topic. We will try other ways of �nding viewers
in the future. Given a query@, we �rst obtain the initial set' of  
candidates from the simulated pipeline. Then, we use the document
embedding generated by~5 as the representation of each document
in ' . We apply clustering to the representations of candidates to
obtain= clusters where= �  , and leverage the representation of
each centroid as a topical viewer.
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Speci�cally, given the documents in the initial set' , we use
the K-Means clustering algorithm [40] to �nd a set + of = viewers,

+ = Kmeans
�
=• i

�
~5 • '

� �
” (3)

Here,i ¹ ~5 • 'º are the embeddings of all documents in' , with
respect to the surrogate model~5. In this way, we can obtain the
representations of= viewers, denoted as+ = fv1•v2• ” ” ” •vn g.

Generating multi-view representations of the target docu-
ment through viewers. The key idea is to disentangle the view
information of the target document aligning to the given viewers,
enabling us to e�ectively extract the speci�c relevance signal within
the candidate set. We use a fully-connected layer with activation
function ReLU as a multi-view representations generator. We feed
the target document embeddingwd obtained by ~5 and the repre-
sentations of viewers+ into the generator. To obtain= multi-view
representations, = fw1•w2• ” ” ” •wn g aligned to viewers, follow-
ing [5, 6], we encourage thewi and its corresponding viewervi to
be similar while retaining the original information by minimizing
the square loss, i.e.,

L B@D=
=Õ

8=1

�
kwi � vi k2

2 ¸ kwi � wd k2
2

�
• (4)

wherevi refers to the8-st viewer representation andwi denotes
8-st the disentangled view representation of target document.

We maintain the distinction between multi-view representations
by maximizing the cosine similarity between them:

L 2>B= �
=Õ

8=1

=Õ

9=1

1»8<9¼
wi � wj

kwi k2kwj k2
” (5)

Combining the two optimization objectives, the multi-view repre-
sentations, = fw1•w2• ” ” ” •wn gof 3 are calculated by,

, = arg min
�
L B@Ḑ _L 2>B

�
• (6)

where_ is a trade-o� parameter.

Obtaining multiple counter-viewers from dynamic surround-
ing documents. To enable a contrastive learning based attack, we
also propose to �nd the counter-viewers from documents outside
the initial set' , pushing the target document away from its origi-
nal position in the representation space. To achieve this goal, we
use the dynamic surrounding documents of the target document
as counter-viewers for contrast. During the attack process, a dy-
namic surrounding document3B is the document among the top-=
nearest-neighbor to the current perturbed document in the seman-
tic space of the surrogate model~5. We collect the embedding of
each dynamic surrounding document:

* =
n

~5¹3Bº
�
�
�3B 2 f^ ¹C•3•=ºgn'

o
• (7)

where^ ¹�º is a function returning top-= documents closest to the
target document3 in corpusC under the semantic space of~5, and
~5¹3Bº is the embedding of3B. Finally, we get the representations of

= counter-viewers, denoted as* = f u1•u2• ” ” ” •un g.

4.5 Attack via view-wise contrastive loss
Based on the multi-view representations of the target document,
viewer representations and counter-viewer representations, we
describe how to achieve the attack using a view-wise contrast loss.

View-wise contrastive loss. The view-wise contrastive loss aims
to pull each view representation of the target document close to its

corresponding viewer, and push it away from the representations
from all counter-viewers. Given a query, we aim to �nd the optimal
attack direction for the target document under the semantic space
of the surrogate model~5 with a contrastive lossL �! :

L �! =�
=Õ

8=1

log
exp¹sim¹wi •vi º•gº

exp¹sim¹wi •vi º•gº ¸
Í

uj 2*
exp¹sim¹wi •uj º•gº

• (8)

wherevi is a viewer representation in+ from Eq. (6),wi is a view
representation in, from Eq. (3),uj is a counter-viewer represen-
tation in * from Eq. (7),= is the number of viewers,sim¹�º is the
dot-product function, andg is the temperature hyperparameter.

Perturbation word selection. As demonstrated in [23, 47], only
some important words in the target document act as in�uential
signals for the �nal attack performance. Therefore, for each token
� I in the target document, we calculate the gradient magnitudeg� I

to the embedding vector of each token in~5 usingL �! ,

g� I =
mL �!

me
~5

� I

• (9)

where theL �! is the view-wise contrastive loss from Eq. (8), and

e
~5

� I
is the embedding vector of� I obtained by ~5.

Then, the word importance�� I of each token� I is calculated

by �� I = kg� I
C k2

2. We only attack the top-< words with the highest
importance for each target document3, i.e.,$ = f>1•>2• ” ” ” •>< g.

Embedding perturbation and synonym substitution. We adopt
the projected gradient descent [32] to generate gradient-based ad-
versarial perturbations to the embedding space. Speci�cally, for
each stepCin total iterations[ , we calculate the gradientg3

C of L �!
with respect to target document3 on embedding space. After[ iter-
ations, we obtain the perturbed embeddingsep of all the important

words$ in 3: ep =
n
4?
1• 4?2• ” ” ” • 4?<

o
from gradient accumulation.

Then, we substitute the important words with synonyms( . Fol-
lowing [47], we utilize the embedding similarity of counter-�tted
word embeddings [33] to determine synonyms and employ the
same greedy word replacement strategy computed by perturbed
important word embeddingsep and synonym embeddings. Unlike
existing work [27, 47], we select words from the documents in the
initial candidate set as the pool of potential synonym set( . To
further consider semantic and �uency constraints of the perturbed
sentence, we use the language model perplexity [38] threshold
d of the sentence containing the replacement word to re�ne the
selection of the synonym set.

5 EXPERIMENTAL SETTINGS
In this section, we introduce our experimental settings. The datasets
and code are available at https://github.com/ict-bigdatalab/AREA.

5.1 Datasets

Benchmark datasets. We conduct experiments on two standard
dense retrieval benchmark datasets: theMS MARCO Document
Ranking dataset [34] (MS-MARCO Document) which is a large-
scale benchmark dataset for web document retrieval, with about
3.21 million documents, and theMS MARCO Passage Ranking
dataset [34] (MS-MARCO Passage) which is another large-scale
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benchmark dataset for web passage retrieval, with about 8.84 mil-
lion passages. The relevant documents to user queries are obtained
using Bing, thereby simulating real-world web search scenarios.

Target queries and documents. Following [3,47], for each dataset,
we randomly sample 500 Dev queries as target queries for evalua-
tion. We adopt three types of target documents outside the initial
candidate set, which exhibit di�erent levels of attack di�culty, i.e.,
Easy, Middle, Hard. These documents are sampled from the retrieval
results of the target DR model. For each target query, we select a
total of 30 target documents. Beyond the above three separate sets
of target documents, for each query, we also incorporate a random
sampling of 10 documents from the original pool of 30 target docu-
ments. These documents are selected to showcase a diverse range
of attack di�culties, forming a Mixture level.

5.2 Models

Baselines. We compare our method with several representative
attack methods: (i)Term spamming (TS) [15] randomly selects
a starting position in the target document and replaces the subse-
quent words with terms randomly sampled from the target query.
(ii) TF-IDF simply replaces the important words in the target doc-
ument, which have the highest TF-IDF scores based on the target
query, with their synonyms. (iii)PRADA [47] is a decision-based
black-box ranking attack method against NRMs via word substitu-
tion. We use the pairwise hinge loss between the target document
and the documents from the initial candidate set of DR models to
guide the attack. (iv)PAT [25] is an anchor-based ranking attack
method against NRMs via trigger generation. We use the pairwise
loss between the target document and the anchor (top-1 document)
of DR models to guide the attack.

Model variants. We implement two variants of MCAR, denoted as
(i) MCARA B8=6;4removes the multi-view representation learn-
ing and directly leverages the single document embedding ob-
tained by the surrogate model to contrast with di�erent viewers.
(ii) MCARA 8=3 contrasts each viewer representation of the target
document with its corresponding viewer independently and then
calculates the gradient to �nd important words accordingly. In this
way, we can obtain the intersection of important words found by
independent gradient perturbation.

5.3 Implementation details
For MS-MARCO Document and MS-MARCO Passage, the size 
of the initial candidate set is 100 and 1000 [28, 29, 31], respectively.
To obtain the target documents, for each sampled query in the
MS-MARCO Document, the Easy level comprises 10 documents
ranked between»101•200¼, with documents evenly sampled from
the range. The Middle level includes 10 documents ranked between
»201•1000¼, again with documents evenly sampled from the range.
The Hard level consists of 10 documents ranked outside the top
1000, with each document randomly selected from those outside top
1000. For MS-MARCO Passage, the Easy, Middle, and Hard docu-
ments are similarly sampled from the ranking range of»1000•2000¼,
»2000•10000¼and outside of the top 10000, respectively.

For the black-box "retrieval and re-ranking" pipeline, we choose
a representative DR model called coCondenser [10] as the retriever
and also as our target DR model. Following Zhan et al. [53], we

�ne-tune the pre-trained coCondenser using two-stage hard nega-
tives sampling strategy on the corresponding dataset. We choose a
representative NRM called PROP [30] as the re-ranker and �ne-tune
the pre-trained PROP using the relevance labels and the retrieval
results given by coCondenser. Finally, we use the �ne-tuned PROP
to re-rank the initial candidate set retrieved by the �ne-tuned co-
Condenser and get the �nal ranked list for guiding the learning
of the surrogate model. For surrogate model imitation, we choose
vanilla BERT10B4[20] as the backbone of the surrogate DR model
with a dual-encoder architecture. For each dataset, we utilize the
Eval queries as the pre-collected query collectionQ. We set� to 1
due to the average number of relevant documents per query.

For multi-view representation learning, the number of viewers
and counter-viewers= is set to 5 for MS-MARCO Document and
10 for MS-MARCO Passage, respectively. The trade-o� parameter
_ is 10. We train the multi-view representations generator using
our target query-document pairs for 1 epoch with a learning rate
of 1e-6. For attack via view-wise contrastive loss, we set the tem-
perature hyperparameterg as 0.1. The total iterations of attack[
are 3. The perplexity thresholdd is set to 50 for �ltering synonyms
that do not �uent in the original text. Following [47], the number
of substitution words< in MCARA is set to 50 and 20 for the MS-
MARCO Document and MS-MARCO Passage, respectively. For a
fair comparison, we maintain the same number of substitutions in
all baselines. And the trigger length of PAT is set to 10 and 5 for
the MS-MARCO Document and MS-MARCO Passage, respectively.

5.4 Evaluation metrics

Attack performance. We consider two automatic metrics: (i) Suc-
cess recall rate (SRR)@: (%) evaluates the percentage of after-attack
documents303E retrieved into the candidate set' with : �  doc-
uments. Note that the evaluation with: Ÿ  is more strict than
that with : =  . (ii) Normalized Ranking Shifts Rate (NRS)@ 
(%) evaluates the relative ranking improvement of after-attacked
documents which are successfully recalled into the initial set with
 candidates, i.e.,NRS@ = ¹� 3 � � 303Eº•� 3 � 100%•where� 3
and� 303E are the rankings of3 and303E respectively, produced by
the target DR model. Note that if303E is not successfully recalled
into the initial set of candidates, its NRS is set to 0.

Naturalness performance. We consider three automatic metrics:
(i) Automatic spamicity detection, which identi�es whether target
pages are spam. Following [25], we adopt the utility-based term
spamicity method [56] to detect the adversarial examples. (ii) Au-
tomatic grammar checkers, which compute the average number
of errors in the attack documents. Speci�cally, we use two online
grammar checkers, i.e., Grammarly [12] and Chegg Writing [2],
following the settings in [25, 27]. (iii) Language model perplexity
(PPL), which measures the �uency using the average perplexity
calculated using a pre-trained GPT-2 model [38]. Furthermore, we
leverage the human evaluation, which measures the quality of the
attacked documents following the criteria in [47].

6 EXPERIMENTAL RESULTS
In this section, we discuss experimental results, �ndings and the
attack e�ect between the �rst-stage retrieval and re-ranking stage
discussed in earlier sections of the paper.
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Table 1: Attack performance of MCARA and the baselines; � indicates signi�cant improvements over the best baseline ( ? � 0”05).

Dataset Method
Easy Middle Hard Mixture

SRR NRS SRR NRS SRR NRS SRR NRS

@10 @100 @100 @10 @100 @100 @10 @100 @100 @10 @100 @100

MS-MARCO
Document

TF-IDF 16.0 40.9 32.1 11.1 28.0 23.6 4.2 14.4 13.6 10.3 28.6 23.2
TS 37.8 88.1 67.5 27.2 58.0 60.3 15.1 35.8 33.5 27.1 61.1 54.6
PAT 26.5 70.2 52.2 13.7 36.0 32.0 7.9 27.1 26.4 16.0 43.1 36.6
PRADA 28.4 74.7 56.2 18.5 43.1 37.9 11.2 33.0 33.3 10.5 50.9 42.7

MCARAB8=6;4 36.8 85.1 64.8 25.6 58.6 57.9 18.3� 44.1� 41.5� 26.9 62.9 54.7
MCARA8=3 37.1 86.2 66.1 26.3 60.2 58.4 19.6� 45.7� 43.9� 27.4 63.9 56.1
MCARA 43.5� 92.3� 73.1� 28.1� 66.5� 61.4� 24.4� 50.2� 51.3� 31.2� 69.9� 61.5�

@100 @1000 @1000 @100 @1000 @1000 @100 @1000 @1000 @100 @1000 @1000

MS-MARCO
Passage

TF-IDF 10.2 35.2 25.1 6.4 19.8 18.3 2.1 10.5 10.3 6.1 21.6 17.8
TS 28.6 79.0 59.1 17.2 50.8 48.7 8.4 27.6 26.9 17.8 52.0 44.4
PAT 16.4 62.3 46.7 9.4 30.0 28.6 5.3 23.4 21.5 10.4 38.6 32.3
PRADA 20.1 68.2 51.0 13.8 39.9 39.6 10.6 31.5 30.1 14.7 46.4 40.2

MCARAB8=6;4 24.8 74.2 56.0 16.3 48.3 46.2 9.7 31.2 29.6 16.8 51.0 43.8
MCARA8=3 26.5 76.3 59.4 18.8� 51.9 49.9 11.1� 35.5� 34.9� 18.8� 54.6� 48.0�

MCARA 32.9� 83.1� 65.9� 22.7� 57.3� 53.7� 15.3� 41.1� 40.2� 23.7� 60.5� 53.3�

6.1 Are attack methods against NRMs e�ective
against DR models?

As shown in Table 1, (i) TF-IDF performs poorly, especially on Hard
target documents, indicating that the heuristic method is not able
to e�ectively �nd the most-vulnerable words that help the target
model make judgments. (ii) TS performs moderately well, showing
that directly adding spamming with query terms helps improve the
relevance between the target document and the query. However,
spamicity can easily be detected by anti-spamming detection [25,
27]. We will discuss this further in Section 6.3. (iii) When we look at
the attack methods tailored for NRMs (PRADA and PAT), PRADA
performs better than PAT. The reason may be that PRADA considers
more documents for the pairwise loss calculation, thus obtaining
more comprehensive information about the candidate set.

However, both PRADA and PAT perform worse than the simple
Term Spamming method on DR models. The reason may be that
NRMs and DR models have di�erent model architectures and be-
haviors and thus require di�erent supervision signals to guide the
attack process. In general, the adversarial attack against DR models
is a non-trivial problem for existing attack methods.

6.2 How does MCARA perform on DR models?

Overall performance. The performance of MCARA and its vari-
ants in the DR attack scenario can be found in Table 1: (i) Our
MCARA outperforms all the baseline methods signi�cantly, illus-
trating that it is necessary to attack DR models by capturing the
inter-document representativeness in the semantic space. Gener-
ally, as the di�culty of an attack increases, the performance tends
to decrease. We will explore more advanced objectives tailored for
challenging documents in the future. (ii) In general, attacks on MS�
MARCO Document tend to have a higher success rate compared
to MS-MARCO Passage. The reason may be that the number of
documents addressing the relevant topic is generally smaller than
the number of passages extracted from those documents, o�ering

(a) Number of viewers n (b) Perplexity threshold 1
Figure 3: The impact of the number of viewers (a) and the per-
plexity threshold (b) on the attack performance of MCARA.
a more focused and concise set of information. (iii) The improve-
ment of MCARA over MCARAB8=6;4suggests that incorporating
multi-view document representations is more bene�cial in �nding
�ne-grained semantic information than a single document repre-
sentation, and thus facilitates better contrasting between the target
document and each viewer. (iv) The improvement of MCARA over
MCARA8=3 indicates that optimizing from only one view in the
semantic space at a time may lead to disorder in the optimization
direction of attacking the target document.

Impact of the number of viewers. We examine the impact of
the important hyperparameter= of MCARA, i.e., the number of
viewers, on the attack performance. The results on the Mixture
target documents in MS-MARCO Document are shown in Figure 3
(a), with similar �ndings on the other target documents. We observe
that the performance gets boosted when more representative view-
ers are incorporated into contrastive learning. The reason may be
that more viewers can help extract su�cient representative signals
for the attack. However, the performance gradually decreases when
the number of viewers exceeds some threshold. Too many viewers
increase the risk of making the clusters less representative, even
introducing noise which is not good for contrast. In the future,
we will explore other viewer extraction techniques, such as token
embeddings and document-query alignment.

The impact of the perplexity threshold. We examine the im-
pact of the �uency constrains hyperparameterd, i.e., the perplexity
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