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Visual Reasoning: From State to Transformation

Xin Hong *“, Yanyan Lan

and Xueqi Cheng

Abstract—Most existing visual reasoning tasks, such as CLEVR
in VQA, ignore an important factor, i.e., transformation. They are
solely defined to test how well machines understand concepts and
relations within static settings, like one image. Such state driven
visual reasoning has limitations in reflecting the ability to infer the
dynamics between different states, which has shown to be equally
important for human cognition in Piaget’s theory. To tackle this
problem, we propose a novel transformation driven visual reason-
ing (TVR) task. Given both the initial and final states, the target
becomes to infer the corresponding intermediate transformation.
Following this definition, a new synthetic dataset namely TRANCE
is first constructed on the basis of CLEVR, including three levels of
settings, i.e., Basic (single-step transformation), Event (multi-step
transformation), and View (multi-step transformation with variant
views). Next, we build another real dataset called TRANCO based
on COIN, to cover the loss of transformation diversity on TRANCE.
Inspired by human reasoning, we propose a three-staged reasoning
framework called TranNet, including observing, analyzing, and
concluding, to test how recent advanced techniques perform on
TVR. Experimental results show that the state-of-the-art visual
reasoning models perform well on Basic, but are still far from
human-level intelligence on Event, View, and TRANCO. We believe
the proposed new paradigm will boost the development of machine
visual reasoning. More advanced methods and new problems need
to be investigated in this direction.

Index Terms—Deep learning, transformation, visual reasoning,
visual understanding.

I. INTRODUCTION

ISUAL reasoning goes well beyond object recognition,
V which is the process of solving problems on the basis
of analyzing visual information. Although this task is easy
for humans, it is tremendously difficult for vision systems,
because it usually requires higher-order cognition and reasoning
about the world. Recently, several visual reasoning tasks have
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State driven Visual Reasoning (VQA as an example)

]r Q: What is the color of the cat?
- A: Orange.

Q: What is the location of the cat?
A: On aladder.

Transformation driven Visual Reasoning

g 2

The cat jumps down.

Initial State S Final State S”

\

Fig. 1. State-driven visual reasoning (top) v.s. transformation-driven visual
reasoning (bottom).

been proposed and attract lots of attention in the community
of artificial intelligence. For example, CLEVR [1], the most
representative visual question answering (VQA) task, defines
a question answering paradigm to test whether machines have
spatial, relational, and other reasoning abilities for a given image.
Visual entailment tasks such as NLVR [2], [3] ask models to
determine whether a given description is true about states of
images. Visual commonsense reasoning tasks, such as VCR [4],
further require a rationale explaining the predicting answer.

It has been shown from the above description that these visual
reasoning tasks are all defined at the state level. For example, the
questions and answers in VQA and VCR as well as the language
descriptions in NLVR are just related to the concepts or relations
within states, i.e., an image or images. We argue that this kind
of state driven visual reasoning fails to test the ability to reason
dynamics between different states. In the bottom line of Fig. 1,
the first image shows a cat on a ladder, and in the second image,
the same cat is under the ladder. It is natural for a human to
reason dynamics here after analyzing, that the cat jumps down
the ladder. Piaget’s cognitive development theory [5] describes
the dynamics between states as transformation, and tells that
human intelligence must have functions to represent both the
transformational and static aspects of reality. In addition, with-
out modeling transformation, complicated tasks such as visual
storytelling [6] and visual commonsense inference [7] are hard
to be solved, since these tasks involve not only static states
but also dynamic transformations, such as actions and events.
Though these tasks are closer to reality, they are too complicated
to serve as a good testbed for transformation based reasoning.
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Fig. 2. Illustration of three settings in TRANCE. Basic: Find the single-step
transformation between the initial and final state. Event: Find the multi-step
transformation between two states. View: Like Event, but the view of the final
state is randomly selected from Left, Center, and Right.
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Because these tasks combine too many other requirements,
such as recognition and language generation abilities, which
makes it hard to independently assess transformation reasoning.
Therefore, it is crucial to define a specific task to be able to
quantitatively evaluate the ability to reason transformation.

In this paper, we define a novel transformation driven visual
reasoning (TVR) task. Given the initial and final states, like
two images, the goal is to infer the corresponding single-step
or multi-step transformation. While states are naturally repre-
sented as images, the transformation has many choices in its
form. Without loss of generality, in this paper, we explore two
definitions. In the first definition, transformations are changes
of object attributes, therefore a single-step and multi-step trans-
formation are represented as a triplet (object, attribute, value)
and a sequence of triplets, respectively. These triplets, which are
basic transformation units, are called atomic transformations. In
the second definition, atomic transformations are video clips to
show the entire change process. Therefore, a single-step and
multi-step transformation are respectively represented as a clip
of video and a sequence of video clips.

Following the definition of TVR, we first construct a new
dataset called TRANCE, to test and analyze how well machines
can understand the transformation. We construct TRANCE
based on the synthetic dataset CLEVR [1], since it is better
to first study TVR in a simple setting and then move to more
complex real scenarios, just like people first study VQA on
CLEVR and then generalize to more complicated settings like
GQA. CLEVR has defined five types of attributes, i.e., color,
shape, size, material, and position. Therefore, it is convenient
to define the transformation for each attribute, e.g., the color
of an object is changed from red to blue. Given the initial and
final states, i.e., two images, where the final state is obtained by
applying a single-step or multi-step transformation on the initial
state, a learner is required to well infer such transformation.
To facilitate the test for different reasoning levels, we design
three settings, i.e., Basic, Event, and View. Basic is designed for
testing single-step transformation. Event and View are designed
for more complicated multi-step transformation, where the dif-
ference is that View further considers variant views in the final
state. Fig. 2 gives an example of three settings.

The biggest limitation of TRANCE is the small diversity
of transformation. Imagine that objects in real life can be
transformed into different states through a large number of
different transformations. Therefore, we build another dataset
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called TRANCO to reduce the gap between TRANCE with
real, by reasoning transformations on real data. Given such a
large transformation space, it is infeasible to list and label all
available atomic transformations like TRANCE. As a result,
the alternative way is to further require models to generalize
to unseen transformations, which is actually the basic require-
ment for practical applications. TRANCO is thus designed to
reason “‘open-world” [8] transformations. That is, given the ini-
tial and final states, a learner needs to find a sequence of atomic
transformations from test candidates, while these test candidates
can not be accessed during training. This setting is different
from TRANCE since atomic transformations in TRANCE are a
constant set of attribute changes on limited objects. In TRANCO,
atomic transformations are represented as the aforementioned
video clips, so that annotation of existing datasets could be used.
Specifically, TRANCO is built on the instructional video dataset
COIN, which contains clip annotations that are equivalent to
atomic transformations. That is to say, each video contains
multiple annotated clips and each clip is corresponding to a step
of completing a certain job. The problem then becomes to finding
correct video clips given the initial and final frames, while the
results are evaluated under the protocol of TVR.

In the experiments, we would like to test how well existing
reasoning techniques [9], [10] work on TVR. However, since
these models are mainly designed for existing reasoning tasks,
they cannot be directly applied to TVR. To tackle this problem,
we propose a human-inspired reasoning framework specific for
TVR, called as TranNet. The design philosophy, as well as the
architectural details, are introduced in Section VI. In brief, Tran-
Net extracts essential features from two-state images, and then
circularly decodes latent representations to predict a sequence
of atomic transformations. With TranNet, existing techniques
can be conveniently adapted to TVR. For example, we consider
ResNet [11], Bilinear-CNN [12], DUDA [13], and CLIP [14]
for encoding, GRU [15], and Transformer [16] for decoding.
Experimental results show that deep models perform well on
the Basic setting of TRANCE, but are far from human’s level on
Event, View, and even worse on TRANCO, demonstrating high
research potential in this direction.

In summary, the contributions of our work include: 1) the
definition of a new visual reasoning paradigm, to learn the
dynamics between different states, i.e., transformation; 2) a
new synthetic dataset called TRANCE, to test three levels of
transformation reasoning, i.e., Basic, Event, and View; 3) a real
dataset called TRANCO, to test “open-world” transformation
reasoning; 4) the proposal of a human-inspired transformation
reasoning framework TranNet; 5) experimental studies of the ex-
isting SOTA reasoning techniques on TRANCE and TRANCO
show the challenges of the TVR and some insights for future
model designs.

II. RELATED WORKS

Visual reasoning is an emerging research topic in the field
of machine learning, which requires more artificial intelligence
than tasks like classification, detection, and captioning. Visual
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Question Answering (VQA) is the most popular visual rea-
soning task. Questions in the earliest VQA dataset [17], [18],
[19] are usually concerned about the category or attribute of
objects. Recent VQA datasets have improved the requirements
for image understanding by asking more complex questions,
e.g., Visual7W [20], CLEVR [1], OK-VQA [21], and GQA
[22]. In addition, two other forms of visual reasoning tasks
need to be mentioned. Visual entailment tasks [2], [3], [23],
[24] ask models to determine whether a given description is true
about visual inputs. Visual commonsense reasoning [4], [25]
tasks further require the model to provide a rationale explaining
why its answer is right. Solving these tasks is meaningful and
requires various reasoning abilities. However, the above tasks
are all constrained to be within static states, which ignores the
dynamics between different states.

Recently, several new visual reasoning tasks have jointly
considered multiple states. For example, CATER [26] tests the
ability to recognize compositions of object movements, while
our task contains more diverse transformations rather than just
moving. Furthermore, CATER along with other video reasoning
tasks such as CLEVRER [27] and physical reasoning [28],
[29] is usually based on dense input states, which make the
transformations hard to define and evaluate. Before moving to
these complex scenarios, our TVR provides a simpler formu-
lation by explicitly defining the transformations between two
states, which is more suitable for testing the ability of trans-
formation reasoning. CLEVR-Change [13], the most relevant
work, requires captioning the change between two images. The
novelty is that TVR isolates the ability to reason dynamics from
captioning to provide a more thorough evaluation. Furthermore,
CLEVR-Change only focuses on single-step transformations.

The concept of transformation has also been mentioned in
many other fields. In [30], [31], [32], transformations are used
to learn good attribute representations to improve classification
accuracy. In [33], [34], [35], [36], [37], transformations on object
or environment are detected to improve the performance of ac-
tion recognition. However, those works in attribute learning and
action recognition fields only consider single-step transforma-
tion, thus not appropriate for testing a complete transformation
reasoning ability. Procedure planning [38] has a similar task
formulation to ours but we see this problem from different
perspectives. TVR motivates transformation as important as the
state, while procedure planning specially cares about actions to
complete a goal. Specifically, we provide a more comprehensive
definition and evaluation for transformation, from synthetic to
real, from single-step to multiple-step, and procedure planning
can be seen as a special case of TVR.

III. TASK DESCRIPTION

Transformation driven Visual Reasoning (TVR) is a visual
reasoning task that aims at testing the ability to reason the
dynamics between states. Formally, we denote the state space
as S and the transformation space as 7. The transformational
process can be illustrated as a function f : S X T — S, which
means a state is transformed into another state under the effect
of a transformation. And our task is defined as:
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Transformation Driven Visual Reasoning:
S is the state space, and T is the transformation space.
Input:

e the initial state S' € S, represented as an image,

e the final state S’ € S, represented as an image.
Output: A transformation 7" € T, so that f(S,7) = 5.

With this definition, most existing state driven visual reason-
ing tasks can be extended to the corresponding transformation
driven ones. For example, the VQA task, such as CLEVR,
can be extended to ask about the transformation between two
given images, with answers as the required transformation.
In the extension of NLVR, the task becomes to determine
whether a sentence describing the transformation is true about
the two images, e.g., the color of the bus is changed to red.
Since TVR itself is defined as an interpretation task, we do
not need any further rational explanations, and the extension
of VCR will stay the same as CLEVR. We can see that the
intrinsic reasoning target of these tasks is the same, that is to
infer the correct transformation, while the difference lies in the
manifestation.

In TVR, states are naturally represented as images to capture
static moments, but the transformation has many choices in its
form. For example, any changes in pixel value can be treated
as a transformation, but this representation is meaningless for
humans. Another way to describe transformation is natural
language [13]. However, natural language is not precise and
sometimes ambiguous, making it difficult to evaluate the accu-
racy of the predicted transformations.

In this paper, we explore two transformation definitions. In
the first definition, transformations only affect limited attributes
with limited options just like [13], but the form is changed from
the caption to a more concrete one, i.e., attribute-level change of
an object, represented as a triplet (o, a, v), which means the ob-
ject o with the attribute a is changed to the value v. Except for the
representation, another limitation of [13] is they only consider
single attribute changes between states, while multiple attribute
changes could exist between states in practice. A more general
formulation should consider multiple transformations as well as
their order. To be clear, a basic transformation such as the triplet
(0,a,v) is called an atomic transformation, denotes as t. And
the transformation 7', denotes as a sequence of atomic transfor-
mations that T = {t1,t2,...,tn}, t; = (0i,a;,v;) € T4, where
n is the number of atomic transformations, and 74 C 7 is the
atomic transformation space.

In more complex scenarios, such as in real data, one single
atomic transformation may affect multiple attributes. Take the
cat example again, a simple jumping affects at least the location
and the pose of the cat. It is not suitable to represent transforma-
tions as attribute changes in this situation. Instead, representing
an atomic transformation as a clip of video, completely showing
the whole change process is natural and more friendly for
annotating. The definition of the transformation keeps the same
asT = {t1,ta,...,t,},whilet; = ¢; € Ty and ¢; is aclip from
a video.
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TABLE I
ATTRIBUTES AND VALUES IN TRANCE

Size 3 . ) L Total Attributes: 5
I small* medium large Total Values: 33
@ O 8 *: existing values in CLEVR
Shape x3 cube*  sphere*cylinder*

2 b

glass  metal* rubber*

yellow* gray* cyan*  blue* brown* green* red* purple*

~— = 7 N XN Y
front behind left  right front behind front behind
right right  left  left

Material 3
Color xg

Position x ;4| direction xg

—

distance x> 1‘@'}) Toiep

Different definitions of transformation can lead to different
ways of evaluation. The most ideal way of evaluating the pre-
diction 7', is to first obtain the corresponding simulated final
state 5" = f(S,T)), and then check whether S’ is the same as
ground truth final state S. The first definition that represents
transformations as attribute changes of objects is appropriate for
this evaluation. However, in real scenarios, it is hard to obtain
a simulated final state. We have defined the transformation as a
sequence of clips. The goodness of this definition is annotating-
friendly, but it is limited for the real data that the evaluation could
only be done by comparing predicting T with the given reference
transformation 7'. The problem here is that 7" may not be the only
way in practice to transform the state from S into S’, thus the
evaluation is imperfect. Sections IV-C and V-C will introduce
the detailed evaluation protocols for TRANCE and TRANCO.

IV. SYNTHETIC DATA: TRANCE

We first study TVR under the synthetic setting, in which we
build a new data set by extending CLEVR, namely TRANCE
(Transformation on CLEVR). Besides, we describe how to
define proper TVR objectives and corresponding evaluation
protocols with respect to TRANCE.

A. Dataset Setups

CLEVR [1] is a popular VQA dataset, which first introduces
the concept of visual reasoning. The target of CLEVR is to
answer questions about counting, comparing, logical reasoning,
and so on, according to given images. The content of images
is about simple objects, such as cubes, spheres, and cylinders,
which have different sizes, materials, and colors. Specifically,
for each object, there are 3 shapes, 2 sizes, 2 materials, 8
colors, and infinity locations to be selected, as listed in Table I
annotated with *.

With so many attributes that are convenient to be modified,
we can easily define atomic transformations as changes of these
attributes on objects. This is the major reason that we choose
CLEVR to extend. Another reason is that images can be syn-
thesized using Blender [39] with small costs. Therefore, it is
practicable to create millions of samples.

CLEVR provides a good foundation on attributes and val-
ues, which are fundamental items of the atomic transformation
triplet (o, a,v), as we introduced in Section III. However, the
distance to defining atomic transformations well still exists
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unless we proceed with several modifications or designs. The
first problem is how to represent an object in the answer. Existing
methods such as CLEVR and CLEVR-Change use text which
has ambiguity issues making the evaluation unreliable, while
CLEVR-Ref+ [40] employs bounding boxes that are specific
but require the additional ability of detection. Therefore, we
design to provide additional information, which is the attributes
of the initial objects, including the index, color, material, and
other attribute values. In this way, an object can be referred to
with its index. Note machines still need to perform their own
recognition to align objects in images with given attributes. The
second problem is available values in size and material are too
few, therefore we add medium size and glass material. The last
problem is the available values of position transformation are
infinite in the space of R2, which is not computational friendly.
To reduce the available values, we change the position from
absolute values into relative values by using direction and step to
represent the position transformation. Specifically, we consider
eight directions as shown in Table 1. In addition, we define
a coordinate system, in which x and y are both restricted to
[—40, 40], and objects can only be placed on integer coordinates.
The moving step can be valued as 1 or 2, where 1 step equals 10in
our coordinate system. Except for normal moving action, we are
also interested in whether the vision system could understand
actions like moving in and moving out, so the plane is split,
where the visible area is at the center and the invisible area is
around the visible area, and the moving in and out operations can
be defined correspondingly. To be reasonable, objects shouldn’t
be overlapped and moved out of the plane during transformation.

Having defined the atomic transformation, we will now move
on to introduce how to generate samples. The first step is the
same as CLEVR, which is randomly sampling a scene graph.
According to the scene graph, CLEVR then generates ques-
tions and answers with a functional program and renders the
image with Blender. Different from CLEVR, the next step in
TRANCE becomes randomly sampling a sequence of atomic
transformations, where the length ranges from 1 to 4, which is
called the reference transformation. By applying the reference
transformation to the initial scene graph, we obtain the final
scene graph. At last, two scene graphs are rendered into images
(h: 240 x w : 320).

To reduce the potential bias from random sampling, we
carefully control the sampling process of scene graph and
transformation by balancing several factors. In scene graph
sampling, we balance objects’ attributes and the number of
visual objects in the initial state. In transformation sampling,
the length of the transformation, the object number, n-gram
atomic transformation, and the move type are all balanced.
Throughout all elements, N-gram atomic transformation is the
hardest to be balanced and it refers to the sub-sequence of
atomic transformations with the length of n. By balancing these
factors, we reduce the possibility that a learner utilizes statistics
features in the data to predict answers. In the supplementary
material, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2023.3268093, we show the statistics of the dataset and our
balancing method in detail.
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B. Three Levels of Settings

We design three settings, i.e., Basic, Event, and View, to facil-
itate the study on different levels of transformation reasoning.
Basic is first designed for single-step transformation and then
Event is for multi-step transformation. To further evaluate the
ability of reasoning transformation under a more real condition,
we extend Event with variant views to propose View. Fig. 2
shows three different settings and more examples can be found
in the supplementary material, available online.

Basic: Basic is a simple problem designed to mainly test how
well a learner understands atomic transformations. The target
of Basic is to infer the single-step transformation between the
initial and final states. That is, given a pair of images, the task
is to find out which attribute a of which object o is changed to
which value v. We can see that this task is similar to the previous
game “Spot the Difference” [41], in which the player is asked to
point out the differences between two images. However, Basic
is substantially different from the game. Basic cares about the
object level differences while the game focuses on the pixel level
differences. Therefore, Basic can be viewed as a more advanced
visual reasoning task than the game.

Event: Considering only the single-step transformation is
obviously not enough. In reality, it is very common that multi-
step transformation exists between two states. Therefore, we
construct this multi-step transformation setting to test whether
machines can handle this situation. The number of transforma-
tions between the two states is randomly set from 1 to 4. The
goal is to predict a sequence of atomic transformations that could
reproduce the same final state from the initial state. To resolve
this problem, a learner must find all atomic transformations
and arrange them correctly. Compared with Basic, it is possible
to have multiple atomic transformations, which improves the
difficulty of finding them all. Meanwhile, the order is essential
in the Event because atomic transformations may be dependent.
For example, moving A first and then moving B to A’s place is
non-exchangeable, otherwise, B will overlap A.

View: Inreal applications, the angle of observation is not fixed
like in Basic and Event. To tackle this problem, we extend the
Event setting to View, by capturing two states with cameras in
different positions. In practice, for simplicity but without loss of
generality, we set three cameras, placed on the left, center, and
right sides of the plane. The initial state is always captured by
the center camera, while for the final state, images are captured
with all three cameras. Thus, for each sample, we obtain three
pairs for training, validation, and testing with the same initial
state but different views of the final states. With this design, it
is possible to evaluate how well a vision system understands
object-level transformation under variant views.

C. The Evaluation Protocol

For the single-step transformation setting, i.e., Basic, the
answer is unique. Therefore, we can evaluate the performance
by directly comparing the prediction with the reference trans-
formation. Specifically, in the TRANCE dataset, we consider
fine-grained accuracy and overall accuracy.
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ObjAcc, AttrAcc, ValAcc: Fine-grained accuracy corresponds
to three elements in the transformation triplet, including object
accuracy (ObjAcc), attribute accuracy (AttrAcc), and value ac-
curacy (ValAcc).

Acc: The overall accuracy (Acc) only counts the absolutely
correct transformation triplets.

For multi-step transformation settings, i.e Event and View, it
is not suitable to use the above evaluation metrics, since there
may exist multiple feasible answers. This is because exchanging
some steps like color transformation and shape transformation
is acceptable and the final state keeps unchanged. Benefiting
from the simple setting of TRANCE, it is convenient to eval-
uate the predicted transformation by simulation. Specifically,
we input the item of predicted transformation sequence T =
{t1,%s,...,t,} one by one to transform the initial state to the
simulated final state S’ , l.e., 9% T — S'. A distance can be
computed by counting the attribute level difference between
two final states, i.e., S’ and S'. If the intermediate states do not
violate the pre-defined two constraints, including no overlapping
and no moving out of the plane, and the distance is zero, then
the sequence is correct. If we ignore the two constraints, which
means the order of the sequence is ignored, and find the distance
is zero, then the sequence is called loose correct.

AD, AND: A normalized distance is a distance that is normal-
ized by the length of the reference transformation. AD and AND
are the average distance and average normalized distance over
all samples, respectively.

Acc, LAcc: The accuracy is the proportion of correct samples,
while the loose accuracy is the proportion of loose correct
samples without considering the order:

m

1
Acc = —[T5 i t],
ce EZ m[ is correct]
LAcc = Em 1 [T; is loose correct], (D
m

i
where m is the total number of test samples.
EO: At last, to measure how well the right order is assigned

when all atomic transformations have been found, the error of
order FO = (LAcc — Acc)/LAcc is computed.

V. REAL DATA: TRANCO

In addition to the synthetic data, we build a real dataset called
TRANCO (Transformation on COIN), to explore the potential
role of visual reasoning research in real scenarios.

A. Data Setups

TRANCO is built based on a well-known comprehensive
instruction video data, namely COIN [42], which consists of
11,827 YouTube videos covering 180 different tasks in daily
activities. COIN is widely used in instructional video analysis
tasks, including step localization, action segmentation, proce-
dure localization, task recognition, and step recognition. Each
video of COIN is comprised of a series of steps annotated
with temporal boundaries and descriptions. For example, Fig.
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the boiling water into the waterand stir noodles
Fig. 3. Illustration of an example from TRANCO. The target is to find a

sequence of video clips between the initial and the final state.

TABLE II
STATISTICS OF TRANCO

videos with & clips

videos clips
k=2 k=3 k=4 k=5 k=6 k=7
Train 8651 30244 2451 2497 1874 947 554 328
Val 1024 3616 283 291 235 96 76 43
Test 1430 4918 432 425 279 154 87 53
Total 11105 38778 3166 3213 2388 1197 717 424

3 shows three main steps of cooking noodles, where each step
is represented as a video clip along with a sentence to describe
the step.

We choose COIN to build our real dataset for two major
reasons. First, videos in COIN are real data covering various
daily activities, which meets our requirement of diverse trans-
formations. Furthermore, the step annotations can be reused to
reduce the cost of building the dataset, since the steps in COIN
are equivalent to our atomic transformations.

As we discussed in Section 111, the second transformation defi-
nition represents an atomic transformation as a video clip, which
is more suitable for real complex scenarios than attribute-level
changes. Under this definition, for each sample in COIN, step
video clips are directly transferred to be atomic transformations.
The additional elements that we need to construct are the initial
and the final states. In practice, the state before these steps is the
initial state, and the state after is the final state. Therefore, the
first frame of the first step video clip becomes the initial state
and the last frame of the last step video clip becomes the final
state.

In addition, to simplify the problem, videos containing more
than 7 steps are not used, resulting in 11,105 videos and 38778
total video clips. These videos are separated into 8651 train
samples, 1024 validation samples, and 1430 test samples. The
detailed video distribution on the clip number is shown in
Table II.

B. The Problem Setting

The goal of TRANCO is to reason “open-world” [8] transfor-
mations, that is, models should generalize to unseen transforma-
tions. Specifically, for each video from COIN, two images are
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given as the initial and the final state respectively, and the target
is to find out the original sequence of video clips between the
two states as the transformation, from a candidate set of video
clips. During testing, the candidate video clips are comprised
of all video clips from the testing set and are not exposed to
training. With this design, we expect models to adapt to the
diverse characteristics of transformations in the real world.

TRANCO is intuitively more difficult than TRANCE. The
major difficulty is the objective, i.e., reasoning “open-world”
transformation, which requires additional ability to transfer into
unseen atomic transformations. Another difficulty comes from
the requirement of the higher recognition ability to represent
real images or videos. Experiments in Section VIII also confirm
these two major difficulties of TRANCO.

C. The Evaluation Protocol

As we discussed in Section III, the definition of transformation
can affect the way of evaluation. In order to determine whether
the predicted transformation is correct, it is not feasible to
compare simulated final state S’ with the ground truth final
state S’ here, since it is hard to simulate the real transformation
in TRANCO. The alternative way is to directly compare the
predicted transformation T with the reference transformation
T. Nevertheless, it is acceptable for TRANCO, since the steps
in instructional videos are usually unique and can not be ex-
changed. We consider four metrics for evaluation, including the
overall exact match rate, two metrics on the ability to find correct
atomic transformations without considering the order, and one
especially for order assessment. These metrics are introduced in
the following.

Exact Match Rate (EMR): The first metric is exact match rate,
which evaluates the overall performance. It reflects how many
predicted transformations are exactly the same as reference
transformations, which requires not only the atomic transfor-
mations but also the order are exactly the same. We use the
exact match rate here to distinguish with the Acc in TRANCE,
since the meaning and the evaluation method are different.

Recall, Precision: These two metrics both concern the ability
to find correct atomic transformations and ignore the order
of predicted transformations. Recall reflects how many atomic
transformations in the reference transformation are found, while
precision reflects how many predicting atomic transformations
are right. They are given by:

T NT) . TNT
———, Precision = ———.
T T

KTD: In contrast to recall and precision, KTD (Kendall’s-7
distance) only focuses on order evaluation to reflect how well
models sort atomic transformations. KTD is a commonly used
metric in the field of information retrieval to evaluate ranking
models, the detail can be found in [43]. When computing KTD,
we only consider the order of intersected atomic transformations
T NT. We define that KTD = 1if TN T = 0.

SD, NSD: Similar to TRANCE, we provide step difference
and normalized step difference to reflect how well models esti-
mate the number of steps between the initial and final states. SD

Recall = (2)
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is the absolute difference between the number of predicted steps
and the number of ground truth steps. NSD is the normalized
SD, which is the ratio of SD to the number of ground truth steps.

VI. THE TRANNET FRAMEWORK

In this section, we propose a general framework to tackle the
transformation driven visual reasoning problem, including both
synthetic and real scenarios.

A. The Basic Idea

TranNet is inspired by the OODA decision loop theory [44]
and our study about how human reason transformation reasoning
during human experiments. In Fig. 4, the top row shows the
three stages that we understand about the reasoning process. To
reason the transformation from states, a human will first observe
images, and then circularly analyze image contents and conclude
transformations. Take the cat jumping as an example, a human
will first observe to know that these two images are about a cat.
Next, the one analyzes the two images and finds out the location
of the cat is changed. At last, the one searches mind for a feasible
transformation that could explain the finding state change, which
is “the cat jumps down”. If the transformation process is com-
plex, e.g., cooking noodles, that a single-step transformation
is not enough to complete the entire state changes, one will
repeat analyzing and concluding until working out a sequence
of transformations as the explanation.

We transform the three stages accordingly into modules as
shown in the bottom row of Fig. 4, including encoder, decoder,
and predictor, to form the TranNet framework. In the following,
we briefly introduce how these modules work and show the
instantiations of TranNet on our two problems in Sections VI-C
and VI-B.

Encoder: The goal of the encoder is to extract effective
features from image pairs, which are mainly associated with the
content within and the relation between two states. Specifically,
an encoder E extracts image features h from two states images
S and S":

h=E(S,9). 3)
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As for the pair inputs, there are two common ways to extract
features from them, i.e., early fusion and latter fusion. In the
early fusion way, input images interact before sending into the
network, while in the latter fusion, images are first separately
encoded and then interacted at the feature level. The backbone of
the encoder can be any common image encoder, such as ResNet
[11] and Vision Transformer [45].

Decoder: The decoder is a bridge between the encoder and
the predictor. The goal of the decoder is to circularly decode
information from image representation for the predictor to pre-
dict atomic transformations. In the :th step, in addition to h
from the encoder, the decoder also accepts previous atomic
transformations ¢x; as inputs:

gi:D(h7t07"'ati—1)7 (4)

where tg is the initial atomic transformation, which could be
set by different strategies, e.g., a random initialized vector
optimized during learning. RNNs (e.g., GRU [15]) and trans-
former [16] are selected as two variants of decoders, which are
commonly used techniques for sequence generation.

Predictor: The predictor is responsible for translating the
information from the decoder into one specific atomic transfor-
mation, which should belong to the candidate atomic transfor-
mations. This is implemented by finding ¢ € 74 that maximizes
the score for received g;:

t; = argmax score(g;,t). Q)
teTy
In general, there are two ways to implement the score function,
corresponding to two different problem formulations. The first
way regards the score as a classification function, which max-
imizes the likelihood of desired atomic transformation given
g;. The second one is a contrastive learning way, which is
to maximize the similarity between the g; and t. The major
difference is that the labels or candidates in the classification
problem must be fixed and shared between training and testing
while contrastive learning does not require this. Therefore, the
first way is more suitable for problems with few labels and the
second way has more advantages in its generalization ability.
The second difference is that the contrastive way needs an extra
encoder to encode t so that the similarity between g; and ¢ can
be computed in the same vector space.
Having introduced the basic idea of TranNet, the following
two sections discuss how to implement TranNet in two specific
scenarios, i.e., TRANCE and TRANCO.

B. TranceNet

There are two guidelines we follow to design TranceNet
for TRANCE. The first one is to design effective encoders,
therefore we compare encoders with different encoding ways
and architectures. The second one is to formulate the prediction
as aclassification problem since the atomic transformation space
in TRANCE is fixed.

Fig. 5 shows the architecture of TranceNet. In the encoder part,
we consider two types of early fusion encoders and two types
of latter fusion encoders. Early fusion ways include subtracting
(—) or concatenating (&) two images before feeding them into
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Fig. 5. The architecture of TranceNet.

the networks, such as vanilla CNN or ResNet. We use the
network name with a subscript to denote early fusion encoders,
for example, ResNet_ means ResNet feeding in subtracted
image pairs. The latter fusion encoders include BCNN [12]
and DUDA [13]. BCNN is a classical model for fine-grained
image classification to distinguish categories with small visual
differences. DUDA is originally proposed for change detection
and captioning. The main difference between BCNN and DUDA
lies in the way of feature-level interaction. We choose GRU [15]
and transformer as two different decoders for comparison. The
GRU unit updates the hidden state and receives only the last step
of atomic transformation and (4) becomes:

9;i=D(g;_1,ti 1), (6)

where g, = h, and ¢, is a learned variable. Since the atomic
transformations space of TRANCE is fixed as ten objects times
all attribute values, it is better to formulate the problem in a
classification way, and the final loss function is simplified as a
combination of two cross-entropy losses for object and value
respectively, represented as:

1 n
L=—= t? -logg? +t7 -logg?). 7
n;(z ogg; +1t; -logg;) (7
Note the attribute in the triplet is implied by the value, since each
value only belongs to one specific attribute here.

C. TrancoNet

The requirement to the TrancoNet is higher than TranceNet.
Compared with TranceNet, our first guideline additionally re-
quires high recognition ability, therefore we employ pretrained
CLIP. The second guideline is to formulate the transformation
prediction in a contrastive learning style, because the atomic
transformation space of TRANCO are dynamic rather than fixed
from training to testing.

Fig. 6 show the architecture of TrancoNet. We choose trans-
former as the main backbone to better model the order of atomic
transformations. Meanwhile, we use a pretrained CLIP image
encoder to reduce the training cost of extracting features from
the real image and video data. CLIP is pretrained on massive
image-text pairs and achieves SOTA on many multi-modal tasks,
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including video retrieval [46]. In the encoder part, we only
consider the latter fusion way, since early fusion changes the
input space and it is impossible to obtain a good performance
without tuning CLIP models. The input images are first sepa-
rately encoded with CLIP image encoder, and then interacted
with a transformer encoder. In the decoder part, in zth step, a
transformer predicts the latent representation g; by applying
cross attention to the state representation h and previous steps
of atomic transformations {cg - - - ¢;—1 }, where cg is chosen to
be the initial state and c¢;_1 is the ¢ — 1th video clip. Refer to
[46], video clips are also encoded with CLIP image encoder by
averaging the encoding results of sampled video frames. Finally,
in the predictor part, since the task is more like a problem of
ranking the candidates and the candidates are different between
training and testing, it is more natural to formulate the problem
in a contrastive learning way that maximizes the similarity
between g; and corresponding encoded reference clip ¢;, while
decreasing the similarity with other video clips from candidates:

:_721

Then, the score function can be written as cosine similarity:

exp(g; - CLIP(¢;)/7)
ceT exp(g; - CLIP(¢)/T)"

®)

gi - CLIP(c)

score(g;, CLIP(c)) = |gs||CLIP(c)|"

©)
During inference, the prediction loop ends when the predictor
matches the final state image.

VII. EXPERIMENTS ON TRANCE

In this section, we first briefly introduce the experimental
settings, and then show our experimental results on the three
settings of TRANCE, i.e., Basic, Event, and View. We also
conduct analyses to provide some insights about machines’
ability of reasoning transformation.

We would like to test how well existing methods work on
this new task. However, since the inputs and outputs of TVR
are quite different from existing visual reasoning tasks, existing
methods like [9], [10] cannot be directly applied. Instead, we
compare eight TranceNet variants as well as humans as the initial
benchmark.
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TABLE III
MODEL AND HUMAN PERFORMANCE ON BASIC, EVENT, AND VIEW. AACC IS THE ACCURACY DIFFERENCE BETWEEN VIEW AND EVENT

Basic

Event View

Model AAcct
ObjAccT AttrAcct ValAcct Acct AD] ANDJ| LAcct Acct AD| AND] LAcct Acct
CNN_-G 0.9596 0.9954 0.9834 0.9440 1.5842 0.5217 0.4568 0.4419 2.2649 0.8851 0.2376 0.2300 -0.2119
CNNg-G 0.9570 0.9942 09798 0.9390 1.4416 0.4725 0.4961 0.4797 2.0671 0.7887 0.2889 0.2789 -0.2008
BCNN-G 0.9684 0.9946 09818 0.9524 1.1299 0.3623 0.5847 0.5610 1.2915 0.4437 0.4977 0.4749 -0.0861
DUDA-G 0.9534 0.9922  0.9838 0.9394 1.3184 0.4170 0.5612 0.5401 1.4943 0.5130 0.4837 0.4645 -0.0756
ResNet_-G  0.9808 0.9982 0.9934 09744 1.0072 0.3108 0.6350 0.6057 1.0552 0.3564 0.5704 0.5454 -0.0603
ResNetg-G  0.9856 0.9980 0.9954 0.9814 1.0624 0.3336 0.6217 0.5932 1.1353 0.3760 0.5681 0.5426 -0.0507
ResNet_-T - - - - 0.8389 0.2601 0.6865 0.6553 0.8832 0.2933 0.6324 0.6012 -0.0541
ResNetg-T - - - - 0.8873 0.2777 0.6743 0.6424 0.9260 0.3084 0.6243 0.5927 -0.0497
Human 1.0000 1.0000  1.0000 1.0000 0.3700 0.1200 0.8300 0.8300 0.3200 0.0986 0.8433 0.8433 0.0133
The bold entities are the best model result of each row.
TABLE IV

TranceNets: In the encoder part, we test two networks en-
coding images in the early fusion way, i.e., Vanilla CNN and
ResNet, combined with two fusion methods, i.e., subtraction
(—) and concatenation (), including CNN_, CNNg, ResNet_,
ResNet.,. And we test BCNN and DUDA as the encoders in the
latter fusion way. The decoder of the first six models is GRU
while the decoder of the last two models is transformer. The
predictor is shared just as described in Section VI-B. We denote
these models by their encoders’ names suffixed with ‘G’ and “T”
to represent GRU decoder and transformer decoder respectively.
For example, ResNet®-G means the encoder is a ResNet feeding
in concatenated image pairs and the decoder is a GRU. During
training, teacher forcing [47] is applied for faster convergence.
More implementation details such as number of layers and kernel
size can be found in the supplementary, available online.

Human: To compare with humans, for each of the three
settings, we also collect the results of 100 samples in total. These
results come from 10 CS Ph.D. candidates who are familiar with
our problems and the testing system.

A. Results on Three Settings

From the results of Basic in the left part of Table III, we
can see that all models perform quite well, in the sense that
the performance gap between these models and the human
is not very large. Now we compare these models, where the
difference lies in the encoder, ResNet __ /@—G performs better than
BCNN-G and DUDA-G. Recall that CNN_ /i, and ResNet_ /4,
are early fusion encoders while BCNN and DUDA are latter
fusion encoders. We can conclude that the early fusion way is
better than the latter fusion way on the Basic setting, as the
parameter size of ResNet_ /@ BCNN, and DUDA is similar.
By looking closely to the fine-grained accuracy, we can see the
way of encoding affect the ability to find the correct objects
and values, while the ability to distinguish different attributes is
almost the same.

The middle part of Table III shows the experimental results of
Event. The extremely big performance gap between models and
humans suggests Event is very challenging for machines. The
major reason is the answer space rises exponentially when the
number of steps increases. In our experiments, the size of answer
space is >°7_, (33 x 10)7, about 11.86 billion. The performance
(e.g., Acc) gap between CNN_ /-G and ResNet_ /-G becomes

RESULTS OF RESNET_ -T TRAINED USING REINFORCE [48] WITH
DIFFERENT REWARDS ON EVENT

Model AD| ANDJ LAcct Acct
ResNet_-T 0.8389  0.2601 0.6865 0.6553
+ corr 0.7711  0.2367 0.7061 0.6729
+ dist 0.7741 0.2370 0.7065 0.6734
+corr & dist  0.7681  0.2354 0.7069 0.6740

The bold entities are the best model result of each row.

even larger on Event compared with Basic, which suggests
larger encoders have advantages in extracting sufficient features
to decode transformation sequences. ResNet_,q,-T performs
better than ResNet_ /-G on 5% test samples, which shows the
advantage of the transformer to the GRU.

We also employ reinforcement learning to train models.
Specifically, the signals including the correctness and the dis-
tance of aprediction to the reference transformation can be easily
obtained after a simulation. Therefore, these signals are able to
be used as rewards in REINFORCE [48] algorithm to further
train ResNet_-T models. Table IV shows that all three rewards
significantly improve performance, and the difference among
them is small.

The right part of Table III shows the results of View. While
humans are insensitive to view variations, the performances of
all deep models drop sharply from Event to View according
to AAcc, from —0.0497 to —0.2119. Among these models,
CNN models with fewer parameters drop more sharply while
ResNet_ ,;,-T have the least negative impacts, which shows
larger models have positive benefits and the advantage of the
transformer.

B. Detailed Analysis on Event and View

According to the above experimental results, models perform
worse on Event and View. To understand the task more deeply
and provide some insights for future model designs, we conduct
a detailed analysis of two crucial factors of transformation, i.e.,
sequence length and order.

First, we analyze the effect of transformation sequence length
on Event, which is the major condition that differs from Ba-
sic. Specifically, we separate all test samples into four groups
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TABLE V
RESULTS ON 6.2% ORDER SENSITIVE SAMPLES FROM EVENT

Model LAcc? Acct EOJ
Random (avg. of 100)  1.0000 0.4992  0.5008
CNN_-G 0.1540 0.1395  0.0942
DUDA-G 0.1944 0.1613 0.1701
BCNN-G 0.2339 0.1935 0.1724
ResNet_-G 0.3226  0.2565 0.2050
ResNet_-T 0.3556  0.2911 0.1814
Human 0.7273  0.7273  0.0000

The bold entities are the best model result of each row.

based on their lengths, i.e., samples with k-step transformation
(k=1,2,3,4). Then we plot the Acc for each group in Fig. 7.
From the results, both human and deep models work quite well
when the length is short, e.g., 1. As the length increases, humans
still capture complicated transformations very well. However,
the performance of deep models declines sharply. Take CNN_-G
as an example, the performances for the four different groups
are 92%, 55%, 23%, and 8%. These results indicate that future
studies should focus more on how to tackle transformations
with long steps. Another conclusion is that transformer is more
advanced than GRU because of its higher ability of longer
sequences modeling.

Then we analyze the effect of the order on Event, which
is another important factor in this data. We collect results on
order-sensitive samples. Specifically, we first build a subset of
order-sensitive samples by testing each sample in the test set
whether there exists a sequence permutation that prevents a
successful transformation, caused by overlapping or moving out
of the plane. We then test models on these samples, with 6.2% !
samples from the test set and the result is shown in Table V. The
metric EO is directly defined to measure the influence of order,
LAcc and Acc are just listed for reference. From the results,
we can see that EO of the human is zero. That is to say, once
humans find all the correct atomic transformations, it is not hard
to figure out the order. However, for all deep models, the EOs
are larger than zero, which indicates a clear effect of the order
on the reasoning process. In order to find out the extent of the
effect, i.e., whether 0.0942 ~ 0.2050 means a large deviation, we

'In another subset that only exists positional transformations, where 25% of
them are order sensitive, the experimental results are similar.
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Fig. 8. Results for different final views (Center, Left, Right).

perform an experiment on 100 randomly selected order-sensitive
samples. Specifically, we randomly permutate reference atomic
transformations. As a result, the EO is 0.5008, which could be
viewed as an upper bound of the order error. Therefore, the
current deep models indeed have some ability to tackle the
orders, but there still has a large room for improvement.

We finally analyze the effect of view variation. For each
model, we provide the results of different final views, as shown in
Fig. 8. Please note the results of CNNg-G, BCNN-G, ResNetg-
G, and ResNet,-T are quite similar to CNN_-G, DUDA-G,
ResNet_-G, and ResNet_-T, so we just give the results from
latter three typical models. The results of humans across differ-
ent views change small, demonstrating human’s powerful ability
to adapt to different views. In some cases, humans perform
even better when views are changed than unchanged. That is
because humans usually spend more time solving problems
when the view is altered, resulting in a decrease in the chance to
make errors. Conversely, deep learning models share a similar
trend that view variations will hurt performance. Among these
models, CNN-G decreases the most, while DUDA-G shows its
robustness. In conclusion, models with more parameters are
more robust to view variations and feature-based interaction like
the way used in DUDA-G is helpful.

VIII. EXPERIMENTS ON TRANCO

The previous section has analyzed the experimental results
of the synthetic dataset TRANCE. The following section will
move to analyze how models perform on real data. Similar
to the previous section, the experimental setting is first briefly
introduced, then we show the analysis of results.

In terms of comparing baselines, we first set arandom baseline
to provide the lower bound of the performance as a reference.
And we compare five TrancoNet models to set the initial bench-
mark for TRANCO.

Random: First, the total number of steps n is randomly se-
lected from 2 to 7. Next, n non-repeating atomic transformations
are sequentially and randomly sampled from the candidate set
as the prediction.

TrancoNets: In the encoder part, we consider three types of
encoder borrowed from CLIP [14], including RN101, ViT-B/16,
and ViT-B/32. The input images are encoded in the latter fusion
way. In the decoder part, except for the transformer decoder
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TABLE VI
MODEL RESULTS ON TRANCO (R AND P ARE SHORT FOR RECALL AND PRECISION)

Model Tiny Candidates (100) Full Candidates (4918)
R+ Pt KID| SDJ| NSD| EMR+ Rt Pt KID| SDJ| NSD| EMR+?
Random 0.0316 0.0409 0.9958 1.9364 0.6845 0.0000 0.0005 0.0006 1.0000 1.9888 0.7093 0.0000
RN101-G  0.5733 0.8633 0.4540 1.5503 0.4002 0.1524 0.3374 0.4865 0.7489 1.8147 0.5509 0.0490
ViT-B/32-T 0.7549 0.8434 0.2981 1.4154 0.4248 0.1986 0.4890 0.5205 0.5982 1.7399 0.5709 0.0881
ViT-B/16-T 0.7416 0.8420 02912 1.4413 04343 0.1860 04883 0.5394 0.5933 1.6007 0.5148 0.0811
RN101-T 0.7188 0.8620 0.2545 1.1154 0.2908 0.2161 0.4598 0.5006 0.5865 1.2832 0.3976 0.0727
The bold entities are the best model result of each row.
described in Section VI-C, the GRU decoder is also compared. 0.551 °
. y . 0.5 2 steps

These models are denoted by their encoders’ names suffixed with 0421 0.53 O 3 steps

‘G’ or ‘T’, indicating GRU and transformer respectively. During S 003;451j 0.48 0.47 0.47 @ 4 steps

training, it is computationally expensive if all available video @ 0.3 @ 5 steps

clips in the training set are included in the candidate. Therefore, 92‘ 0b23: @ 6 steps
for each sample, we randomly select negative atomic transfor- 5 001.?: 096 096 @ @ 7steps

mations from other training samples, to constitute a candidate 0.05- %2

set size of 20, which is a trade-off between performance and _0,0(5)_ a5 X, n'Ah b

resource consumption. Further analysis of the candidate set size RN101-G  RN101-T ViT-B/32-T ViT-B/16-T

and more implementation details of models are included in the Model

supplementary material, available online. ! ) )

During the evaluation, in addition to the full test candidates, Fig. 9. Results on TRANCO with respect to different steps.

which contain 4918 atomic transformations (video clips), we TABLE VII

also construct a tiny candidate of size 100 for each sample. RESULTS ON TRANCO WITH RESPECT TO DIFFERENT PRETRAINING

This can help us to learn how candidate size affects the model’s STRATEGIES

performance. The results on tiny candidates are suffixed with -

‘@100, e.g., EMR@100. Pretrain strategy EMR@100 + EMR 1
from scratch 0.1210  0.0378
pretrain w/o finetune 0.1986  0.0881

A Results on TRANCO pretrain w/ finetune 0.1965  0.0748

Table VI show the performance of five models on two sizes
of candidates. From the table, we can see that EMR@ 100 of
the random baseline is exactly zero. This is because the trans-
formation space is large, which is a combination of different
atomic transformations with different orders. Given such a huge
space, it is almost impossible to find a correct answer by finding
random atomic transformations and assigning a random order.
Another comparison is between the results of ResNets-G on
TRANCE and the results of RN101-G here. While RN101-G
has more parameters than ResNet,-G, and is pretrained, the
EMR on TRANCO (0.0490) is much lower than Acc on View
(0.5425). These results show TRANCO is hard, much more
difficult than TRANCE. Next, by comparing the left part of the
table with the right part, we can find that compared with EMR on
tiny candidates, EMR of all models on full candidates drops by
more than 60 percent, which suggests that the high diversity of
atomic transformations is one reason that TRANCO is difficult.
Finally, the results between transformer based models and GRU
based models show transformer performs better on reasoning
transformations. The large gap in recall and KTD indicates
that transformer is more outstanding in finding complete atomic
transformations and capturing the order.

B. Detailed Analysis on TRANCO

As previously analyzed on TRANCE, sequence length and
order are two important factors for transformation reasoning. In

The bold entities are the best model result of each row.

this section, we analyze the impact of sequence length again.
However, the order is not able to be further analyzed since
evaluating order on real data is not convenient. Instead, we will
analyze how pretrained CLIP matters, since real data requires
additional recognition ability and pretrained CLIP is expected
to do well.

We first analyze how transformation sequence length affects
the model’s performance. The results are shown in Fig. 9. The
length of transformation is ranged from 2 to 7 on TRANCO.
From the results, we can see that models answer half of 2-step
samples correctly. However, the EMR @ 100 drops sharply when
the length is larger than 2 and becomes zero when the length
is larger than 4. These results prove the previous findings on
TRANCE that transformations with more steps are difficult
and should be focused on in future studies. Another finding is
transformer indeed performs better than GRU on longer-length
transformations due to its outstanding ability on capturing long-
range dependence.

Another important problem is how pretrained CLIP benefits
models. Therefore, we compare three different strategies for
training ViT-B/32-T and the results are shown in Table VII. We
can see that models initialized with pretrained weights perform
much better than models trained from scratch, improving about
60% on EMR@100 and 100% on EMR. During training, we
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Reference Trans.:

1. (6, color, gray )

1I. (0, material, rubber )
111 ( 1, color, cyan )
Prediction:

14®) color, cyan )

QO material, rubber )

1) color, gray )

Reference Trans.:

1. (2, size, medium )

1I. (4, color, red )

1IL. ( 4, position, behind.1 )
1V. (7, size, medium )

Prediction:

1. (4, position, behind.1)
1I1. (4, color, red )
:“

Fig. 10.  Typical failure cases in TRANCE. In the first case, the model finds
all objects and actions but they are mismatched. In the second case, the model
finds all atomic transformations, but two of them are in reverse order.

Initial State

Final State

also observe that models initialized with pre-trained weights
converge much faster. All these results suggest pretrained
weights from CLIP indeed benefit the transformation reason-
ing, with its strong ability on extracting semantic meaningful
representation. However, the performance drops slightly when
the pretrained weights are further tuned. By jointly analyzing the
EMR curve during training, we find tuning pretrained weights
results in overfitting while fixing pretrained weights does not.
We believe the small training set does not support further tuning
a better feature extractor, therefore the pretrained weights are
fixed in all other experiments on TRANCO.

IX. DiscussioN: FRoM TRANCE 1o TRANCO

From the experimental results on TRANCE (e.g., Event) and
TRANCO, there are some similarities and differences between
the synthetic and real settings. The biggest similarity is that
transformations with more steps are more difficult to be reasoned
correctly, according to Figs. 7 and 9. With a deeper analysis
of the failure cases from the two datasets, we find the types
of mistakes are slightly different. In TRANCE, even in failure
cases, models are able to find most objects and actions but may
fail to match the action to the correct object or find a correct
order, as shown in Fig. 10. While in TRANCO, models even
fail to find all correct transformations from candidates most
of the time, let alone the right order. This is mainly due to
the different characteristics of the two problems. Objects and
their attributes are simple in TRANCE but are significantly
diverse in TRANCO. Therefore, the requirement for image
recognition ability is higher on TRANCO. This is why we
empirically found pretrained ResNet has little positive effects
on TRANCE but pretrained image encoders such as CLIP make
a huge difference (Table VII) on TRANCO. However, both
datasets require context reasoning ability to generate the correct
sequence of transformations, especially when the number of
steps is large. Transformer is known to be good at modeling long
range dependencies, and this is why it performs better than GRU
on both problems. From these two observations, we believe that
improving visual transformation reasoning is primarily a matter
of finding models with greater abilities of image recognition
and contextual reasoning, to make models robust even when
reasoning transformations with many steps.
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X. CONCLUSION

To tackle the problem that most existing visual reasoning
tasks are solely defined in static settings and cannot well capture
the dynamics between states, we propose a new visual reason-
ing paradigm, namely transformation driven visual reasoning
(TVR). Given the initial and final states, the target is to infer
the corresponding sequence of atomic transformations, while
the atomic transformation is represented by a triplet (object,
attribute, value) or a video clip. In this paper, as an example, we
use CLEVR to construct a new synthetic data, namely TRANCE,
which includes three different levels of settings, i.e., Basic for
single-step transformation, Event for multi-step transformation,
and View for multi-step transformation with variant views. We
also construct a real dataset called TRANCO to test reasoning
“open-world” transformations. To study the effectiveness of ex-
isting SOTA reasoning techniques, we propose a human-inspired
reasoning framework named TranNet. The experimental results
show that our best model works well on Basic, while still having
difficulties solving Event, View, and more difficult TRANCO.
Specifically, the difficult point of Event is to find all atomic
transformations and arrange them with a feasible order, es-
pecially when the length of the sequence is large. The view
variations in View bring great challenges to these models, but
have little impact on humans. While for TRANCO, it brings
extra challenges with massive diverse atomic transformations.
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